A Construction for Binary Sequence Sets with Low Peak-to-Average Power Ratio

Matthew G. Parker ${ }^{1}$
Dept. of Informatics, University of Bergen 5020 Bergen, Norway
matthew@ii.uib.no,
http://www.ii.uib.no/~matthew/

Chintha Tellambura
Comp. Sci. and Software Eng.,
Monash University, Clayton, Victoria
3168, Australia
chintha@mail.csse.monash.edu.au

Abstract - Complementary Sequences (CS) have Peak-to-Average Power Ratio (PAR) ≤ 2 under the one-dimensional continuous Discrete Fourier Transform ($\mathrm{DFT}_{1}^{\infty}$). Davis/Jedwab [1] constructed binary CS (DJ Set) for lengths 2^{n} described by $\mathrm{s}=$ $2^{\frac{-n}{2}}(-1)^{p(\mathbf{x})}, p(\mathbf{x})=\sum_{j=0}^{L-2} x_{\pi(j)} x_{\pi(j+1)}+c_{j} x_{j}+k, \quad c_{j}, k \in$ Z_{2}. Hamming Distance, D, between sequences in this set satisfies $D \geq 2^{n-2}$. However the rate of the DJ set vanishes for $n \rightarrow \infty$, and higher rates are possible for PAR $\leq O(n)$ and D large. We present such a construction which generalises the DJ set. These codesets have PAR $\leq 2^{t}$ under all Linear Unimodular Unitary Transforms (LUUTs), including all one and multi-dimensional continuous DFTs, and $D \geq 2^{n-d}$ where d is the maximum algebraic degree of the chosen subset of the complete set.

Let $\mathbf{l}=\left(l_{0}, l_{1}, \ldots, l_{r^{n}-1}\right)$ be a length r^{n} complex sequence. \mathbf{l} is unimodular if $\left|l_{i}\right|=\left|l_{j}\right|, \forall i, j$, unitary if $\sum_{i=0}^{r^{n}-1}\left|l_{i}\right|^{2}=1$, and r-linear if $\mathbf{l}=r^{\frac{-n}{2}} \bigotimes_{i=0}^{n-1}\left(a_{i, 0}, a_{i, 1}, \ldots, a_{i, r-1}\right) \quad$ where \otimes, the 'left tensor product', satisfies $\mathbf{A} \otimes\left(B_{0}, B_{1}, \ldots\right)=$ $\left(B_{0} \mathbf{A}, B_{1} \mathbf{A}, \ldots\right)$. For r prime, r-linear is called linear. $\mathbf{L}_{\mathbf{r}, \mathbf{n}}$ is the infinite set of length r^{n} complex r-linear, unitary, unimodular sequences. A $r^{n} \times r^{n} r$-Linear Unimodular Unitary Transform (r-LUUT) matrix \mathbf{L} has rows $\in \mathbf{L}_{\mathbf{r}, \mathbf{n}}$ such that $\mathbf{L L}^{\dagger}=\mathbf{I}_{\mathbf{r}}{ }^{\mathbf{n}}$, where \dagger means conjugate transpose, and $\mathbf{I}_{\mathbf{r}^{\mathbf{n}}}$ is the $r^{n} \times r^{n}$ identity. When r is prime, r-LUUT is called LUUT. q-LUUTs are a subset of r-LUUTs iff $q \mid r$. Example LUUTs are the $2^{n} \times 2^{n}$ Walsh-Hadamard (WHT) and Negahadamard (NHT) Transform matrices, $\bigotimes_{i=0}^{n-1} \mathbf{H}$, and $\bigotimes_{i=0}^{n-1} \mathbf{N}$, respectively, where $\mathbf{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$, $\mathbf{N}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & i \\ 1 & -i\end{array}\right)$, and $i^{2}=-1$. DFT $_{1}^{\infty}$ is an infinite subset of $2^{n} \times 2^{n}$ LUUTs, the union of whose rows form a subset of $\mathbf{L}_{\mathbf{2}, \mathbf{n}}$ where each row satisfies $a_{i, 0}=\frac{1}{\sqrt{2}}, a_{i, 1}=\frac{\omega^{i k}}{\sqrt{2}}$ for any k, and ω a complex root of unity. We define PAR as, $r-\operatorname{PAR}(\mathbf{s})=r^{n} \max _{\mathbf{l}}\left(|\mathbf{s} \cdot \mathbf{l}|^{2}\right)=$ $r^{n} \max _{\mathbf{1}}\left(\left|\sum_{i=0}^{r^{n}-1} s_{i} l_{i}^{*}\right|^{2}\right)$ where $\mathbf{l} \in \mathbf{L}_{\mathbf{r}, \mathbf{n}}$, means 'inner product', and ${ }^{*}$ means complex conjugate. When r is prime, r-PAR is termed PAR. For \mathbf{l} any row of a fixed unitary transform, $\mathbf{U}, \mathrm{PA}(\mathbf{s})=r^{n} \max _{\mathbf{1}}\left(|\mathbf{s} \cdot \mathbf{l}|^{2}\right)$. The rows of an $R \times R^{\prime}$ matrix, \mathbf{A}, form a complementary set of R sequences under the $R^{\prime} \times R^{\prime}$ unitary transform matrix, \mathcal{T}, if $\mathbf{A} \tau_{\mathbf{i}}^{\mathbf{T}}$ is unitary, where τ_{i} is the i th row of \mathcal{T}, and the rows of \mathbf{A} are unitary. Consequently, each row, $\mathbf{a}_{\mathbf{i}}$, of \mathbf{A} satisfies $\mathrm{PA}\left(\mathbf{a}_{\mathbf{i}}\right) \leq R$ wrt \mathcal{T}.

Construction 1: Let $N=r^{n}, R=r^{t}$. Let $\mathbf{E}_{\mathbf{j}}$ and $\mathbf{A}_{\mathbf{j}}$, $0 \leq j<L$, be $R \times R$ and $R \times R^{j+1}$ complex matrices, resp., $\mathbf{E}_{\mathbf{j}}$ a unitary, unimodular matrix with rows $\mathbf{e}_{\mathbf{i}, \mathbf{j}}, \mathbf{A}_{\mathbf{j}}$ with unitary, unimodular rows, $\mathbf{a}_{\mathbf{i}, \mathbf{j}}$, and $\mathbf{A}_{\mathbf{0}}=\mathbf{E}_{\mathbf{0}}$. Let γ_{j} and θ_{j} permute Z_{R}, and $\mathbf{E}_{\mathbf{j}}^{\prime}$, with rows $\mathbf{e}_{\mathbf{i}, \mathbf{j}}^{\prime}$, be the row/column permutation

[^0]of $\mathbf{E}_{\mathbf{j}}$, specified by γ_{j} and θ_{j}, resp.. Then $\mathbf{A}_{\mathbf{j}}$ is formed as,
$$
\mathbf{a}_{\mathbf{i}, \mathbf{j}}=\left(\mathbf{a}_{\mathbf{0 , j - 1}}\left|\mathbf{a}_{1, \mathbf{j}-\mathbf{1}}\right| \ldots \mid \mathbf{a}_{\mathbf{R}-\mathbf{1}, \mathbf{j}-\mathbf{1}}\right) \odot\left(\mathbf{1} \otimes \mathbf{e}_{\mathbf{i}, \mathbf{j}}^{\prime}\right)
$$
where $\mathbf{x} \odot \mathbf{y}=\left(x_{0} y_{0}, x_{1} y_{1}, \ldots, x_{R^{j}-1} y_{R^{j}-1}\right), \mathbf{1}$ is the length R^{j} all-ones vector, and ${ }^{\prime} \mid$ ' means concatenation.
Theorem 1 Let \mathbf{s} be a length $N=R^{L}$ row of $\mathbf{A}_{\mathbf{L}-\mathbf{1}}$. Then $\pi_{r}(\mathbf{s})$ satisfies $r-P A R\left(\pi_{r}(\mathbf{s})\right) \leq R$ under all $N \times N r-L U U T s$, where π_{r} is any r-symmetric permutation of \mathbf{s}.
Construction 2: (special case of Construction 1). Let $r=2$ and all $\mathbf{E}_{\mathbf{j}}$ be $2^{t} \times 2^{t}$ WHTs. Let $\mathbf{x}=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$ be n binary variables. Then $\mathbf{s}=2^{\frac{-n}{2}}(-1)^{\mathbf{p}(\mathbf{x})}$, where,
$$
p(\mathbf{x})=\sum_{j=0}^{L-2} \theta_{j}\left(\mathbf{x}_{\mathbf{j}}\right) \gamma_{j}\left(\mathbf{x}_{\mathbf{j}+\mathbf{1}}\right)+\sum_{j=0}^{L-1} g_{j}\left(\mathbf{x}_{\mathbf{j}}\right)
$$
where θ_{j} and γ_{j} are any permutations: $Z_{2}^{t} \rightarrow Z_{2}^{t}, \mathbf{x}_{\mathbf{j}}=$ $\left\{x_{\pi(t j)}, x_{\pi(t j+1)}, \ldots, x_{\pi(t(j+1)-1)}\right\}, n=L t, \pi$ permutes Z_{n}, and g_{j} is any t-variable function.
Corollary 1 The length $N=2^{n}$ sequences, s, of Construction 2, satisfy $P A R(\mathbf{s}) \leq 2^{t}$ under all $N \times N$ LUUTs.

Example: For $t=3, \pi$ the identity, $L=2$, let γ_{0} and θ_{0} be quadratic permutations of Z_{2}^{3}. Then s is a length 64 quartic sequence. For instance, $p(\mathbf{x})=0235,0245,023,025,1235,1245,0234,0235,0245,1234,1235,1245$,
$123,125,035,045,134,145,134,135,145,234,235,245,03,05,14,15$ where, e.g., 0235, 0245 means $x_{0} x_{2} x_{3} x_{5}+x_{0} x_{2} x_{4} x_{5}$. In this case s has PAs 6.25, 3.25 , and 3.74 under WHT, NHT, and $\mathrm{DFT}_{1}^{\infty}$, resp. For all LUUTs, PAR ≤ 8.

Theorem 2 For fixed t, let \mathbf{P} be the subset of $p(\mathbf{x})$ of degree 2 or less, generated using Construction 2. Then $D \geq 2^{n-2}$ and,

$$
\begin{equation*}
\frac{|\mathbf{P}|}{2^{n+1}} \leq B=\frac{\left(\frac{\Gamma}{t!}\right)^{\frac{n}{t}-1} n!\left(2^{2^{t}-t-1}\right)^{\frac{n}{t}}}{2 t!} \tag{1}
\end{equation*}
$$

where $\Gamma=\prod_{i=0}^{t-1}\left(2^{t}-2^{i}\right)=|G L(t, 2)|$. (GL is the General Linear Group). (For $t=1$ or $L \leq 2$ the bound is exact).
The table enumerates quadratic coset leaders for $t=2$ (PAR ≤ 4.0) using Constr. 2, comparing with (1) and the DJ set.

n	4	6	8	10
B	72	12960	4354560	2351462400
$\|\mathbf{P}\| / 2^{n+1}$	36	9240	4086096	2317593600
$\|\mathrm{DJ}\| / 2^{n+1}$	12	360	20160	1814400

The full paper describes how to generate the quadratic subset of Construction 2 using 'Bruhat' decomposition, also investigates higher degree subsets, and generalises Constructions 1 and 2 to γ_{j}, θ_{j}, many-to-one and one-to-many mappings.

REFERENCES
[1] Davis, J.A.,Jedwab, J.: Peak-to-mean Power Control in OFDM, Golay Complementary Sequences and Reed-Muller Codes. IEEE Trans. Inform. Theory 45. No 7,2397-2417,Nov (1999)

[^0]: ${ }^{1}$ Funded by NFR Project Number 119390/431

