
Online Greedy Matching from a New Perspective

Lene M. Favrholdt1? and Martin Vatshelle2

1 Department of Mathematics and Computer Science, University of Southern Denmark,
lenem@imada.sdu.dk

2 Department of Informatics, University of Bergen, Martin.Vatshelle@ii.uib.no

Abstract. We introduce two new quality measures for online algorithms, the online
worst-order and random-order ratios, that compare the online algorithms to optimal
online algorithms instead of optimal offline algorithms. We apply these new mea-
sures as well as the competitive and random-order ratios to the matching problem, on
general graphs and graphs of maximum degree 2.

1 Introduction

Consider a graph G with edge set E. A subset E′ of the edges, such that no two edges in
E′ are adjacent, is called a matching in G. In the matching problem, the aim is to find a
matching with as many edges as possible.

For the offline version of the problem, where the whole graph is known from the begin-
ning, there are polynomial algorithms that solve the problem to optimality [7].

In the online version, the edges of the graph are revealed one by one. For each edge, the
algorithm has to decide whether to include the edge in the matching, without knowledge of
possible future edges.

The standard quality measure for online algorithms is the competitive ratio [11, 17,
20], which compares the online performance to the optimal offline performance, much
like the approximation ratio for offline algorithms. It is easily seen that the natural greedy
algorithm that always includes an edge in the matching, if it is not adjacent to an edge
already included, has a competitive ratio of 0.5, and no deterministic algorithm has a better
competitive ratio. This closes the competitive analysis of the problem. In this paper, we try
to add more detail to the analysis of the online matching problem, using three other quality
measures and looking at special graph classes.

The first alternative measure, the random-order ratio, was introduced in connection
with the bin packing problem in [18]. It has also been used implicitly in papers on the offline
matching problem [6]. For each input sequence, it considers the expected performance,
assuming that all permutations of the sequence are equally likely.

The two other measures, the online worst-order ratio and the online random-order
ratio, compare the online algorithm to an optimal online algorithm instead of an optimal
offline algorithm. The idea behind is that, when we analyze algorithms for online problems,
we should normalize their performance by the hardness of the online problem, not the
hardness of the offline problem.

The two online measures are inspired by [14], which introduces the online chromatic
number of a graph. The online chromatic number of a graph G is the number of colors it
takes the best possible online algorithm (with respect to G) to color G. It can be assumed
that the optimal online algorithm knows the graph beforehand, but not the order in which
the vertices arrive. For the coloring problem, the online worst-order ratio of an online algo-
rithm A is the worst-case ratio of the number of colors used by A to the online chromatic
number. The online random-order ratio is the same as the online worst-order ratio except
that, for each input sequence, the average (instead of worst-case) performance over all per-
mutations of the sequence is considered. The online worst-order and random-order ratios
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can also be seen as relaxations of the worst-order ratio [2] and random-order ratio. The
online worst-order and random-order ratios are formally defined in Section 2.

1.1 Results

We introduce two new quality measures for online algorithms, the online worst-order and
random-order ratios.

We analyze the competitive ratio (CR), random-order ratio (RR), online worst-order
ratio (OWR), and online random-order ratio (ORR). The results are summarized in Ta-
bles 1–3. The left columns give results on the greedy algorithm, and the right columns
show bounds on the best possible deterministic online performance. We first look at gen-
eral graphs (Table 1). Then we move on to the special case of graphs of maximum degree
2 (Table 2). We also consider the even more special case, where the graph consists of one
long path or cycle (Table 3). For this case, our results for the online measures are the same
as for graphs of maximum degree 2.

We implemented an algorithm which is always at least as good as any online algorithm.
We compare this algorithm to Greedy on paths of lengths up to 100,000. Results obtained
with this simulation are marked with an ∗ in the tables.

Greedy Opt(Det)

CR = 0.5 CR = 0.5
RR = 0.5 0.5 ≤ RR ≤ 0.783

OWR = 0.5 0.5 ≤ OWR ≤ 0.6
ORR = 0.5 0.5 ≤ ORR < 1

Table 1. General graphs

Greedy Opt(Det)

CR = 0.5 CR = 0.5

0.82
∗
≤ RR ≤ 0.82 0.82

∗
≤ RR ≤ 0.82

OWR = 1 OWR = 1

0.993
∗
. ORR ≤ 1 0.993

∗
. ORR ≤ 1

Table 2. Graphs of maximum degree 2

Greedy Opt(Det)

CR = 0.6 CR = 0.6

RR ≈ 0.865 0.865 . RR
∗
≤ 0.87

OWR = 1 OWR = 1

0.993
∗
. ORR ≤ 1 0.993

∗
. ORR ≤ 1

Table 3. Long paths or cycles

For graphs of maximum degree 2, Greedy is optimal with respect to the online worst-
order ratio. This adds some detail to the information we get from the competitive ratio. The
fact that Greedy has an optimal competitive ratio says that, for any deterministic online
algorithm A, there is a graph where A does as bad as Greedy does on its worst graph.
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In a sense, the result OWR(Greedy) = 1 on graphs of maximum degree 2 says that, on
any graph of maximum degree 2, Greedy does at least as well as any deterministic online
algorithm.

It seems that, on graphs of maximum degree 2, Greedy is also optimal with respect to
the online random-order ratio, but we have not been able to prove it. We prove that, on a
path of length 9, P9, there is an online algorithm with a better random-order performance
than Greedy. However, this does not disprove that the online random-order ratio of Greedy
could be 1, since the random-order ratio is an asymptotic measure, and the proof does not
generalize to arbitrarily long paths or more copies of P9.

1.2 Related Work
In [18] it was shown that the random-order ratio of the Best-Fit bin packing algorithm lies
between 1.08 and 1.5. Thus, the random-order ratio is lower than the competitive ratio of
1.7. In contrast, it was recently shown in [15] that the random-order ratio of the Next-Fit
bin packing algorithm is 2, which is the same as the competitive ratio.

In [6] a randomized version of the greedy matching algorithm is analyzed. The algo-
rithm considers the edges in a random order. On general graphs, this strategy leads to a
competitive ratio of 1

2 , just like the deterministic greedy algorithm, but on some graph
classes, the ratio is significantly better: On forests, the ratio is approximately 0.769, and on
planar graphs, it lies between 6

11 and 11
15 . Note that these ratios correspond to the random-

order ratio of the greedy algorithm.
In [5, 12–14, 19], online algorithms are sought that use a number of colors which is a

function depending only on the online chromatic number, for any graph in a given class.
Such algorithms are called online competitive for that graph class. It is not known whether
online competitive algorithms exist for all graph classes; it is not even settled for the class
of bipartite graphs.

Several papers have analyzed the (relative) worst-order ratio for various online prob-
lems [1–4, 8, 9].

An overview of online bipartite matching, analyzed with the competitive ratio, is given
in [16].

2 Quality Measures

In this section, we formally define the four quality measures. First, we introduce some
notation.

Let OPT denote an optimal offline matching algorithm. For any algorithm A and any
sequence E of edges, we let A(E) denote the the number of edges in the matching con-
structed by A when given E as input. For any graph G = (V,E), let AW(G) denote the
worst-case performance of A on G, over all permutations of E. More precisely,

AW(G) = min
σ∈S
{A(σ(E))} ,

where S denotes the set of permutations on |E| elements. We are now ready to define the
competitive ratio:

Definition 1 (Competitive Ratio). For any online matching algorithm A, the competitive
ratio of A is

CR(A) = sup {c | ∃b : ∀G : AW(G) ≥ cOPT(G)− b} .

For the definition of the random-order ratio we use the following further notation: Let
AE(G) denote the average number of edges in the matching produced by A, over all per-
mutations of the edges of G, i.e.,

AE(G) =
1
|S|

∑
σ∈S

A(σ(E)) .
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Definition 2 (Random-Order Ratio). For any online matching algorithm A, the random-
order ratio of A is

RR(A) = sup {c | ∃b : ∀G : AE(G) ≥ cOPT(G)− b} .

For the definition of the two online measures, we let O denote the set of all online
matching algorithms.

Definition 3 (Online Worst-Order Ratio). For any online matching algorithm A, the on-
line worst-order ratio of A is

OWR(A) = sup {c | ∃b : ∀G : ∀O ∈ O : AW(G) ≥ cOW(G)− b} .

One of the differences between the competitive ratio and the online worst-order ratio
is the following. With the competitive ratio, the online algorithm is competing against an
optimal offline algorithm. With the online worst-order ratio, for each graph, the online
algorithm is competing against a best possible online algorithm for that graph. (This is
exactly the difference between the worst-order ratio and the online worst-order ratio.)

Note that considering a separate online algorithm AG for each graph G does not nec-
essarily mean that AG can perform as well as an offline algorithm, since it is not given a
mapping between the arriving edges and the edges of the final graph.

The analogy between the random-order ratio and the online random-order ratio is the
same as between the worst-order ratio and the online worst-order ratio:

Definition 4 (Online Random-Order Ratio). For any online matching algorithm A, the
online random-order ratio of A is

ORR(A) = sup {c | ∃b : ∀G : ∀O ∈ O : AE(G) ≥ cOE(G)− b} .

3 General Graphs

It is well-known that the greedy algorithm has an optimal competitive ratio of 0.5:

Theorem 1. The competitive ratio of Greedy is CR(Greedy) = 0.5, and this is optimal
among deterministic online algorithms.

Proof. For a graph G, let M be the optimal matching. Every edge of M that is not picked
by Greedy is adjacent to one edge picked by greedy. Since an edge can be adjacent to at
most two edges of M , Greedy gets at least |M |2 edges.

Let G be a collection of k copies of P3, i.e., k independent paths of length three. Then
|M | = 2k. If all middle edges of the P3’s arrive first, Greedy gets k edges, and has to
reject all the 2k edges in M . ut

In [6] it is proven that, even if Greedy considers the edges in a random order, there is a
graph, where the expected number of edges accepted by Greedy is only half the number of
edges accepted by an optimal offline algorithm. This immediately gives Theorem 2 below.
The graph considered in the proof is a clique with one additional edge sticking out from
each clique vertex.

Theorem 2. The random-order ratio of Greedy is RR(Greedy) = 0.5.

Theorem 3. Any online algorithm A has a random-order ratio of

RR(A) ≤ 47/60 = 0.783.
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Proof. Consider the graph consisting of a triangle with an extra edge sticking out from
each vertex:

The triangle edges are called inner edges, the other three are called outer edges. Clearly,
an optimal matching consists of the three outer edges.

We show that, on this graph, an optimal online algorithm accepts the first edge. Consider
any online algorithm A.

Case 1: A does not accept the first edge.
If the first edge is an outer edge, A will end up with a matching of at most two edges.
This happens with probability 1

2 .
Now consider the case that the first edge is an inner edge. When the second edge ar-
rives, the algorithm can distinguish only two cases: the edge is adjacent or nonadjacent
to the first edge.
With probability 4

5 , the second edge will be adjacent to the first edge, and when this
happens, the probability that the second edge is an inner edge is 1

2 . If the edge is an
inner edge, and A accepts it, A will get at most two edges. If the edge is an outer edge,
and A does not accept it, A will get at most two edges. Thus, if the second edge is a
neighbor of the first edge, A gets at most two edges with probability at least 1

2 .
Hence, if A does not accept the first edge, the total probability of getting at most two
edges is at least 1

2 + 1
2 ·

4
5 ·

1
2 = 7

10 . Thus, the expected number of edges inA’s matching
is at most 7

10 · 2 + 3
10 · 3 = 23

10 .
Case 2: A accepts the first edge.

If the first edge is an inner edge, A ends up with a matching of at most two edges. This
happens with probability 1

2 .
Now consider the case that the first edge is an outer edge. We consider the following
two subcases:
Case 2a: The second edge is adjacent to the first edge. This happens with probability

2
5 .
With probability 1

2 the third edge is adjacent to the second edge, but not to the first
edge. In this case, it is equally likely to be an inner or outer edge. Hence, with
probability 1

2 A gets at most two edges.
Case 2b: The second edge is not adjacent to the first edge. This happens with probabil-

ity 3
5 .

With probability 2
3 , the second edge is an outer edge. Thus, the best strategy is to

accept the edge. But this still leaves a probability of 1
3 of getting at most 2 edges.

Hence, if A accepts the first edge, the total probability of getting at most 2 edges is at
least 1

2 + 1
2 ( 2

5 ·
1
2 ·

1
2 + 3

5 ·
1
3 ) = 13

20 . This gives an expected number of accepted edges
of at most 13

20 · 2 + 7
20 · 3 = 47

20 .

Thus, the best strategy is to accept the first edge, in which case the expected number of
accepted edges is at most 47

20 . Since the optimal number of edges is three, this gives a ratio
of at most 47

60 . ut

Theorem 4. The online worst-order ratio of Greedy is OWR(Greedy) = 0.5.

Proof. Consider the graph Gk that contains two copies of Bk,k, B1 = (L1 ∪ R1, E1) and
B2 = (L2 ∪ R2, E2). Vertex i in R1 has an edge to vertex i in L2, i = 1, 2, . . . , k. The
graph G3 looks like this:
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If the edges connecting B1 and B2 are given first, Greedy will accept these k edges
and no other edges.

Consider the algorithm A that accepts an edge if and only if there is already a path
of length three between its endpoints. This algorithm will not accept any of the edges
connecting B1 and B2. Hence, we can prove that A accepts at least k − 1 edges from each
Bi, i = 1, 2. To this end, we define two subgraphs ofBi. The green graph is the subgraph of
Bi induced by the endpoints of the accepted edges from Ei. The red graph is the subgraph
of Bi induced by the remaining vertices of Li ∪Ri.

Li andRi can have at most one red vertex each. Otherwise, there would be a four-cycle
in the red graph. This would be a contradiction, since when one of these four edges arrived,
its endpoints would already be connected by a path of length three, and thus it would be
accepted. It follows that Li and Ri have at most one red vertex each, and hence the green
graph has at least k − 1 edges. ut

Theorem 5. Any online algorithm A has an online worst-order ratio of

OWR(A) ≤ 2
3

Proof. Consider the graph Gk described in the proof of Theorem 4 and the graph Mk con-
sisting of k independent edges. No online algorithm can be optimal on both these graphs.

Consider any algorithm A. Assume that the algorithm is given k independent edges. If
A accepts only 2

3 of the edges, then if the sequence stops after these k edges, A gets only
2
3 as many edges as the algorithm that accepts all of them. On the other hand, if A accepts
more than 2

3k edges, and if the sequence continues until all of Gk has been given, A gets
at most 4

3k edges. According to the proof of Theorem 4, there is an online algorithm that
accepts at least 2k−2 edges of Gk, on any permutation of the edges. This gives a ratio that
tends to 2

3 as k tends to infinity.
Note that the proof goes through also for randomized algorithms, with “number of

edges” replaced by “expected number of edges”. Hence, the result holds for randomized as
well as deterministic algorithms. ut

Theorem 6. The online random-order ratio of Greedy is ORR(Greedy) = 0.5.

Proof. The lower bound follows from Theorem 2. For the upper bound, consider the graph
Gn defined in the following way. The graph contains an n-clique Qn. Each vertex in Qn is
connected to exactly one vertex outside the clique, and no two vertices inQn are connected
to the same vertex outside the clique. Thus, the graph has exactly 2n vertices and m =
1
2 (n2 + n) edges. The n clique vertices are also called inner vertices, and the remaining
n vertices are called outer vertices. Similarly, the 1

2 (n2 − n) clique edges are called inner
edges, and the n edges connecting inner vertices to outer vertices are called outer edges.

The optimal thing to do is, of course, to reject the inner edges and accept all the outer
edges. This will give a matching of exactly n edges. However, for each outer edge, about 1

2n
inner edges will arrive, so Greedy will accept many inner edges. By Theorem 2, Greedy
gets only 1

2n+ o(n) edges in total.
We will describe an algorithm that rejects all arriving edges, until it can make edu-

cated guesses as to which edges are inner edges and which are outer edges. The idea is to
try to reject the first Θ(n log n) edges, and after that accept exactly those edges that are
adjacent to at most one vertex that has already been seen. We prove that this strategy is
expected to loose only O(log n) outer edges among the Θ(n log n) edges that are rejected
unconditionally and o(n) outer edges among the remaining edges. Finally, we show how to
decide when Θ(n log n) edges have arrived, without knowing n from the beginning. This
will prove the upper bound.

In a random permutation, each edge has a probability of n log n/m of being among
the first Θ(n log n) edges. Hence the expected number of outer edges among the first
Θ(n log n) edges is Θ(log n).
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When r edges have arrived, let x(r) be the expected number of inner vertices which
are not among the endpoints of the r first edges of input. We call these vertices unseen
inner vertices. There are two ways an outer edge can be rejected, either it was among
the Θ(n log n) first edges or it was connected to one of at most x(n log n) unseen inner
vertices. We prove that x(n log n) ∈ o(n).

Assume for the purpose of contradiction that x(n log n) is Ω(n). Then for sufficiently
large n, there exists a constant ε such that x(n log n) ≥ εn. Therefore, for each inner
edge among the first n log n edges, the probability of being incident to some inner vertex
not previously seen is at least ε. Moreover, the number of inner edges among the n log n
first edges is Ω(n log n). Thus, for sufficiently large n, there exists a constant ε′ such that
n − x(n log n) ≥ ε · ε′n log n, but for sufficiently large n, this is a contradiction. Hence,
we conclude that x(n log n) is o(n).

The only thing left to prove is how to reject the Θ(n log n) first edges without knowing
n. Let Hr = (Vr, Er) be the subgraph of Gn, where Er contains the r first edges of
the input, and Vr contains the vertices adjacent to at least one of the r first edges. Then the
vertices ofHr will be the n−x(r) seen inner vertices plus theO(log n) seen outer vertices.
We want to show that when the average degree ofHr isΘ(log |Vr|) then the expected value
of |Er| is Θ(n log n).

Clearly, when the average degree of Hr is Θ(log |Vr|), the number of seen edges is
O(n log n). Hence it suffices to show: If the average degree of Hr is Ω(log |Vr|) then the
expected value of |Er| is Ω(n log n). Or the contrapositive: If r = o(n log n), then the
expected average degree of Hr is o(log |Vr|).

Let r = o(n log n), then the expected number of outer edges is o(log n). We divide
into two cases, r ≤ n

4 and r > n
4 . When r ≤ n

4 the probability of the next edge to see an
unseen node is at least 1

2 . Hence, the expected number of seen vertices is at least 1
2r, and

the expected average degree is at most 4. If r > n
4 , the expected number of seen vertices

is at least n8 , and hence the expected average degree is o(log n). Hence, the algorithm can
reject until the average degree is log |Vr|; then the expected number of rejected edges will
be Θ(n log n). ut

Thus, in a sense, Greedy does not look better competing against online algorithms
than offline algorithms. This is not very surprising. It is to be expected that, as for graph
coloring, one has to look at more restricted graph classes to see the difference between the
two measures.

In Theorem 5 we used two graphs and showed that any online algorithm would fail
on at least one of them. The important part was that the two input sequences were indis-
tinguishable. For random-order measures we have to prove that two graphs, or classes of
graphs, are indistinguishable for all online algorithms.

In this proof the graphs is a collection of stars with different size. For each component
we add a constant number of extra edges in such a way that no online algorithm can get
these edges with out knowing where they are placed. Therefore almost all sequences look
equal in the start.

Theorem 7. No online algorithm A has an online random-order ratio of 1.

Proof. We consider two graphs, the graph from the proof of Theorem 3 (T3) and a triangle
with just one edge sticking out (T1). We prove that no online algorithm can be online
random-order optimal on both graphs.

As in the proof of Theorem 3, we divide the edges into inner and outer edges. Thus,
T1 has one outer edge, and T3 has three outer edges. Consider the sequence I starting with
an outer edge e, followed by the two neighbors of e, and concluded by the remaining inner
edge:
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This sequence defines all of T1 or a subgraph of T3. Clearly, if the final graph is T1, the
first and the last edge of I should be accepted. However, if the final graph is T3, the last
edge of I should be rejected.

By case analysis, it is easily proven that Greedy is online random-order optimal for
T1, with 3

2 accepted edges on average. Similarly, it is not difficult to prove that, for T3, the
optimal strategy is Greedy, except that if the input sequence starts with sequence I , the
fourth edge should be rejected. This gives 47

20 accepted edges on average.
For the absolute ratio, this gives a ratio of at most 140

141 :
If the final graph is T3, the probability that the sequence I will be a prefix of the input

sequence is 1
2 ·

2
5 ·

1
4 ·

1
3 = 1

60 . Thus, if the last edge of I is accepted, the expected number
of accepted edges will be at most 47

20 −
1
60 = 140

60 . For the optimal online algorithm for T3,
the expected number of edges is 47

20 = 141
60 . This gives a ratio of 140

141 .
If the final graph is T1, the probability of the sequence I is 1

4 ·
2
3 ·

1
2 = 1

12 . Thus, if the
last edge is rejected, the expected number of edges is at most 3

2 −
1
12 = 17

12 . For the optimal
online algorithm for T1, the expected number of edges is 3

2 = 18
12 . This gives a ratio of 17

18 ,
which is smaller than 140

141 .
For the asymptotic ratio, we construct an infinite family of graphs. Each graph consists

of copies of T1 and T3 with a lot of extra outer edges attached to a vertex that already has
an outer edge:

In a graph with n copies of T1 and T3 in total, the numbers of extra outer edges could
be n2, n3, . . . , nn. With very high probability a large fraction of these extra edges have
arrived before the online algorithm has to make decisions about the third inner edge. Thus,
with high probability, the optimal online algorithm will be able to sort them by the number
of extra outer edges, and thus infer which components will end up as a T1 and which will
end up as a T3. ut

4 Graphs of Maximum Degree 2

In this section, we consider graphs that consist only of paths and cycles. We let Pi, i ∈ N,
denote a path of length i.

Theorem 8. On graphs of maximum degree 2, the competitive ratio of Greedy is

CR(Greedy) =
1
2
.

Proof. The result follows from the proof Theorem 1. ut

We will now investigate the performance of an optimal algorithm

Lemma 1. For a path Pi and any deterministic online algorithm A, there exists an order
of the input where A gets at most d i3e edges.

Proof. For paths of length at most 4 this is easy to check. Assume the lemma holds for
all lengths less than k. Consider any deterministic online algorithm A. Assume that a path
Pi−3 of length i− 3 < k has been given and that A has accepted at most d i−3

3 e edges. We
show how to extend the path by three additional edges such that A accepts at most one of
these edges. The first of the three edges is not connected to Pi−3, i.e., it is the last or second
last edge of Pi. A can either accept or reject the edge.

1. If accept, then the edge is the second last edge of Pi. The last and third last edges will
be given last, and none of these can be included in the matching.
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2. If reject, then the edge is the last edge of Pi. The second last and third last will be given
next, and from these A gets at most one.

ut

Lemma 2. For a path Pi, Greedy always gets at least d i3e edges.

Proof. Assume not, then 3 consecutive internal edges must have been rejected by Greedy,
or two edges at the end of the path. But Greedy only rejects an edge if at least one neigh-
boring edge has been accepted. ut

Theorem 9. For graphs of maximum degree 2, OWR(Greedy) = 1.

Proof. The result follows directly from Lemmas 1 and 2. ut

If we want to prove that ORR(Greedy) = 1, we should not try to prove that Greedy
always does at least as well as any online algorithm:

Theorem 10. The absolute online random-order ratio of Greedy is strictly less than 1.

Proof. There is an algorithm that performs slightly better than Greedy on P9:
Let the edges e1, e2, . . . , e9 be the edges of P9, such that e1 and e9 are the endedges,

e2 and e8 are their neighbors, and so on. Assume that the first six edges to arrive form two
vertex disjoint paths of length three, and that the middle edge in each path has been included
in the matching. Furthermore, assume that the seventh edge to arrive is not adjacent to any
of these paths. Then, with probability 1

3 the new edge is the middle edge, e5, and with
probability 2

3 it is one of the endedges. If it is the first (or last) edge of the path, it is safe to
reject it, since the second (or second last) edge can be accepted instead. If it is the middle
edge, it pays to reject it, because then its two neighbors can be accepted.

The algorithm A that behaves like Greedy except for the case described above has
a better expected performance than Greedy. For the sequence to start as described, with
the seventh edge being the middle edge of the path, the first six edges to arrive must be
exactly the first and last three edges of the path, e2 must arrive before e1 and e3, e8 must
arrive before e7 and e9, and e5 must arrive before e4 and e6. Hence, the probability of the
sequence starting as described with the seventh edge being the middle edge is

1(
9
6

) · 1
3
· 1
3
· 1
3

=
1

2268
.

Thus, the expected number of edges accepted byA is 1
2268 larger than the expected number

of edges accepted by Greedy. ut

The above theorem indicates that it could be challenging to show ORR(Greedy) = 1.
We found no technique that works in general. However, for a fixed path length, there is
a simple way of calculating the expected size of the matching found by Greedy, using
dynamic programming.

We can use a similar way of dynamic programming to give an upper bound on the
performance of an optimal online algorithm. We will now briefly describe the algorithm
before we start talking about the results.

An online algorithm can not tell which edge it is given, but if one or both neighboring
edges are previously seen an online algorithm could keep track of this. There are therefore
3 possible states for each endpoint of a yet unseen edge: The neighboring edge has not
been seen, it has been seen and is in the matching or it has been seen and was rejected.
We call those edges arriving before both neighboring edges independent edges. If an online
algorithm gets an edge which is not independent the greedy strategy is optimal. The strategy
of an optimal online algorithm is therefore only uncertain when facing an independent edge.

The graph induced by the set of unseen edges will be a collection of paths. We call
them upaths. For each upath there are 3 possible states for each endpoint, but because of
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symmetry we only need 6 states in total for each upath. If the online algorithm knew the
length of the upath containing the given edge and the state of its endpoints it would be able
to make a choice better than any online algorithm could do.

We keep a table with one entry for each pair of length and state. Since the edges come
in a random order, each edge of a upath has equal probability of being the next one. For
non-independent edges we know Greedy is optimal, and for independent edges there are
only two possible strategies: reject or accept. In either case, given the length of the upath
and the states of its endpoints, it is just to sum, over all edges in the upath, the expected
number of matched edges in the two resulting shorter upaths times the probability for the
edge, and use the strategy giving the best expected value. This semi-online algorithm is
called onlOPT, since it gives an upper bound on the best possible online performance.

If we want the expected number of edges for Greedy we do the same, but do not make
a choice of the best strategy.

As for the results of this simulation there are several interesting points: How well
does Greedy do compared to the optimal solution? We calculated the random-order ra-
tio for each path length up to 100, 000. The worst random-order ratio for both Greedy and
onlOPT was for paths of length 5, where they had the same ratio of 37

45 = 0.82. This
indicates:

Simulation Result 1 RR(Greedy) = RR(onlOPT) = 0.82.

Lemma 3. For graphs of max degree 2, RR(Greedy) ≤ 0.82.

Proof. Let the input be a collection of P5’s. Let the edges e1, e2, . . . , e5 be the edges of
a P5, such that e1 and e5 are the endedges, e2 and e4 are their neighbors, and e3 is the
middle edge. Greedy will always get at least 2 edges and at most 3, so we only need to
calculate the probability of getting 2 edges. If the order of edges starts with (e2),(e4),
(e1,e4), (e5,e2), (e1,e2,e4), or (e5,e4,e2), Greedy gets 2 edges, and else Greedy gets 3
edges. The probability of getting 2 edges is: 2 · 15 +2 · 15 ·

1
4 +2 · 15 ·

1
4 ·

1
3 = 2

5 + 1
10 + 1

30 = 8
15 .

Hence, the expected number of edges is: 8
15 · 2 + 7

15 · 3 = 37
15 . Since OPT gets 3 edges,

RR(Greedy) ≤ 37
45 = 0.82 ut

For long paths, we get that RR(Greedy) tends to 0.864 . . . and RR(onlOPT) tends
to 0.869 . . ., and we find the following relationship between the performance of the two
algorithms:

Simulation Result 2 Greedy(n) ≈ 0.9948 . . . · onlOPT(n) + 0.0168.

Recall that for Greedy we calculated the exact expected value, but the value for onlOPT
is only an upper bound on the best possible online performance. Hence, Greedy could be
optimal for long paths, but we do not know how to prove that.

5 Long Paths or Cycles

For long paths and cycles, many of the results from the previous section hold, and some
can be improved.

Theorem 11. On long paths and cycles, any deterministic online algorithm A has a com-
petitive ratio of CR(A) ≤ 2

3 .

Proof. This follows from Lemma 1. ut

Theorem 12. On long paths and cycles, the competitive ratio of Greedy is

CR(Greedy) =
2
3
.
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Proof. This follows from Lemma 2 and Theorem 11. ut

The following result follows directly from Theorems 11 and 12.

Corollary 1. On long paths and cycles, OWR(Greedy) = 1.

For paths and cycles, online matching is equivalent to unfriendly seating arrangements.
One can view edges as seats. The unfriendly seating problem was studied by Dave Freed-
man and Larry Shepp in 1964 [10].

Theorem 13. If the edges of a long path or cycle are given in a random order, Greedy will
on average pick approximately 43% of the edges.

Since the optimal solution matches half the edges, this immediately gives the following
result.

Corollary 2. On long paths and cycles, the random-order ratio of Greedy is RR(Greedy) ≈
0.86.

We see that this is consistent with the results from our simulation. The simulation also
showed that no deterministic online algorithm has random-order ratio≥ 0.87. We therefore
conclude the following:

Simulation Result 3 On long paths and cycles, Greedy has an online random-order ratio
of ORR(A) ≥ 0.994.

Interestingly enough there is another algorithm that performs just as well. The algo-
rithm keeps track of what Greedy would have done, and does the following. If Greedy
would have taken an edge, the edge is rejected, and otherwise it is accepted if possible. We
call this algorithm revGreedy.

Lemma 4. If the edges of a long cycle or path are given in a random order, revGreedy
will on average pick approximately 43% of the edges.

Proof. revGreedy picks among the edges that Greedy left out, i.e., a collection of paths of
length 1 or 2. For each of these paths, revGreedy picks one edge. Therefore, Greedy picks
at most one more edge than revGreedy. The result now follows from Theorem 13. ut

Note that there is an equivalent definition of revGreedy: For each edge, if some neigh-
bor edge has been seen before, accept if possible. Else reject.

6 Conclusion and Future Work

We introduced two new quality measures, where we use the best possible online perfor-
mance as the reference point instead of the best possible offline performance. The analysis
gave some additional evidence that Greedy is the best choice for online matching. And
none of the measures gave any evidence indicating that Greedy is not optimal.

However, we found some specific instances of short paths where Greedy is not the
best possible online algorithm. Moreover, the new online random-order measure opens
for the possibility that Greedy is not optimal. Hence, it is an important question whether
ORR(Greedy) = 1 for graphs of maximum degree 2.

Furthermore, there is another algorithm, very different from Greedy, with the same
performance as Greedy on long paths and cycles. This was a surprising result, but the new
algorithm is clearly not as good as Greedy on general graphs.

We are currently working on generalizing and applying the new measures to online
weighted matching.

11



We would also like to continue a discussion on whether the new measures capture the
optimality of an online algorithm or not. The reason we needed a new measure was that
competing against the optimal offline algorithm was too tough for an online algorithm. For
a given graph, it is most likely a highly specialized algorithm that is the optimal online al-
gorithm, and thus does arbitrarily bad on other inputs. Would it be possible to only compete
against a subset of the online algorithms that satisfy some requirement of generality? And
still be able to calculate the value of such a measure?
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