
Faster Algorithms Parameterized by
Clique-width

Sang-il Oum1?, Sigve Hortemo Sæther2??, and Martin Vatshelle2

1 Department of Mathematical Sciences, KAIST
South Korea

sangil@kaist.edu
2 Department of Informatics, University of Bergen

Norway
[sigve.sether,vatshelle]@ii.uib.no

Abstract. Many NP-hard problems, such as Dominating Set, are FPT
parameterized by clique-width. For graphs of clique-width k given with
a k-expression, Dominating Set can be solved in 4knO(1) time. How-
ever, no FPT algorithm is known for computing an optimal k-expression.
For a graph of clique-width k, if we rely on known algorithms to com-
pute a (23k−1)-expression via rank-width and then solving Dominating
Set using the (23k − 1)-expression, the above algorithm will only give a

runtime of 423knO(1). There have been results which overcome this ex-
ponential jump; the best known algorithm can solve Dominating Set

in time 2O(k2)nO(1) by avoiding constructing a k-expression. We improve
this to 2O(k log k)nO(1). Indeed, we show that for a graph of clique-width
k, a large class of domination and partitioning problems (LC-VSP), in-
cluding Dominating Set, can be solved in 2O(k log k)nO(1). Our main
tool is a variant of rank-width using the rank of a 0-1 matrix over the
rational field instead of the binary field.

Keywords: clique-width, parameterized complexity, dynamic program-
ming, generalized domination, rank-width

1 Introduction

Parameterized complexity is a field of study dedicated to solving NP-hard prob-
lems efficiently on restricted inputs, and has grown to become a well known field
over the last 20 years. Especially the subfields of Fixed Parameter Tractable
(FPT) algorithms and kernelizations have attracted the interest of many re-
searchers. Parameterized algorithms measure the runtime in two parameters;
the input size n and a secondary measure k (called a parameter, either given
as part of the input or being computable from the input). An algorithm is FPT

? Supported by Basic Science Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning
(2011-0011653).

?? Supported by the Research Council of Norway.

if it has runtime f(k)nO(1). Since we study NP-hard problems, we must expect
that f(k) is exponentially larger than n for some instances. However, a good
parameter is one where f(k) is polynomial in n for a large class of inputs. For a
survey on parameterized complexity and FPT, we refer the reader to [10,8,18].

The clique-width of a graph is a well studied parameter in parameterized
complexity theory. Courcelle, Makowsky, and Rotics [6] showed that, for an input
graph of clique-width at most k, every problem expressible in MSOL1 (monadic
second-order logic of the first kind) can be solved in FPT time parameterized
by k if a k-expression3 for the graph, that is a certificate that the graph has
clique-width at most k, is given together with the input graph. Later, Oum and
Seymour [20] gave an algorithm to find a (23k+2−1)-expression of a graph having
clique-width at most k in time 23knO(1).4 By combining these results, we deduce
that for an input graph of clique-width at most k, every MSOL1 problem is
FPT, even if a k-expression is not given as an input. However the dependency
in k is huge and can not be considered of practical interest. In order to increase
the practicality of FPT algorithms, it is very important to control the runtime
as a function of k.

If we rely on first calculating a k-expression and then doing dynamic program-
ming on the calculated k-expression, we have two ways to make improvements;
either we improve the algorithm that uses the k-expression, or we find a better
approximation for clique-width. Given a k-expression, Independent Set and
Dominating Set can be solved in time 2knO(1) [12] and 4knO(1) [2], respec-
tively. Lokshtanov, Marx and Saurabh [15] show that unless the Strong ETH
fails5, Dominating Set can not be solved in (3 − ε)knO(1) time when given a
k-expression6. By this, there is not much room for improvement in the existing
algorithms when a k-expression is given.

Since the best approximation of clique-width is exponential in the optimal
clique-width, even for the simple NP-hard problems Independent Set and
Dominating Set, all known algorithms following this procedure has a runtime
where the dependency is double exponential in the clique-width. The question of
finding a better approximation for clique-width is an important and challenging
open question in parameterized complexity. However, there is a way around this
by not using a k-expression at all: Bui-Xuan, Telle and Vatshelle [3] showed that
by doing dynamic programming directly on a rank decomposition, Dominating
Set can be solved in 2k

2

nO(1) for graphs of rank-width k and hence also for
graphs of clique-width k, since rank-width ≤ clique-width [20]. In this paper we
improve on this algorithm.

3 See [7] for the definition clique-width and k-expressions.
4 Later, Oum [19] obtained an improved algorithm to find a (23k − 1)-expression of a

graph having clique-width at most k in time 23knO(1).
5 The Strong Exponential Time Hypothesis (Strong ETH) states that SAT can not

be solved in O((2− ε)n) time for any constant ε > 0. Here n denotes the number of
variables.

6 Their proof uses pathwidth, but the statement holds since clique-width is at most 1
higher than pathwidth.

Table 1. A table of some vertex subset properties whose optimization problems be-
long to LC-VSP. The meaning of the problem specific constant d(π) is discussed in
subsection 2.3.

d(π) Standard name

d d-Dominating set
d+ 1 Induced d-Regular Subgraph
d Subgraph of Min Degree ≥ d
d+ 1 Induced Subg. of Max Degree ≤ d
2 Strong Stable set or 2-Packing
2 Perfect Code or Efficient Dom. set
2 Total Nearly Perfect set
2 Weakly Perfect Dominating set
2 Total Perfect Dominating set
2 Induced Matching
2 Dominating Induced Matching
2 Perfect Dominating set
1 Independent set
1 Dominating set
1 Independent Dominating set
1 Total Dominating set

Table 2. A table of some homomorphism problems in LC-VSP for fixed simple graph
H. These are expressible with a degree constraint matrix Dq where q(π) = |V (H)|.
The meaning of Dq, d(π) and q(π) is explained in subsection 2.3.

d(π) Standard name

1 H-coloring or H-homomorphism
1 H-role assignment or H-locally surj. hom.
2 H-covering or H-locally bij. hom.
2 H-partial covering or H-locally inj. hom.

We initiate a study to find a parameter P which is lower than both treewidth
and clique-width, and for which Independent Set and Dominating Set are

solvable on any graph G in runtime better than 2O(k2)nO(1) time, where k =
P (G). We give such a parameter for which we obtain a runtime of 2O(k log k)nO(1),
not only for Independent Set and Dominating Set but a wide range of
problems. We study a particular subclass of MSOL1 problems, called the locally
checkable vertex subset and partitioning problems (LC-VSP problems) which con-
tains among others Independent Set and Dominating Set. Tables 1 and 2
list some well known problems in LC-VSP.

Bui-Xuan et al. [4] showed that by using rank-width as a parameter we can

get a runtime of 2O(k2)nO(1) for any of the LC-VSP problems. The idea of [4] is
to introduce an alternative width parameter necd-width (where d is a positive
integer depending on the specific LC-VSP problem being solved, as explained in
subsection 2.3) of graphs such that

– for every decomposition of rank-width k, the necd-width is at most 2O(k2),
and

– each LC-VSP problem can be solved in time O
(
n4pO(1)

)
, when a decompo-

sition of necd-width p is given together with the input graph.

Since rank-width is never more than clique-width, by the approximation algo-
rithm of rank-width by Oum and Seymour [20], a decomposition certifying that

the necd-width of G is at most 2O(cw(G)2) can be found in time 23 cw(G)nO(1). It

follows that every fixed LC-VSP-problem can be solved in 2O(cw(G)2)nO(1)-time
parameterized by the clique-width cw(G) of the input graph G.

In this paper we improve on these results by using a slightly modified defini-
tion of rank-width, which we call Q-rank-width, based on the rank function over
the rational field instead of the binary field. The idea of using fields other than
the binary field for rank-width was investigated earlier in [14]. We will show the
following:

– For any graph, its Q-rank-width is no more than its clique-width.

– There is an algorithm to find a decomposition confirming that Q-rank-width
is at most 3k + 1 for graphs of Q-rank-width at most k in time 23knO(1).

– If a graph has Q-rank-width at most k, then the necd-width is at most
2O(k log k).

These results allow us to use Q-rank-width instead of rank-width to improve
the runtime of the algorithm of Bui-Xuan et al. [4]. By using Q-rank-width, the
algorithm runs in time 2O(k log k)nO(1) for graphs of clique-width at most k. This
suggests that for LC-VSP problems, the parameter Q-rank-width is more useful
than both clique-width and rank-width.

We also relate the parameter Q-rank-width to other existing parameters.
There are several factors affecting the quality of a parameter, such as: Can we
compute or approximate the parameter? Which problems can we solve in FPT
time? Can we reduce the exponential dependency in the parameter for specific
problems? And, how large and natural is the class of graphs having a bounded
parameter value?

This paper is organized as follows: In Section 2 we define branch-decompositions
and introduce the main parts of the framework used by Bui-Xuan et al. [4], in-
cluding the general algorithm they give for LC-VSP problems. Section 3 revolves
around Q-rank-width and is where the results of this paper reside. We show how
Q-rank-width relates to necd-width and clique-width, and reveal why we have
a good FPT algorithm for approximating a decomposition. At the end of this
section we add all the parts together to form the main theorem, which is an
improved upper bound on solving LC-VSP problems parameterized by clique-
width when we are not given a decomposition. We end the paper with Section 4
where we have some concluding remarks and open problems.

2 Framework

We write V (G) and E(G) to denote the set of vertices and edges, respectively, of
a graph G. For A ⊆ V (G), let A = V (G) \A. For a vertex v ∈ V (G), let NG(v)
be the set of all neighbours of v in G. We omit the subscript if it is clear from
the context. For a set S ⊆ V (G) we define N(S) =

⋃
v∈S N(v) \ S.

2.1 Branch Decompositions

The algorithm of Bui-Xuan et al. [4] needs a branch-decomposition as input. A
branch-decomposition (T, δ) of a graph G consists of a subcubic tree T (a tree
of maximum degree 3) and a bijective function δ from the leaves of T to the
vertices of G. (Note that this definition differs from that of [21] by δ mapping
to the vertices of G instead of the edges.)

Every edge in a tree splits the tree into two connected components. In a
branch decomposition (T, δ) for a graph G, we say that each edge e induces a
cut in G. This induced cut is a bipartition (A,A) of the vertices of V (G) so that
A is the set of vertices mapped by δ from vertices of one component of T − e,
and A is the set of vertices mapped by δ from the other component of T − e.

For a function f : 2V (G) → R, we define a cut-function f on the set of all
cuts (A,A) such that f(A,A) = max{f(A), f(A)}.

Given a cut-function f and a branch-decomposition (T, δ) of a graph G,

– the f -width of (T, δ) is the maximum value of f over all the cuts of (T, δ),
and

– the f -width ofG is the minimum f -width over all possible branch-decompositions
of G.

When we speak of the f -width of a graph, we address it as a width parameter
of the graph.

2.2 Neighbourhood Equivalence

Two sets of vertices S1, S2 are neighbourhood equivalent if they have the same set
of neighbours, in other words, N(S1) = N(S2). We are particularly interested in
neighbourhood equivalence in bipartite graphs, or more specifically, cuts defined
by a branch decomposition. This concept was generalized with respect to cuts
in [4]. We define the d-neighbour equivalence relation ≡d, and use this to define
the parameter necd.

For a cut
(
A,A

)
of a graph G, and a positive integer d, two subsets X,Y ⊆ A

are d-neighbour equivalent, X ≡d Y , over
(
A,A

)
if:

for each vertex v ∈ A, min {d, |N(v) ∩X|} = min {d, |N(v) ∩ Y |}.

The number of d-neighbour equivalence classes, necd(A), is the number of equiv-
alence classes of ≡d over

(
A,A

)
.

In other words, X ≡d Y over the cut
(
A,A

)
if each vertex in A is either

adjacent to at least d vertices in both X and Y , or is adjacent to exactly the
same number of vertices in X as in Y . The algorithm in [4] uses this relation to
limit the number of solutions to try. Therefore, the runtime is dependent on the
number of d-neighbour equivalence classes.

2.3 Locally Checkable Vertex Subset and Vertex Partitioning
Problems

Telle and Proskurowski [23] introduced the Locally Checkable Vertex Subset
and Vertex Partitioning-problems (LC-VSP), also called [σ, ρ]-problems and
Dq-partition problems. This framework for describing graph problems captures
many well known graph problems, see [23,4]. Tables 1 and 2 list some of them.
For completeness, we give the definitions of the problem class LC-VSP, however,
they are not used directly in this paper and can be skipped by the reader.

For finite or co-finite sets σ and ρ of non-negative integers, a set S of vertices
of a graph G is a [σ, ρ]-set of G if for each vertex v of G,

|N(v) ∩ S| ∈

{
σ if v ∈ S,
ρ if v ∈ V (G) \ S.

The Locally Checkable Vertex Subset-problems (LC-VS), or [σ, ρ]-problems, are
those problems that consist of finding a minimum or maximum [σ, ρ]-set of the
input graph.

The LC-VSP problems, or Dq-partition problems, is a generalization of the
LC-VS problems. The goal of these problems is to partition the vertex set of the
input graph into multiple [σ, ρ]-sets. A degree constraint matrix Dq is a q × q
matrix such that each cell is a finite or co-finite set of non-negative integers. We
say that a partition V1, V2, . . . , Vq of V (G) satisfies Dq if for 1 ≤ i, j ≤ q, the
number of neighbours in Vj of a vertex of Vi is in the set Dq[i, j]. In other words,

|N(v) ∩ Vj | ∈ Dq[i, j] for all 1 ≤ i, j ≤ q and v ∈ Vi.

For each LC-VSP-problem π, there are two problem-specific constants d(π)
and q(π). The number q(π) equals the number of parts in a partition that the
problem requests, or equivalently, the row/column size of the constraint matrix.
The number d(π) is the largest number in all the finite sets and in all the comple-
ments of the co-finite sets of the degree constraint matrix used for expressing π.
When solving the problem π, we require the use of the d-neighbour equivalence
relation ≡d(π).

The algorithm of Bui-Xuan et al. [4] solves each of the LC-VSP problems
with a runtime dependent on necd(π)-width and q(π).

Theorem 1 (Bui-Xuan et al. [4]). Let π be a problem in LC-VSP. For a
graph G given along with a branch-decomposition for that graph of necd(π)-width

k, the problem π can be solved in time O
(
|V (G)|4q(π)k3q(π)

)
.

3 The Q-rank-width of a Graph

The Q-cut-rank function of a graph G is a function on the subsets of V (G) that
maps X ⊆ V (G) to the rank of an |X| ×

∣∣X∣∣-matrix A = (aij)i∈X,j∈X over the
rational field such that aij = 1 if i and j are adjacent in G and aij = 0 otherwise.
We let cutrkQ(X) denote the Q-cut-rank of X. For a subset X ⊆ V (G), the
matrix A associated with cutrkQ(X) is the adjacency matrix of the cut

(
X,X

)
.

Note that if the underlying field of the matrix A is the binary field GF (2), then
we obtain the definition of the usual cut-rank function [20]. By Q-rank-width of
a graph, we mean its Q-cut-rank-width (see subsection 2.1). We may denote the
Q-rank-width simply as rwQ.

Since the Q-cut-rank function is symmetric submodular and is computable
in polynomial time, by applying the result of Oum and Seymour [20], we get the
following theorem.

Theorem 2 (Oum and Seymour [20]). There is a 23knO(1)-time algorithm
for which, given a graph G as input and a parameter k, either outputs a branch-
decomposition for G of Q-rank-width at most 3k+1 or confirms that Q-rank-width
of G is more than k.

3.1 Relating Q-rank-width to Other Graph Parameters

The question of how useful the Q-rank-width is as a width parameter is hard to
answer. To better understand this question, it would be interesting to know the
relation to other well known width parameters such as treewidth, rank-width
and clique-width.

The following relates Q-rank-width to the closely related parameter rank-
width, yet we see that rank-width can be substantially lower than Q-rank-width.

Lemma 3. For any graph G we have rw(G) ≤ rwQ(G) ≤ cw(G) ≤ 2rw(G)+1−1.

Proof. The first inequality is from the fact that a set of 0-1 vectors linearly
independent over Q must also be linearly independent over GF [2].

The second and third inequalities follow from [20, Proposition 6.3] since their
proof is not dependent on the type of field rank-width uses. They show that a
k-expression can be translated to a branch decomposition where for every cut(
A,A

)
in the decomposition, either the number of unique rows or the number

of unique columns in the adjacency matrix M of its induced bipartite graph, is
bounded by k. Since this means the rank of M over Q is at most k, we have
rwQ(G) ≤ cw(G). The idea of showing cw(G) ≤ 2rw(G)+1 − 1, is that a branch
decomposition where the adjacency matrix of each cut has its number of unique
columns/rows (approximately) bounded by some k, can be translated to a k-
expression. As the number of unique columns/rows for any 0-1 matrix of rank
rw is at most 2rw, we get our inequality. The last two inequalities are also proved
in [14]. ut

FVS

OCT

D2ProperInterval

D2Interval

D2Chordal

D2Perfect

boolean-width

rank-width

clique-width

pathwidth

treewidth

Q-rank-width

Fig. 1. A comparison diagram of graph parameters relevant to this article. A parameter
P is drawn below a parameter Q if for all graphs G we have P (G) ∈ O(Q(G)). The
abbreviations are: FVS = Feedback Vertex Set number, OCT = Odd Cycle Transversal
number, D2Π = Vertex Deletion distance to a member of Π.

We believe Lemma 3 is tight. There are existing results showing that it is
almost tight. A n × n grid has rank-width n − 1 [13] and clique-width n +
1 [11], hence the first two inequalities are almost tight. There exist graphs with
treewidth k and hence Q-rank-width ≤ k and clique-width 2bk/2c−1 [5].

From Vatshelle [25, Section 4.2.1] we deduce the following observation, which
will help us bound Q-rank-width in terms of treewidth.

Observation 4 ([25]). A graph of treewidth k has a branch decomposition
where each cut has a vertex cover of size at most k + 1.

Lemma 5. The Q-rank-width of a graph is never more than the treewidth +1.

Proof. If a graph G has a treewidth of k, then by Observation 4, there exists a
branch decomposition of G where every cut has a vertex cover of at most k + 1
vertices. Suppose we have a cut

(
X,X

)
with such a vertex cover S. Since the

adjacency matrix of the cut decreases its rank by at most one by the removal of
one vertex, and the adjacency matrix of

(
X \ S, X \ S

)
has rank zero (since the

matrix consist of only 0’s), the cut
(
X,X

)
must have Q-cut-rank at most k+ 1.

This holds for all cuts, and thus Q-rank-width is at most the treewidth +1. ut

Figure 1 shows a comparison diagram of graph parameters. The idea of such
a diagram is that parameterized complexity results will propagate up and down
in this diagram. Positive results propagate upward; for instance, since Dom-
inating Set is solvable in 2O(tw)nO(1) for a graph of treewidth tw [22], we
see that Dominating Set is solvable in 2O(pw)nO(1) for a graph of pathwidth
pw. Negative results propagate downward; for example, since unless ETH fails,
Dominating Set can not be solved in 2o(pw)nO(1) where pw is the pathwidth
of the input graph[16], so is the case for treewidth, clique-width, Q-rank-width,
rank-width and boolean-width.

3.2 Relating necd-width to Q-rank-width

Now we know how to find a branch-decomposition with a low Q-rank-width, but
we have yet to show what this means in terms of runtime for the algorithm in
[4] (i.e. prove Theorem 1).

We know the runtime of the algorithm in terms of the necd-width of the
given decomposition. So, if we manage to give a bound on the necd-width of a
decomposition in terms of the Q-rank-width, we will also get a bound on the
runtime of the algorithm in terms of Q-rank-width. We will prove such a bound
shortly, but in order to do this we first need the following lemma, based on a
proof of Belmonte and Vatshelle [1, Lemma 1].

Lemma 6. Given a positive integer d and a cut
(
A,A

)
of Q-cut-rank k, for

every subset S ⊆ A, there exists a subset R ⊆ S so that |R| ≤ dk and R ≡d S
over the cut.

Proof. We will give a proof by induction. First we show that the lemma holds
for d = 1. Let S′ be a minimal subset of S so that S′ ≡1 S. Since S′ is min-
imal, removing any vertex of S′ will decrease |N(S′)|. Therefore, every vertex
of S′ is adjacent to at least one vertex that none of the other vertices in S′ are
adjacent to. In the adjacency matrix M of

(
A,A

)
, this means that each of the

corresponding rows of S′ has a 1 in a column where all the other rows of S′ has
a 0. Hence, the rows are all linearly independent. As the Q-cut-rank of

(
A,A

)
is the maximum number of linearly independent rows of M , we can deduce that
|S′| ≤ cutrkQ(A) ≤ k.

For the induction step, we show that if the lemma holds for all values up to d,
then it must also hold for d+1. By the above, we know that there exists a subset
S′ ⊆ S of cardinality at most k such that S′ ≡1 S. By the induction hypothesis,
there exists a set R′ ⊆ (S \ S′) so that R′ ≡d (S \ S′) and |R′| ≤ d · k. We will
show that the set R = S′ ∪R′, which is of size ≤ k(d+ 1), satisfies R ≡d+1 S.

Let S∗ be the set S\R. Since R′ ⊆ (S\S′), for all vertices v ∈ N(S∗) we have
|N(v)∩(S \S′)| > |N(v)∩R′|. However, as R′ ≡d (S \S′), every vertex in N(S∗)
must be adjacent to at least d vertices of R′. And since N(S′) = N(S), every
vertex in N(S∗) must also be adjacent to at least one vertex of S′. Thus, for every
vertex v ∈ A, either v ∈ N(S∗) and therefore |N(v) ∩ S| > |N(v) ∩ R| ≥ d+ 1,
or v 6∈ N(S∗) and so N(v) ∩ S = N(v) ∩R. ut

Because of Lemma 6, in order to count distinct d-neighbour equivalence
classes for a cut, we need only count those neighbourhoods that are produced
by sets of size no more than d times rwQ.

So far, the results of Q-rank-width have been similar to those of rank-width.
For both rank-width, Q-rank-width and boolean-width it can be shown that for
a parameter value of k, the number of vertices with distinct neighbourhood over
the cut is no more than 2k, and each d-neighbourhood can be represented by at
most dk vertices [25]. Putting this together gives a trivial bound of necd ≤ 2dk

2

.
However, when counting the number of d-neighbour equivalence classes for a cut,
we can improve this trivial bound when using the Q-rank-width. This is because

the row space of a Q-basis of some matrix not only contains all the rows of the
matrix, but also all the different sums of the rows in the matrix. So, we can
bound necd by a more direct connection between Q-rank-width and the number
of d-neighbourhoods than that of the trivial bound.

Theorem 7. If the Q-rank-width of a branch-decomposition is k, then the necd-
width of the same decomposition is no more than 2k log (dk+1).

Proof. To prove this we only need to show that the inequivalence holds for any
cut of a graph: Suppose we have a cut

(
A,A

)
of Q-cut-rank k and adjacency

matrix M . Since the rank of M is k, there are exactly k linearly independent
columns C = {c1, c2, c3, . . . , ck} in M . This means that every row in the row
space of M can be identified by the k entries in the columns of C. Also, since
M is an adjacency matrix, its entries are either 0 or 1.

Let r(S) be the sum of row vectors of M corresponding to S ⊆ A. If r(S) =
r(S′) then S ≡d S′ (for any d), since the entries of r(S) and r(S′) state exactly
how many vertices of the set are adjacent to each of the vertices of A.

From Lemma 6, to compute necd we only need to count d-neighbour equiv-
alence classes for sets of size at most dk. Therefore, to calculate necd, we will
instead calculate an upper bound to the number of distinct rows that represent
some neighbourhood of a set of size ≤ dk.

For a set S ⊆ A, each vertex v ∈ S contributes to each entry of r(S) either a
zero or a one. That means if |S| ≤ dk, then the entries of r(S) take on values in
the integer range [0, dk]. As r(S) is a linear combination of the rows of M , it is in
the row space of M . That means r(S) can be uniquely identified by the values of
the k entries in the columns of C. Therefore, the number of distinct d-neighbour
equivalence classes of the cut is no more than the number of ways to choose
one out of dk + 1 values for k entries. In other words, necd ≤ ((dk) + 1)

k
=

2k log (dk+1). This proves the theorem. ut

This result, combined with Theorems 1 and 2, shows that all the LC-VSP
problems can be solved in 2O(k log k)nO(1)-time. Expressing the runtime in terms
of clique-width, we get the following teorem.

Theorem 8. Every LC-VSP problem π can be solved in 2O(cw log (cw ·d(π))q(π))nO(1)-
time on graphs of clique-width cw.

Proof. By Theorem 2 we can create a branch-decomposition of Q-rank-width at
most 3 rwQ +1 in 23 rwQnO(1)-time. By Theorems 1 and 7, every LC-VSP problem
can be solved in 29 rwQ log (3 rwQ ·d(π)+1)q(π)nO(1). Since rwQ ≤ cw by Lemma 3,
we have the same runtime parameterized by cw instead of rwQ. ut

4 Conclusion

If we are given a k-expression as input, the best known FPT algorithm parame-
terized by k solving the Dominating Set is by Bodlaender et al. [2] and runs

in time 4knO(1). However, it is currently open whether we can construct a k-
expression of an input graph of clique-width at most O(k) in polynomial time.
We have shown the existence of algorithms with runtime 2O(cw log cw)nO(1) for all
LC-VSP problems, without assuming that a k-expression is given as an input.
This still leaves the natural open question:

Open Problem 1. Can Independent Set or Dominating Set be solved in
2O(cw)nO(1) time, where cw is the clique-width of the graph?

We know that for a graph of treewidth tw, Independent Set can be solved
in 2O(tw)nO(1) time leading to an interesting question of what parameters give a
linear exponential runtime for Independent Set. Two such parameters are the
Vertex Deletion Distance to Proper Interval graphs (D2PI) and the Odd Cycle
Transversal number (OCT number):

1. For a graph G, the D2PI of a graph is the minimum number of vertices
needed to be removed in order to make G into a Proper Interval graph. For
a graph G with D2PI equal k, Villanger and van’t Hof [24] gave a 6knO(1)

algorithm for finding such a set S to be removed. To solve Independent
Set on a graph G = (V,E), we guess the intersection S′ ⊆ S between the
optimal solution and S, and then combining it with the optimal solution of
Independent Set on the proper interval graph G[V \ (S ∪N [S′])].

2. The OCT number of a graph G is the minimum number of vertices needed to
remove fromG in order to make it bipartite. For a graphG with OCT number
equal k, Lokshtanov, Saurabh and Sikdar [17] gave a (nO(1)3k) algorihm for
finding the minimum sized set S of vertices to remove from G to make it
bipartite. As with the algorithm above, we can solve Independent Set by
guessing the intersection S′ ⊆ S between the optimal solution and S and
combine it with the optimal solution of the bipartite graph G[V \(S∪N [S′])].
As Independent Set is solvable in nO(1) time on bipartite graphs [9], this
yields a 2knO(1) time algorithm.

Note, however, that these parameters are not bounded by treewidth (or clique-
width), see Figure 1.

References

1. R. Belmonte and M. Vatshelle. Graph classes with structured neigh-
borhoods and algorithmic applications. Theoret. Comput. Sci., 2013.
doi:10.1016/j.tcs.2013.01.011.

2. H. Bodlaender, E. van Leeuwen, J. van Rooij, and M. Vatshelle. Faster algorithms
on clique and branch decompositions. In Proceedings of MFCS, volume 6281 of
LNCS, pages 174–185. Springer, 2010.

3. B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. H-join decomposable graphs and
algorithms with runtime single exponential in rankwidth. Discrete Appl. Math.,
158(7):809–819, 2010.

http://dx.doi.org/10.1016/j.tcs.2013.01.011

4. B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Fast dynamic programming for
locally checkable vertex subset and vertex partitioning problems. Theoret. Comput.
Sci., 2013. doi: 10.1016/j.tcs.2013.01.009.

5. D. G. Corneil and U. Rotics. On the relationship between clique-width and
treewidth. SIAM J. Comput., 34(4):825–847 (electronic), 2005.

6. B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–
150, 2000.

7. B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete
Appl. Math., 101(1-3):77–114, 2000.

8. R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in
Computer Science. Springer-Verlag, New York, 1999.

9. U. Faigle and G. Frahling. A combinatorial algorithm for weighted stable sets in
bipartite graphs. Discrete Appl. Math., 154(9):1380–1391, 2006.

10. J. Flum and M. Grohe. Parameterized complexity theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

11. M. C. Golumbic and U. Rotics. On the clique-width of some perfect graph classes.
Internat. J. Found. Comput. Sci., 11(3):423–443, 2000.

12. F. Gurski. A comparison of two approaches for polynomial time algorithms com-
puting basic graph parameters. CoRR, abs/0806.4073, 2008.

13. V. Jeĺınek. The rank-width of the square grid. Discrete Appl. Math., 158(7):841–
850, 2010.

14. M. M. Kanté and M. Rao. The rank-width of edge-coloured graphs. Theory
Comput. Syst., 52(4):599–644, 2013.

15. D. Lokshtanov, D. Marx, and S. Saurabh. Known algorithms on graphs of bounded
treewidth are probably optimal. In Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 777–789, Philadelphia, PA,
2011. SIAM.

16. D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the exponential
time hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

17. D. Lokshtanov, S. Saurabh, and S. Sikdar. Simpler parameterized algorithm for
OCT. In Combinatorial algorithms, volume 5874 of Lecture Notes in Comput. Sci.,
pages 380–384. Springer, Berlin, 2009.

18. R. Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford Lec-
ture Series in Mathematics and its Applications. Oxford University Press, Oxford,
2006.

19. S. Oum. Approximating rank-width and clique-width quickly. ACM Trans. Algo-
rithms, 5(1):Art. 10, 20, 2008.

20. S. Oum and P. Seymour. Approximating clique-width and branch-width. J. Com-
bin. Theory Ser. B, 96(4):514–528, 2006.

21. N. Robertson and P. Seymour. Graph minors. X. Obstructions to tree-
decomposition. J. Combin. Theory Ser. B, 52(2):153–190, 1991.

22. J. A. Telle and A. Proskurowski. Practical algorithms on partial k-trees with an
application to domination-like problems. In Proceedings of the Third Workshop on
Algorithms and Data Structures, pages 610–621. Springer-Verlag, 1993.

23. J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning problems on
partial k-trees. SIAM J. Discrete Math., 10(4):529–550, 1997.

24. P. van ’t Hof and Y. Villanger. Proper interval vertex deletion. Algorithmica,
65(4):845–867, 2013.

25. M. Vatshelle. New width parameters of graphs. PhD thesis, University of Bergen,
May 2012. http://hdl.handle.net/1956/6166.

http://dx.doi.org/10.1016/j.tcs.2013.01.009
http://hdl.handle.net/1956/6166

	Faster Algorithms Parameterized by Clique-width

