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Abstract

Given a graph in any of the following graph classes: trapezoid graphs, circular
permutation graphs, convex graphs, Dilworth k graphs, k-polygon graphs,
circular arc graphs and complements of k-degenerate graphs, we show how
to compute decompositions with the number of d-neighborhoods bounded by
a polynomial of the input size. Combined with results of Bui-Xuan, Telle
and Vatshelle [1] this leads to polynomial time algorithms for a large class
of locally checkable vertex subset and vertex partitioning problems on all of
these graph classes. The boolean-width of a graph is related to the number
of 1-neighbourhoods and our results imply that any of these graph classes
have boolean-width O(log n).

1. Introduction

When solving graph problems by divide and conquer, we need to recur-
sively divide the input graph G. A natural way to do this is to recursively
partition the vertices of the graph in two parts. The resulting decomposition
of G can be stored as a full binary tree whose leaves are in bijection with the
n vertices of G, called decomposition tree. In a companion paper [1], Bui-
Xuan, Telle and Vatshelle define for a given cut an equivalence relation on
vertex subsets, namely d-neighborhood equivalence, for every fixed integer
d. Further, they define necd as the maximum number of equivalence classes
of the d-neighborhood equivalence relation over the cuts defined by a given

∗Corresponding author. Tel: (+47) 55 58 42 00. Fax: (+47) 55 58 41 99.
Email addresses: remy.belmonte@uib.no (Rémy Belmonte), vatshelle@ii.uib.no
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decomposition tree. In this paper we give polynomial time algorithms for
computing decomposition trees with necd polynomial in n for any graph be-
longing to one of the following classes: circular k-trapezoid graphs, k-polygon
graphs, Dilworth k graphs, complement of k-degenerate graphs and convex
graphs (see Group II of Figure 1). In [1], it is shown that given a graph G and
a decomposition tree of G the large class of locally checkable vertex subset
and vertex partitioning problems (LC-VSP problems as defined in [2]) can
be solved in time polynomial in n and necd. Combined with the results in
this paper we get polynomial time algorithms solving any LC-VSP problem
on any graph class in Group I or II of Figure 1.

In a seminal paper by Courcelle, Makowski and Rotics [3], it was shown
that every problem expressible in MSO1 logic can be solved in linear time
on graphs of bounded clique-width, i.e Group I of Figure 1. However, since
e.g. the Maximum Clique problem is NP-hard on complements of pla-
nar graphs [4] (a subclass of co-5-degenerate graphs), we cannot expect to
obtain such a strong result on all the graph classes in Group II of Fig-
ure 1. Instead our results imply polynomial time algorithms for the LC-
VSP problems, a subclass of the MSO1 problems, via their relation to
d-neighborhoods. This includes many problems related to independence,
domination and homomorphism. Many of the LC-VSP problems have been
studied separately on many of the graph classes in Group II of Figure 1,
see [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. A previous result closely related to
ours is by Kratochv́ıl, Manuel and Miller in [16] who showed that a subset
of the LC-VSP problems is solvable in polynomial time on interval graphs.

The notion of d-neighborhood generalizes the classical notion of neigh-
borhood, i.e. two subsets of a set A of vertices are 1-neighborhood equivalent
with respect to the cut

(
A,A

)
if they have the same neighborhood in A.

Boolean-width of a graph G is a parameter introduced by Bui-Xuan, Telle
and Vatshelle [17], defined as log2 (nec1) of an optimal decomposition of G. In
particular, they gave FPT algorithms for solving Maximum Weight Inde-
pendent Set and Minimum Weight Dominating Set in 2O(k) · poly(n)
time, assuming a decomposition tree of boolean-width k is given. As a corol-
lary of the results in this paper, we get that all the classes in Group II of
Figure 1 have boolean-width O(log n) and thus the two above algorithms are
polynomial on these graph classes. To our knowledge, this is the first time an
FPT algorithm is used to give polynomial time algorithms on a graph class
where the parameter value is not bounded by a constant.

In the simple case of interval graphs and permutation graphs we show how
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Figure 1: Inclusion diagram of some well-known graph classes.
(I) Graph classes where clique-width and boolean-width is bounded by a constant.
(II) Graph classes having decomposition trees with necd polynomial in n, boolean-width
O(log n) and all LC-VSP problems solvable in polynomial time (for k-trapezoid graphs
assume an intersection model is given).
(III) It is unknown whether these classes have boolean-width O(log n).
(IV) Either boolean-width is not O(log n) or it is NP-hard to compute such decompositions.
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to construct decompositions such that every cut defined by the decomposition
has nested neighborhoods, i.e. the neighborhoods across the cut are totally
ordered by inclusion. Bipartite graphs with nested neighborhoods are called
chain graphs, and Yannakakis [18] showed that a bipartite graph is a chain
graph if and only if the size of a maximum induced matching is 1. Twin free
chain graphs, called Hsu graphs, are used in Hsu’s generalized join [19]. We
generalize the idea of a cut with nested neighborhoods by considering cuts
inducing bipartite graphs with a constant size maximum induced matching.
We use the fact that the size of a maximum induced matching across a cut
bounds the number of d-neighborhood equivalence classes, to give polynomial
upper bounds on the value of necd for all of the graph classes in Group II of
Figure 1.

In Section 2, we start by introducing standard graph theoretic notions
and terminology. We define d-neighborhoods and relate these to induced
matchings. In section 3, we show that for interval graphs, circular arc
graphs, permutation graphs, circular permutation graphs, trapezoid graphs,
convex graphs, k-polygon graphs, Dilworth k graphs and complement of k-
degenerate graphs we can in polynomial time compute decompositions where
all cuts have the number of d-neighborhoods bounded by a polynomial of n.
For k-trapezoid graphs and circular k-trapezoid graphs similar results are
proven, but we must assume that an intersection model is given along with
the input graph. In section 4, we show that for all the graph classes in
Group II of Figure 1, except possibly Dilworth k graphs (for k ≥ 2), our
upper bounds are essentially tight. We do so by showing that these classes
have rank-width Ω(

√
n), which implies that none of these classes can have de-

compositions with necd at most no(1). Moreover we show that for the graph
classes in Group IV of Figure 1 we cannot find decompositions with necd
bounded by a polynomial of n, unless P = NP . Finally in Section 5 we
conclude and give some open problems.

2. Framework

All graphs considered in this paper are undirected, finite and simple. The
neighborhood of a vertex u, denoted by N(u), is the set of vertices u such
that the edge (u, v) is in E and for a subset of vertices X we denote the
union of the neighborhoods of vertices in X by N(X) =

⋃
x∈X N(x). Given

a set A ⊆ V , we denote by A the complement of A in V , i.e. V \A. We call
a bipartition

(
A,A

)
of V a cut of G. We denote by G[X] the subgraph of
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G induced by X and G[X, Y ] the bipartite subgraph of G induced by those
edges with one endpoint in X and the other in Y .

We now define formally the notion of decomposition tree. The choice
of a decomposition tree greatly influences the running time of any algorithm
using the decomposition tree. In order to choose the best decomposition tree,
we evaluate a decomposition tree by using a cut function. The following
formalism is referred to as branch decomposition of a cut function and is
standard in graph and matroid theory, see e.g. [20, 21, 22].

Definition 1 (Decomposition tree). A decomposition tree of a graph G
is a pair (T, δ) where T is a full binary tree (i.e. T rooted with every non-leaf
having two children) and δ a bijection between the leaf set of T and the
vertex set of G. For a node w of T let the subset of V (G) in bijection δ with
the leaves of the subtree of T rooted at w be denoted by Vw. We say the
decomposition defines the cut

(
Vw, Vw

)
.

Caterpillar decompositions are decompositions where the underlying tree
is a path with one leaf added as neighbor of each internal node of the path.
Many of our proofs will construct caterpillar decompositions. To describe a
caterpillar decomposition of a graph G, we only give an ordering v1, . . . , vn of
the vertices of G. To construct the caterpillar decomposition (T, δ) from an
ordering, first construct a caterpillar T from a path u1, . . . , un of length |V |.
Then let δ be a mapping of v1 to u1, vn to un and for all i ∈ {2, . . . , n− 1},
of vi to a new leaf attached to ui. Finally, subdivide any edge and root the
decomposition at the newly added vertex.

One of the essential notions in [17] and [1] is that of a representative. For
a cut

(
A,A

)
in a graph G a representative of a subset X ⊆ A is a subset R

having the same neighbors in A as X. Maximum induced matchings bound
the maximal size of representatives needed to represent any neighborhood
across a cut.

Definition 2 (Maximum induced matching over a cut). Let G be a
graph, then we say a subset M ⊆ V (G) of vertices is an induced matching
in G if G[M ] is a disjoint union of edges. For A ⊆ V (G) we define mim (A)
as the maximum number of edges in an induced matching in G[A,A].

To see the relation to representative note that no two subsets of M∩A has
the same neighborhood in A, hence all 2|M∩A| subsets have different neigh-
borhoods in A, and for the converse relation see Lemma 1. In the companion
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paper [1] the notion of neighborhoods is generalized to d-neighborhoods, we
now formally define the notion of d-neighborhood equivalence.

Definition 3 (d-neighborhood equivalence). Let d be a non-negative
integer, G be a graph and A ⊆ V (G). Two vertex subsets X ⊆ A and
Y ⊆ A are d-neighbor equivalent with respect to A, denoted by X ≡d

A Y , if:

∀v ∈ A : min(d, |X ∩N(v)|) = min(d, |Y ∩N(v)|).

Let nec(≡d
A) be the number of equivalence classes of ≡d

A. For (T, δ) a
decomposition tree of G define necd(T, δ) as the maximum nec(≡d

Vw
) and

nec(≡d
Vw

) over all nodes w in V (T ). We refer to nec(≡d
A) as the number

of d-neighborhoods of the cut
(
A,A

)
and to necd(T, δ) as the number of

d-neighborhoods of (T, δ).

Definition 4 (Boolean-width). Let G be a graph and (T, δ) a decompo-
sition of G. The boolean-width of (T, δ), denoted by boolw (T, δ), is defined
as the maximum over all w ∈ V (T ) of log2(nec

(
≡1

Vw

)
). The boolean-width

of G, denoted by boolw (G), is defined as the minimum boolw (T, δ) over all
decompositions (T, δ) of G.

As a corollary of our results, we give logarithmic bounds on the boolean-
width of the graph classes in Group II of Figure 1. Moreover, in Section 4
we use boolean-width to provide lower bounds on the value of necd on these
graph classes.

In Section 3 we will show how to compute decompositions where the
number of d-neighborhoods is polynomial in the size of the graph. To do this
we will use the following connection between the number of d-neighborhoods
and maximum induced matchings.

Lemma 1. Let G be any graph and A ⊆ V (G) any subset of the vertices.
mim (A) ≤ k if and only if for every S ⊆ A, there is R ⊆ S such that
N (R) ∩ A = N (S) ∩ A and |R| ≤ k.

Proof. First we prove mim (A) ≤ k ⇒ |R| ≤ k. Assume for contradiction
that R is a minimal set such that N (R) ∩ A = N (S) ∩ A and that |R| > k.
Then for every x ∈ R we know that N (R \ x) ∩ A 6= N (R) ∩ A. Let
y ∈ N (R)∩A \N (R \ x)∩A be any private neighbour of x. Each such pair
is an edge, i.e. (x, y) ∈ E(G[A,A]), Let M contain all these vertices. Since
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each y was a private neighbour of x we know that N(y)∩R = {x}. Since we
chose exactly one y for each x ∈ R we know that |M ∩ A| ≤ |R|, since each
x ∈ R has at least one neighbour in M ∩ A we know that G[M ∩ A,M ∩ A]
is 1-regular and hencemim (A) > k leading to a contradiction.

For the other direction we will prove the converse namely, if mim (A) >
k ⇒ |R| > k. Let M be an maximum induced matching over the cut

(
A,A

)
,

and S = M ∩A, then by assumption |S| > k, now we only need to show that
for every strict subset R ⊂ S we have N (S) ∩ A 6= N (R) ∩ A. Since M is
an induced matching, there will be an edge (u, v) ∈ M with u ∈ S \ R, but
then by definition of an induced matching v has no neighbor in R and hence
N (R) ∩ A 6= N (S) ∩ A.

Lemma 2. Let G be any graph and A ⊆ V (G) any subset of vertices. Then
nec

(
≡d

A

)
≤ nd·mim(A).

Proof. First we prove the following:

Claim. For every subset S ⊆ A, there exist R ⊆ S such that R ≡d
A S and

|R| ≤ mim (A) · d.

Proof of the claim. This proof is by induction on d and similar to that of [1,
Lemma 5]. For d = 1, this follows from Lemma 1 by using k = mim (A).
Now, assume the induction hypothesis true up to d− 1, then we show it true
for d. Let S ′ ⊆ S be an inclusion minimal set such that N(S ′)∩A = N(S)∩A
i.e. S ′ ≡1

A S. Hence from Lemma 1 we have that |S ′| ≤ mim (A). By
induction hypothesis there exists R′ ⊆ (S \ S ′) such that R′ ≡d−1

A (S \ S ′)
and |R′| ≤ mim (A) · (d − 1). Thus it is enough to show R = R′ ∪ S ′ ≡d

A

S. We partition the nodes of A into (P,Q) such that ∀v ∈ P , we have
|N(v)∩ (S \S ′)| = |N(v)∩R′| and ∀v ∈ Q, we have |N(v)∩ (S \S ′)| ≥ d− 1
and |N(v)∩R′| ≥ d−1. For every vertex v ∈ P , since S∩R′ = ∅ and S ′ ⊆ S,
we know |N(v)∩S| = |N(v)∩(S\S ′)|+|N(v)∩S ′| = |N(v)∩R′|+|N(v)∩S ′| =
|N(v)∩R|. We have N(S) = N(S ′) and since d > 1 we have Q ⊆ N(S ′). For
every vertex v ∈ Q, since |N(v)∩ (S \S ′)| ≥ d− 1 we get |N(v)∩S| ≥ d and
since |N(v) ∩ R′| ≥ d− 1 we get |N(v) ∩ R| ≥ d. Since (P,Q) is a partition
we get R ≡d

A S and |R| ≤ mim (A) · d, thus by induction the claim holds.

To bound the number of equivalence classes nec
(
≡d

A

)
we know from the

claim that we only need to find the equivalence classes among the subsets of
A of size at most d · mim (A). A trivial bound on number of subsets of A
with size d ·mim (A) gives us: nec

(
≡d

A

)
≤ |A|d·mim(A) ≤ nd·mim(A).
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3. Finding Good Decompositions on Restricted Graph Classes

In this section we will show how to compute decomposition trees with
necd(T, δ) bounded by a polynomial of n if the graph belongs to a certain
graph-class. In almost all proofs, we construct a caterpillar decomposition by
giving an ordering of the vertices of the graph, and then argue using Lemma
1 that for each cut of the decomposition the size of a maximum induced
matching is bounded, and thus we can apply Lemma 2.

For all graph classes considered in this paper, except for the complements
of k-degenerate graphs and Dilworth k graphs, we use definitions via a geo-
metrical intersection model.

Definition 5 (Intersection Model). Let F be a family of nonempty sets.
For a graph G, we say F is an intersection model of G if there exists a
bijection ϕ from F to V (G) such that two vertices u, v ∈ V (G) are adjacent
if and only if ϕ(u) and ϕ(v) intersect.

The sets in the intersection model usually consists of geometrical objects
such as lines, circles or polygons.

3.1. Interval Graphs

An interval I = 〈i, j〉 is represented by an ordered pair of real numbers
with i < j and represent the set of real numbers {x : i < x < j}. Let
I1 = (a, b) and I2 = (c, d) be two intervals, then I1 intersects I2 if and only
if a < d and c < b.

Definition 6 (Interval graph). A graph is an interval graph if it has an
intersection model consisting of intervals.

Lemma 3. Given an interval graph G and any positive integer d, we can, in
polynomial time, compute a decomposition tree (T, δ) of G having necd (T, δ)
≤ nd.

Proof. Any interval graph has an intersection model where no interval starts
or ends at the same point and we can find such an intersection model in
linear time [23]. We build a caterpillar decomposition by sorting the vertices
by the left endpoint of their corresponding intervals. Let us now consider
any cut (A,A) defined by the decomposition. We want to bound mim (A) by
applying Lemma 1. Thus we will show that for every set S ⊆ A, there is a set
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R such that N (R)∩A = N (S)∩A and |R| ≤ 1. Let σ be the total ordering
of the vertices of A sorted by their right endpoint. Since all left endpoints
of intervals corresponding to vertices of A are to the left of all left endpoints
of intervals corresponding to vertices of A, two vertices u ∈ A, u′ ∈ A are
neighbors if and only if the right endpoint of u is to the right of the left
endpoint of u′. Hence, for every pair of vertices u, v ∈ A if σ(u) ≤ σ(v)
then N (u) ∩ A ⊆ N (v) ∩ A. For every set S ⊆ A, let R contain the unique
vertex of S whose interval has the rightmost right endpoint. We then have
N (R) ∩ A = N (S) ∩ A and |R| ≤ 1. Therefore, by Lemma 1, mim (A) ≤ 1
for all cuts. Then for any d, by Lemma 2 we have necd (T, δ) ≤ nd.

3.2. Circular-arc graphs

Circular-arc graphs is a natural generalization of interval graphs.

Definition 7 (Circular arc graph). A graph is a circular arc graph if it
has an intersection model consisting of arcs of a circle.

Lemma 4. Given a circular-arc graph G and any positive integer d, we
can, in polynomial time, compute a decomposition tree (T, δ) of G having
necd (T, δ) ≤ n2d.

Proof. We can compute the circular-arc intersection model of G in linear
time [24]. Fix an arbitrary point p on the circle. We define the distance
of an arc from p as follows: If the arc contains p, then the distance is 0,
otherwise it is the minimum distance between p and any point of the arc.
For any vertex u, we denote by arcu the arc corresponding to u.

Build a caterpillar decomposition by totally ordering the vertices in order
of increasing distance of their associated arc from p, breaking ties arbitrarily.
Note that this decomposition can be computed in polynomial time. We now
consider any cut (A,A) of this decomposition. By construction, for every
x ∈ A, y ∈ A, the distance of arcx from p is less than or equal to the distance
of arcy from p.

Now, we prove that for any set S ⊆ A, there exists a subset S ′ ⊆ S such
that |S ′| ≤ 2 and N (S) ∩ A = N (S ′) ∩ A. Let arcl be the arc extending
the furthest from p in clockwise direction and arcr the arc extending the
furthest from p in counter-clockwise direction and S ′ = {l, r}. In Figure 3.2
we get arcl = arca and arcr = arce. Assume for contradiction that there
exist v ∈ A such that v ∈ N(S) \ N(S ′). Since arcv does not intersect arcl
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Figure 2: An intersection model of an circular-arc graph with 10 vertices. Let A =
{a, b, c, d, e, f}. Note that A forms a cut of the decomposition since no other arcs are
closer to p. Let S = {a, c, d}. Note the arcs of S are drawn in bold. We then get
arcl = arca and arcr = arcd, thus S′ = {a, d} ≡A S.

or arcr and the distance of arcv is larger than both arcl and arcr. The arc
corresponding to the vertex in X overlapping with arcv must extend further
than either arcl or arcr leading to a contradiction.

For every set S ⊆ A, let R contain the vertices l and r as defined above.
We then have N (R) ∩A = N (S) ∩A and |R| ≤ 2. Therefore, by Lemma 1,
mim (A) ≤ 2 for all cuts. Then for any d, by Lemma 2 we have necd (T, δ) ≤
n2d.

3.3. Permutation Graphs

Definition 8 (Permutation graph). Let L and U be two distinct infinite
parallel lines. A graph is a permutation graph if it has an intersection model
consisting of straight line-segments with one endpoint on L and one on U .
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Lemma 5. Given a permutation graph G and any positive integer d, we
can, in polynomial time, compute a decomposition tree (T, δ) of G having
necd (T, δ) ≤ nd.

Proof. We compute the permutation model of G in linear time [25]. We
build a caterpillar decomposition by sorting the vertices by the upper end-
point of their corresponding line. Let us now consider a cut (A,A) of the
decomposition. Let σ be the total ordering of the vertices of A sorted by
their lower endpoint, hence ∀u, v ∈ A, σ(u) ≤ σ(v) iff the lower endpoint of
u is to the left of the lower endpoint of v. Since all upper endpoints of lines
corresponding to vertices of A are to the left of all upper endpoints of lines
corresponding to vertices of A, two vertices u ∈ A, u′ ∈ A are neighbors if
and only if the lower endpoint of u is to the right of the lower endpoint of u′.

Hence for any set S ⊆ A there exists x ∈ S such that N(S) ∩ A =
N(x) ∩ A, namely the vertex of S with the rightmost lower endpoint, by
Lemma 1, mim (A) ≤ 1 for all cuts. Then for any d, by Lemma 2 we have
necd (T, δ) ≤ nd.

3.4. Circular Permutation Graphs

Definition 9 (Circular permutation graph). Let L and U be two par-
allel different circles on a cylinder. A graph is a circular permutation graph
if it has an intersection model consisting of straight line-segments with one
endpoint on L and one on U .

Lemma 6. Given a circular permutation graph graph G and any positive
integer d, we can, in polynomial time, compute a decomposition tree (T, δ) of
G having necd (T, δ) ≤ n2d.

Proof. We compute the circular permutation model of G in linear time [26].
Let sv be the line corresponding to the vertex v. We build a caterpillar decom-
position using an ordering obtained by sorting the vertices by the endpoint
on L of their corresponding lines in clockwise order starting from any point
p. Let us now consider a cut (A,A) of the decomposition. For any S ⊆ A we
show that we can find S ′ ⊆ S such that N (S)∩A = N (S ′)∩A and |S ′| ≤ 2.
Let l (resp. r) be the line corresponding to the vertex v ∈ S that extend the
furthest from p in clockwise (resp. counter-clockwise) direction.

Let S ′ = {l, r} and assume for contradiction that there exist v ∈ A
such that v ∈ N(S) \ N(S ′). Since sv does not intersect sl nor sr and that
the distance from p to the point of sv on L is greater in clockwise (resp.
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counter-clockwise) direction than the point of sl (resp. sr) on L we have
that the distance from p to the point of sv on U is greater in clockwise (resp.
counter-clockwise) direction than the point of sl (resp. sr) on U .

For every set S ⊆ A, let R contain the vertices l and r as defined above.
We then have N (R) ∩A = N (S) ∩A and |R| ≤ 2. Therefore, by Lemma 1,
mim (A) ≤ 2 for all cuts. Then for any d, by Lemma 2 we have necd (T, δ) ≤
n2d.

3.5. Trapezoid graphs

Let L and U be two infinite parallel lines. Let A and B be two non-
crossing straight line-segments with one endpoint on L and the other on U .
The finite area defined by the four lines L,U,A,B is called a trapezoid be-
tween L and U . Trapezoid graphs is a generalization of permutation graphs,
i.e. using A = B and a generalization of interval graphs, i.e. using L = U .

Definition 10 (Trapezoid graph). A graph is a trapezoid graph if it has
an intersection model consisting of trapezoids between two parallel lines.

Lemma 7. Given a trapezoid graph G and any positive integer d, we can, in
polynomial time, compute a decomposition tree (T, δ) of G having necd (T, δ)
≤ n2d.

Proof. We compute the trapezoid intersection model of G in O(n2) time [27].
We build a caterpillar decomposition by sorting the vertices by the upper
right corner of their corresponding trapezoid from left to right. Let us now
consider a cut (A,A) of the decomposition. We show that for any S ⊆ A,
we can find a set S ′ ⊆ S with N (S) ∩ A = N (S ′) ∩ A and |S ′| ≤ 2: For
the upper line (resp. lower), we take the the trapezoid u (resp. l) with the
rightmost upper (resp. lower) right corner, we then set S ′ = {u, l}. Let us
assume for contradiction that ∃x ∈ A : x ∈ N(S) \ N(S ′). The trapezoid
of x must intersect some trapezoid of S on the upper or lower line. If it
does not intersect u or l, then the whole trapzeoid of x is to the right of u
and l. By construction of the decomposition, x would have been in A, thus
N (S) ∩ A = N (S ′) ∩ A. For every set S ⊆ A, let R contain the vertices u
and l as defined above. We then have N (R) ∩ A = N (S) ∩ A and |R| ≤ 2.
Therefore, by Lemma 1, mim (A) ≤ 2 for all cuts. Then for any d, by
Lemma 2 we have necd (T, δ) ≤ n2d.

12



3.6. k-trapezoid graphs

k-trapezoid graphs are a natural generalization of trapezoid graphs and
interval graphs in the sense that the 2-trapezoid graphs are exactly the trape-
zoid graphs and 1-trapezoid graphs are exactly interval graphs.

Definition 11 (k-trapezoid graphs). Let L1, . . . , Lk be k parallel lines.
In order to build a k-trapezoid, first choose two points si and ei on each line
such that si < ei. Then, make two non-intersecting paths s and e by joining si
to si+1 and ei to ei+1 respectively by straight lines for each i ∈ {1, . . . , k−1}.
A k-trapezoid is the polygon defined by s, e and the lines going from s1 to e1
and sk to ek in clockwise direction. A k-trapezoid graph is the intersection
graph of k-trapezoids.

Note that k-trapezoid graphs are equivalent to comparability graphs of
partial orders of interval dimension k [28]. Moreover, Yannakakis showed
in [29] that deciding if a partial order of height 1 has dimension at most
3 is NP -complete. Therefore, recognizing k-trapezoid graphs for any fixed
k ≥ 3 is NP-complete. Additionally, by [30] the smallest integer k such that
a given graph G is a k-trapezoid graph cannot be approximated within a
factor better than

√
n.

Lemma 8. Given a k-trapezoid graph G together with a k-trapezoid model
of G and any positive integer d, we can, in polynomial time, compute a
decomposition tree (T, δ) of G having necd (T, δ) ≤ nkd.

Proof. We build a caterpillar decomposition by sorting the vertices by the
rightmost corner of their corresponding k-trapezoid. Let us now consider a
cut (A,A) of the decomposition. We show that for any S ⊆ A, we can find
a set S ′ ⊆ S with N (S) ∩ A = N (S ′) ∩ A and |S ′| ≤ k: For each line i, we
take the the k-trapezoid ri, corresponding to a vertex of S, which contains
the rightmost point on Li. We set S ′ as the set of all ri. Let us assume
for contradiction that ∃v ∈ A : v ∈ N(S) \ N(S ′), let tv be the trapezoid
corresponding to v. Since v is in A there must exist some x such that tv
contains a point to the right of rx on Lx. Also ther must exist some y,
such that tv intersects some trapezoid of S on Ly hence tv contains a point
to the left of the rightmost point of ry on Ly. Since both tv and ry are
contineous they have to intersect at some point between Lx and Ly. Thus
N (S) ∩ A = N (S ′) ∩ A hence mim (A) ≤ k then by Lemma 2 the lemma
holds.
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For every set S ⊆ A, let R contain all the vertices ri as defined above.
We then have N (R) ∩A = N (S) ∩A and |R| ≤ k. Therefore, by Lemma 1,
mim (A) ≤ k for all cuts. Then for any d, by Lemma 2 we have necd (T, δ) ≤
nkd.

It is an interesting open problem whether one, given a k-trapezoid graph
can build a decomposition tree having necd (T, δ) = nO(k).

3.7. Circular k-trapezoid Graphs

Circular k-trapezoid graphs form a natural extension of the k-trapezoid
graphs introduced in [31], see [32].

Definition 12 (Circular k-trapezoid graph). Let C1, . . . , Ck be k circles
on the surface of a cylinder, all orthogonal to its axis. In order to build a
circular k-trapezoid, first choose two points si and ei on each line. Then,
make two non-intersecting paths s and e by joining si to si+1 and ei to
ei+1 respectively by straight lines for each i ∈ {1, . . . , k − 1}. A circular
k-trapezoid is the polygon defined by s, e and the arcs going from s1 to
e1 and sk to ek in clockwise direction. A circular k-trapezoid graph is the
intersection graph of circular k-trapezoids.

Lemma 9. Given a circular k-trapezoid graph G and a circular k-trapezoid
model and any positive integer d, we can, in polynomial time, compute a
decomposition tree (T, δ) of G having necd (T, δ) ≤ n2kd.

Proof. Let p be an arbitrary point on C1. We define the distance of a k-
trapezoid from p as the minimum distance between p and any point of the arc
of the k-trapezoid on C1. For any vertex u, we denote by tu the k-trapezoid
corresponding to u and arcu,i the arc of Ci contained in tu. Build a caterpillar
decomposition by adding the vertices in order of increasing distance of their
associated k-trapezoid from p, breaking ties arbitrarily. We now consider any
cut (A,A) of this decomposition.

By construction, for every x ∈ A, y ∈ A, the distance of tx from p is less
than or equal to the distance of ty from p. Now, we prove that for any set
S ⊆ A, there exists a subset S ′ ⊆ S such that |S ′| ≤ 2 · k and S ≡A S ′.
Let r(S, i)(resp. l(S, i)) be the vertex v ∈ S such that tv containins the
extremal point of Li in clockwise (respectively counter-clockwise) direction.
Let S ′ =

⋃
i≤k{r(S, i), l(S, i)}, assume for contradiction that there ∃v ∈ A :

v ∈ N(S) \N(S ′). By construction of the decomposition arcv,1 must contain
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a point more extreme than the points on arcl(S,1),1 and arcr(S,1),1. Since
v ∈ n(S) there must exist a j such that, without loss of generality, arcr(S,j),j
contains a more extreme point than the least extreme point of arcv,j, but
then tr(S,j) contains both a point less extreme and more extreme than tv,
hence they must intersect.

For every set S ⊆ A, let R contain all the vertices r(S, i) and l(S, i) as
defined above. We then have N (R)∩A = N (S)∩A and |R| ≤ 2k. Therefore,
by Lemma 1, mim (A) ≤ 2k for all cuts. Then for any d, by Lemma 2 we
have necd (T, δ) ≤ n2kd.

3.8. Convex Graphs

Definition 13 (Convex graph). A graph G = (V,E) is convex if G is
bipartite with color classes X and Y and an ordering x1, . . . , x|X| of X such
that for every vertex u ∈ Y and xi, xj ∈ N(u), we have for every vertex
xt ∈ X that if i < t < j then xt ∈ N(u), i.e. the vertices in N [u] are
consecutive in the ordering of X.

Lemma 10. Given a convex graph G and any positive integer d, we can, in
polynomial time, compute a decomposition tree (T, δ) of G having necd (T, δ)
≤ nd.

Proof. Since G is convex we can in polynomial time find a bipartition (X, Y )
of V and σX an ordering of X such that for every vertex u ∈ Y and x, y ∈
N(u) [23]. Hence we have for every vertex z ∈ X that if σX(x) < σX(z) <
σX(y) then z ∈ N(u). We construct a total ordering σ of V from σX by
keeping the ordering of vertices in X and for each vertex v ∈ Y we insert
v immediately after the last element of N(v). We construct a caterpillar
decomposition from the order σ.

Let us now consider a cut (A,A) of the decomposition. We want to prove
that for any subset S of A, there exists a set S ′ ⊆ S such that S ′ ≡A S and
|S ′| ≤ 1. Note that by construction of σ, we have ∀v ∈ Y ∩A,N(v)∩A = ∅,
hence we can assume S ′ ⊆ X ∩ S.

Let v1, v2, . . . , vt be the ordering of the vertices of X ∩ S induced by σ.
Since all the vertices in Y ∩ A appear later in σ than vt, then we have for
every vertex v ∈ Y ∩ A, either vt ∈ N(v) or N(v) ∩ S = ∅. Moreover, note
that N(A ∩X) ∩ A = ∅. Hence N ({vt}) ∩ A = N (S) ∩ A.

For every set S ⊆ A, let R contain the vertex vt as defined above. We
then have N (R) ∩ A = N (S) ∩ A and |R| ≤ 1. Therefore, by Lemma 1,
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mim (A) ≤ 1 for all cuts. Then for any d, by Lemma 2 we have necd (T, δ) ≤
nd.

3.9. k-polygon graphs

Definition 14 (k-polygon graph). A k-polygon graph is the intersection
graph of chords (straight lines between two points on distinct sides) of a
convex k sided polygon.

Lemma 11. Given a k-polygon graph G and any positive integer d, we
can, in polynomial time, compute a decomposition tree (T, δ) of G having
necd (T, δ) ≤ n2kd.

p

l2

r2

r3 = l3

l7

r7

r6 = l6

in S \ S ′

Figure 3: A 8-polygon graph with 12 vertices, the vertices in S are represented by bold
lines, those in A \ S by thin lines and those in A by dashed lines.

Proof. We compute the k-polygon intersection model of G in O(4k · n2)
time [33]. Let p be an arbitrary corner of the k-polygon. We measure the
distance of a point from p as the distance around the edge of the k-polygon
in clockwise direction. We define the distance of a chord from p as the min-
imum distance of any endpoint of the chord from p. We build a caterpillar
decomposition of G by ordering the vertices of G by increasing distance from
p of their corresponding chords.
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Consider any cut (A,A) of the decomposition. We prove that for any set
S ⊆ A, there exists a subset S ′ ⊆ S such that |S ′| ≤ 2k and S ′ ≡A S. We
denote by t the maximum distance from p to a chord of any vertex in A. We
can observe that, by construction of the decomposition, for every vertex u
in A, if both endpoints of the chord corresponding to u are at distance at
most t from p, then N(u) ∩ A = ∅. Now, we associate with each side of the
k-polygon with an index i ∈ {1, ..., k} ordered in clockwise direction starting
from p. For each side we define Si ⊆ S as the set of vertices of which line
has an endpoint on side i. Each vertex of G belongs to exactly 2 such sets.
We also define for each side i such that Si 6= ∅, the point li on side i as the
endpoint of a coord corresponding to a vertex in Si closest to p, likewise ri
is the endpoint of a coord on side i corresponding to a vertex in Si furthest
from p.

Let S ′ =
⋃

i≤k{li, ri}, we claim that S ′ ≡A S. Let us assume for contra-

diction that there exists a vertex x ∈ (N(S)\N(S ′))∩A. Let cx be the coord
corresponding to x, pa and pb be the endpoints of cx such that t < pa < pb.

Let y ∈ S be a neighbor of x and cy the coord corresponding to y. Let py
be the endpoint of cy such that t < py and j the index of the side containing
py, then we know since y is a neighbor of x that pa < py < pb. We also know
by definition that lj < py < ry Since no coord can have both endpoints on
the same side we have either a < j or j < b, if a < j then pa < lj < py < pb
hence cx intersects the coord ending at lj, likewise we can argue if j < b
leading to a contradiction.

For every set S ⊆ A, let R contain all the vertices li and ri as defined
above. We then have N (R) ∩ A = N (S) ∩ A and |R| ≤ 2k. Therefore, by
Lemma 1, mim (A) ≤ 2k for all cuts. Then for any d, by Lemma 2 we have
necd (T, δ) ≤ n2kd.

3.10. Dilworth k Graphs

Definition 15 (Dilworth k graph). Two vertices x and y are said to be
comparable if either N(y) ⊆ N [x] or N(x) ⊆ N [y]. The Dilworth number of
a graph is the largest number of pairwise incomparable vertices of the graph.
A graph is a Dilworth k graph if it has Dilworth number k.

Dilworth k graphs can be recognized in O(k2 · n2) time [34].

Lemma 12. Given a Dilworth k graph G and any positive integer d, we
can, in polynomial time, compute a decomposition tree (T, δ) of G having
necd (T, δ) ≤ nkd.
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Proof. Let us consider any cut
(
A,A

)
of G and S ⊆ A. We want to prove

that there exist S ′ such that |S ′| ≤ k and N (S ′)∩A = N (S)∩A. Let S ′ be an
inclusion minimal subset of S such that N (S ′)∩A = N (S)∩A. If S ′ contains
two vertices x and y such that N(y) ⊆ N [x], then S ′ \ {y} contradicts the
minimality of S ′. Since V cannot contain more than k pairwise incomparable
vertices, |S ′| <= k. Therefore mim (A) ≤ k and by applying Lemma 2 the
lemma follows.

3.11. Complements of k Degenerate Graphs

Definition 16 (k degenerate graph). A graph G is k-degenerate if there
exists an elimination ordering v1, . . . , vn of the vertices of G such that ∀i ∈
{1, . . . , n}, |{vj : j > i and vj ∈ N(vi)}| ≤ k.

Lemma 13. Given a graph G that is the complement of a k-degenerate graph,
and any positive integer d, we can, in polynomial time, compute a decompo-
sition tree (T, δ) of G having necd (T, δ) ≤ nd · 2kd.

Proof. We build a caterpillar decomposition of G using the elimination or-
dering induced by the k-degeneracy of G. We consider a cut (A,A) of the
decomposition.

Note first that since G is k-degenerate, every vertex of A has at most
k neighbors in A. Therefore, in G every vertex of A has at least |A| − k
neighbors in A. Moreover every S ⊆ A with size d sees at least |A| − kd
vertices d times. There is at most nd ways to choose S. For each such choice
there is at most kd missing edges, hence at most 2kd non-equivalent subsets
containing S.

3.12. Boolean-width

We say that a class of graphs C has boolean-width O(f(n)) if for every G
in C we have boolw (G) ∈ O(f(n)). We now restate the results in this section
in terms of boolean-width, using the fact that, for any graph G and any de-
composition (T, δ) of G, we have boolw (G) ≤ boolw (T, δ) = log2 nec1(T, δ) ≤
log2 necd(T, δ). Combining this fact with the results in this section we get
the following.

Corollary 14. The following graph classes all have boolean-width O(log n):
interval graphs, circular arc graphs, permutation graphs, circular permuta-
tion graphs, trapezoid graphs, k-trapezoid graphs, circular k-trapezoid graphs,
convex graphs, k-polygon graphs, Dilworth k graphs and complements of k-
degenerate graphs.
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4. Lower bounds

In this section we provide lower bounds for necd(T, δ) of optimal decompo-
sitions for various classes of graphs. We do so by providing lower bounds for
the boolean-width of these classes. Note that a lower bound on boolw (T, δ)
also implies the same lower bound for nec1(T, δ), which in turn give the same
lower bound for necd(T, δ) for d ≥ 2. However, the converse of this state-
ment is not true for values of d ≥ 2. We show that the upper bounds we
gave in Section 4 are tight in two senses. We say that a class of graphs C
has boolean-width Ω(f(n)) if for any integers k and n there exists a graph
G ∈ C with |V (G) ≥ n| having boolean-width larger than k × f(|V (G)|).
Firstly, we show that all graph classes (except possibly Dilworth k graphs) in
Group II of Figure 1 have boolean-width Ω(log n). Secondly, we show that
for all graph classes in Group IV of Figure 1, it is highly unlikely that they
have boolean-width O(log n). We use the following result on the relation
between boolean-width and some other width parameters.

Theorem 15 (Bui-Xuan, Telle, Vatshelle [17, 1]). For any graph G and any
decomposition (T, δ) of G, it holds that log rw (T, δ) − 1 ≤ log cw(T, δ) −
1 ≤ boolw (T, δ) ≤ log necd(T, δ), where boolw (T, δ) , rw (T, δ) and cw(T, δ)
denote respectively the boolean-width, rank-width and clique-width of (T, δ).

Hence if a graph class has rank-width or clique-width Ω(nc) for some con-
stant c > 0, then this graph class also has boolean-width Ω(log n). We now
give a lower bound for the rank-width of proper interval, bipartite permu-
tation graphs and complement of grids, which implies the desired Ω(log n)
lower bound for boolean-width.

We call Hsu-graph a bipartite graph H = (V,E) with V = {v1, v2, . . . va},
{u1, u2, . . . ub} and vi, uj ∈ E(H) if and only if i ≤ j. A Hsu-join-chain of
length q and width p is constructed as follows. Let F = G1, G2, . . . , Gq be a
family of graphs, all on at least p vertices. For j ∈ {i, i+ 1}, let Sj ⊆ V (Gj),
|Sj| = p and σj an ordering of Sj. Then, for every 1 ≤ i ≤ q − 1, let
G[Si ∪ Si+1] be isomorphic to a Hsu-graph where we identify σj(r) with vr
and σj+1(r) with ur.

Lemma 16. If G is a HSU-join-chain of length q and width p where q > 3p
then rw (G) ≥ p/2.

Proof. Let F = G1, G2, . . . , Gq be the family of graphs used to construct G.
Without loss of generality, we assume |V (Gi)| = p for 1 ≤ i ≤ q. To show
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that G has high rank-width, note that every decomposition tree of G contains
a (1

3
, 2
3
)-balanced cut

(
A,A

)
. We show that every such cut has cut-rank at

least p/2. Assume for contradiction that cut-rank(A) < p/2. We distinguish
two cases:

Case 1: At least p graphs in F contains vertices from both A and A.
Then for every i and j with |i − j| = 1 such that Gi contains vertices from
both A and A we know that there is an edge (u, v) with u ∈ V (Gi) such that
(u, v) ∈ G[V (Gi), V (Gj)]. There is at least p such edges with different pairs
of i and j, and without loss of generality there is at least p/2 such edges
where min(i, j) is odd. These edges form an induced matching contradicting
that cut-rank(A) < p/2.

Case 2: At least 2p+ 1 graphs in F contains vertices all from the same
side of the cut

(
A,A

)
. Since the cut is balanced there must be at least one

graph with all its vertices in A and one graph with all its vertices in A. Let Gi

and Gi′ be two such graphs of minimum distance, without loss of generality
assume i < i′ and V (Gi) ⊆ A. Then for each r ∈ {1, 2, . . . , p} there must be
a j such that σj(r) ∈ A and σj+1(r) ∈ A, let S be a set containing all such
pairs of vertices and H = G[S] the subgraph induced by these vertices.

The graph H is formed by a collection of Hsu-graphs whose size sums up
to at least p, there is an induced subgraph of H which is a collection of vertex
disjoint Hsu-graphs whose size sum up to at least 2p/3, namely partitioning
the edges into 3 by j mod 3 and picking the largest partition. This graph
has rank-width at least 2p/3 leading to a contradiction.

We now describe two distinct families of Hsu-join-chains, one being a
subclass of bipartite permutation graphs and the other a subclass of proper
interval:

Corollary 17. Bipartite permutation graphs have rank-width Ω(
√
n) and

boolean-width Θ(log n).

Proof. Let a Hsu-stable-chain of length q and width p be the Hsu-join-chain
of length q and width p where for every i, Gi is a stable set of size p. Clearly,
Hsu-stable-chains are bipartite permutation graphs (see Figure 4), and by
Lemma 16 and Theorem 15 they have rank-width Θ(p) and boolean-width
Θ(log p).

Recall that proper interval graphs are interval graphs admitting an inter-
val model where all the intervals have same length.
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Figure 4: (4× 3) Hsu-stable chain (a) and its permutation representation (b).

Corollary 18. Proper interval graphs have rank-width Ω(
√
n) and boolean-

width Θ(log n).

Proof. Let a Hsu-Clique-chain of length q and width p be the Hsu-join-chain
of length q and width p where for every i, Gi is a clique of size p. Clearly,
Hsu-clique-chains are proper interval graphs, and by Lemma 16 and Theorem
15 they have rank-width Θ(p) and boolean-width Θ(log n).
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Figure 5: (4× 3) Hsu-Clique chain (a) and its proper interval representation (b).

Moreover, note that Jeĺınek showed in [35] that
√
n×
√
n grids have rank-

width exactly
√
n − 1. Since the rank-width of a graph differs by at most

one from the rank-width of its complement, then complement of grids have
rank-width at least

√
n− 2. Since grids are 2-degenerate, then complement

of k-degenerate graphs have rank-width Ω(
√
n).

Finally, we can summarize these lower bounds as follows:

Lemma 19. All graph classes in Group II of Figure 1 (except possibly Dil-
worth k graphs), have boolean-width Ω(log n).

Another interesting question to ask is whether there exist more graph
classes having logarithmic boolean-width. The usual way to answer this
question is by either showing how to construct a decomposition of small
width, or by showing an infinite family of graphs of large width. For some
graph classes it is possible to provide such examples of graphs having non-
logarithmic boolean-width, like for the q× q grid. However, for other classes
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of graphs, we do not know any example of infinite family of graphs having
non-logarithmic boolean-width. We are nonetheless able to provide some
lower bounds:

Lemma 20. For all the classes in Group IV of Figure 1, either they do not
have boolean-width O(log n), or such a decomposition cannot be computed in
polynomial time unless P = NP .

Proof. Note first that for all the classes of graphs in Group IV of Figure 1,
Minimum Weight Dominating Set is NP-complete (see [36], [37] and
[38]). Moreover, Minimum Weight Dominating Set can be solved in
time O(23·boolw · poly(n)) [17]. Assume now that there exists a class C in
Group IV of Figure 1 having boolean-width O(log n) and where such decom-
positions can be computed in polynomial time. Then Minimum Weight
Dominating Set can be computed in time O(2O(logn) · poly(n)) which is
polynomial in n. Hence if a class of graphs on which Minimum Weight
Dominating Set is NP-complete has boolean-width O(log n), then com-
puting such decompositions is NP-hard.

Note that this holds not only for Minimum Weight Dominating Set,
but as long as there exists a problem which can be solved in O(2O(boolw ·
poly(n)) time. Finally, we can get stronger lower bounds by working under
a stronger hypothesis. The Exponential Time Hypothesis (ETH) states that
there does not exists an algorithm for solving 3-Sat running in time 2o(n).
We can reformulate Lemma 20 as follows:

Lemma 21. For all the classes in Group IV of Figure 1, either they do not
have boolean-width O(no(1)), or such a decomposition cannot be computed in

time 2no(1)
, unless ETH fails.

Proof. Assume for contradiction that there exists a class of graphs C in Group
IV of Figure 1 for which a decomposition of boolean-width no(1) can be com-
puted in time 2no(1)

. Recall that Minimum Weight Dominating Set is
NP-complete on all the classes in Group IV of Figure 1. Hence, there is a
polynomial time reduction from k-SAT to Minimum Weight Dominat-
ing Set on C such that from any instance I of k-SAT, a graph G = (V,E)
belonging to C can be built such that n ≤ |I|c, for some constant c > 0
and solving Minimum Weight Dominating Set on G implies a solution
to k-SAT on I. Recall that Minimum Weight Dominating Set can be
solved in 23·boolw(G) · poly(n). Finally, since we assumed we could compute
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a decomposition of boolean-width no(1) in time 2no(1)
, the instance I can be

solved in 23·no(1) · poly(n), which is equivalent to 23·|I|o(c) · poly(|I|c). This
would imply that we could solve the instance I in time 2o(|I|). Hence the
Lemma follows.

This means for instance that if split graphs have boolean-width polylog-
arithmic in n, then it is NP-hard to compute a decomposition of split graphs
having boolean-width within a factor log(n) of the optimum.

5. Conclusion

We have shown that all graph classes in Group II of Figure 1 admit a
decomposition where necd is bounded by a polynomial of n, and we can
compute such decompositions in polynomial time if the intersection is model
is given. This answers an open question from [17]. The following theorem is
the main motivation for our results.

Theorem 22 (Main theorem of [1]). Let G be a graph given along with a
decomposition tree (T, δ). For every LC-VSP problem Π, there are constants
d and q such that Π can be solved in time O(n4 · q · necd (T, δ)3q).

Combined with the results in Section 3 we get the following theorem:

Theorem 23. Let C be one of the following graph classes: Dilworth k graphs,
convex graphs, trapezoid graphs, circular permutation graphs, circular arc
graphs or circular k-trapezoid graphs. Then, every LC-VSP problem can be
solved in polynomial time on C.

For the particular case of complement of k-degenerate, we gave a bound
for necd (T, δ) of the form 2d·k · nd, which implies the following:

Theorem 24. Let G be the complement of a k-degenerate graph, given along
with a decomposition tree (T, δ). Every LC-VSP problem can be solved in
time 2O(k) · poly(n).

This means that every LC-VSP problem can be solved in FPT time on
a graph G when parameterized by the degeneracy of the complement of G,
with single exponential dependence in the parameter. Finally, we leave open
the question of whether the classes in Group III of Figure 1 have logarithmic
boolean-width.
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