
A Polynomial time Algorithm for the Maximum Weight

Independent Set Problem on Outerstring Graphs∗

J. Mark Keil†, Dinabandhu Pradhan and Martin Vatshelle
keil@cs.usask.ca, dina@cs.usask.ca, vatshelle@ii.uib.no

Department of Computer Science
University of Saskatchewan, Canada

Abstract

Outerstring graphs are the intersection graphs of curves that lie inside a disk such that
each curve intersects the boundary of the disk in one of its endpoints. Outerstring graphs
were introduced in 1991 and are amongst the most general classes of intersection graphs
studied, including among others, chordal graphs and interval filament graphs. To date no
polynomial time algorithm is known for any of the classical graph optimization problems on
outerstring graphs, in fact most are NP-hard. It is known that there is an intersection model
for any outerstring graph that consists of polygonal arcs attached to a circle. However, this
representation may require an exponential number of segments relative to the size of the graph.

We develop a general simple dynamic programming algorithm for the Maximum Weight
Independent Set problem. Given an outerstring graph and an intersection model consisting
of polygonal arcs with a total of N segments, we show that our algorithm solves the Maximum
Weight Independent Set problem in O

(
N4

)
time. If the polygonal arcs are restricted to

single segments, then outersegment graphs result. In this special case we show that our
algorithm solves the Maximum Weight Independent Set problem in O

(
n3

)
time where n

is the number of vertices in the graph.

∗Supported by NSERC
†Corresponding Author

1 Introduction

Outerstring graphs introduced in 1991, are amongst the most general classes of intersection graphs
studied. To date no polynomial time algorithm is known for any of the classical graph optimization
problems on outerstring graphs even if the representation is part of the input, in fact most of the
problems are NP-hard. When given an intersecion model of size N , we solve the Maximum
Weight Independent Set problem for outerstring graphs in O

(
N4
)

time.
A graph G is a geometric intersection graph if the vertex set of G is a set of geometric objects

and two such objects are adjacent in G if and only if they intersect. An independent set in a
geometric intersection graph corresponds to disjoint geometric objects in the intersection model.
The Maximum (Weight) Independent Set problem in intersection graphs of geometric objects
in the plane has many applications such as train dispatching [3], map labelling [18], and data mining
[8].

String graphs are the intersection graphs of curves in the plane and they are among the most
general geometric intersection graphs that have been studied. String graphs are a superclass of
planar graphs [21], chordal graphs, cocomparabillity graphs [16], subtree filament graphs [9] and
circle graphs. Indeed the intersection graph of any collection of connected sets in the plane is
a string graph. As early as 1959, Benzer [1] encountered string graphs in his study of genetic
structures. Since then they have been extensively studied and have many applications. Kratochv́ıl
et al. [12] showed that every string graph can be realized by a familty of polygonal arcs with a finite
number of intersections. However in 1991, Kratochv́ıl and Matousek [14] constructed string graphs
on n vertices that require at least 2cn intersection points in any realization. This also implies that a
representation of a string graph with a family of polygonal arcs may require an exponential number
of bends in the polygonal arcs. In 1991, Kratochv́ıl [11] proved that the problem of recognizing
string graphs is NP-hard, but more than two decades passed before Schaefer et al. [20] showed
that recognizing string graphs was in NP.

It was in 1966 that Sinden [21] showed that all planar graphs are string graphs, thus the Maxi-
mum (Weight) Independent Set problem became known to be NP-hard on string graphs when
it was proven to be NP-hard in planar graphs. Recently, Fox and Pach [5] provided approximation
algorithms and exact subexponential algorithms for the Maximum Independent Set problem in
string graphs. In 1976, the 3-Colorability problem for string graphs was proven NP-complete
by Ehrlich et al. [19], even when a geometric representation is given as the input. The Maximum
Clique problem has long been known to be NP-hard [15, 17] on string graphs. Indeed most of the
classical NP-hard graph optimization problems remain NP-hard when restricted to string graphs,
even when given a geometric representation.

It seems that one must somehow restrict string graphs to achieve polynomial time algorithms.
The two most natural ways to restrict string graph are to either restrict the shapes of the strings,
or to restrict the positions of the strings. The most commonly studied such restrictions are to
restrict the strings to be straight line segments or to require that each string touches the infinite
face of the plane. We first consider each of these restriction separately and then the case combining
them.

Segment graphs are the intersection graphs of line segments in the plane. This restriction
to line segments still allows the graphs to be useful in many applications, but unfortunately
most of the classical NP-complete graph problems remain intractable on segment graphs. The
NP-completeness result of Even et al. [19] on 3-Colorability also applies to segment graphs.
Katochv́ıl and Nesetril [15] proved that the Maximum Independent Set problem in segment
graphs is NP-hard even if all the segments are restricted to lie in at most two directions in the
plane. It has recently been shown that the Maximum Clique problem is NP-hard on segment
graphs [2]. Thus even a severe limiting of the shapes of the strings in a string graph does not lead
to polynomial time algorithms.

1

The restriction that each string touches the infinite face of the plane was explored in 1991 [10]
by Kratochv́ıl who defined outerstring graphs to be the intersection graphs of curves that lie inside
a disk such that each curve intersects the boundary of the disc in one of its endpoints. Although
outerstring graphs have been studied for more than 20 years [6, 7, 10, 13], when we consider the
classical NP-hard graph optimization problems on outerstring graphs, we again do not find known
polynomial time algorithms. For outerstring graphs the NP-completeness of Minimum Clique
Cover, Colorability, Minimum Dominating Set, and Hamiltonian Cycle follow from the
fact that they contain circle graphs. The Maximum Clique problem was recently shown to be
NP-hard on ray graphs [2] which is also a subclass of outerstring graphs. To date, the Maximum
Independent Set problem remains open. Recently, in a paper related to train dispatching in
railways, the problem was again raised as open by Flier et al. [3].

Including both natural restrictions to strings graphs, Flier et al. [4], motivated by train dis-
patching, study the intersection graphs of segments lying inside a disk having one endpoint attached
to the boundary of the disk, called outersegment graphs. Applying the additional restriction that
each segment is either horizontally or vertically aligned, they are able to obtain a polynomial time
algorithm for the Maximum Independent Set problem when a geometric representation of the
graph is given as part of input. The Maximum Independent Set problem on general outerseg-
ment graphs is still open. The Maximum Clique problem remains NP-hard on outersegment
graphs, as they also include ray intersection graphs [2]. Likewise, since outersegment graphs con-
tain circle graphs, Minimum Clique Cover, Colorability, Minimum Dominating Set, and
Hamiltonian Cycle remain NP-hard.

In this paper, we distill the essense of a simple dynamic programming approach to the Max-
imum Weight Independent Set problem in a graph. The approach is encapulated in an al-
gorithm that can be used for any graph to find an independent set of vertices, and if certain
conditions of input are met, the algorithm will solve the Maximum Weight Independent Set
problem. In Section 2.1, we show that our algorithm can be used to solve the Maximum Weight
Independent Set problem on outersegment graphs in O(n3) time if the segment representation is
provided as part of the input. In Section 2.2, we show that our algorithm can solve the Maximum
Weight Independent Set problem in outerstring graphs in polynomial time in the size of the
input, where the input is the graph and the outerstring intersection model given as a family of
polygonal arcs.

2 Algorithms

We present a simple general polynomial time algorithm, based on a dynamic programming ap-
proach, which always find an independent set and if certain conditions are met, can be used to
solve the Maximum Weight Independent Set problem optimally. The idea is to solve a sub-
problem based on the solutions to two smaller subproblems which do not conflict. The results in
this paper heavily depend on the definition of a “Conflict-free function”. By suitably normalizing
the input we will eventually be able to use this simple algorithm to solve the Maximum Weight
Independent Set problem optimally on outerstring graphs.

In order to make the algorithm as general as possible, we first give a technical definition that
we use in the main definition of a Conflict-free function which is used in Algorithm 1.

Definition 2.1 (Reach extension). For a finite set U and any function F : U × U → 2U , denote
the reach extension of F as RF : U × U → 2U . Define RF (u, v) as the minimal set S such that:

S = F (u, v) ∪
⋃

x∈F (u,v)

(RF (u, x) ∪RF (x, v))

2

To prove that the reach extension is uniquely defined we see that there is an equivalent definition
via reachability in a graph. Define a directed graph H with one node for each pair u, v ∈ U and
for each x ∈ F (u, v) add the arcs uv → ux and uv → xv. The reachability in H, denoted
by reach(uv), is all u′v′ reachable from uv by a directed path in H. It is easy to see that
R(u, v) =

⋃
u′v′∈reach(uv) F (u′, v′). Note that a consequence of this definition is that ∀x ∈ F (u, v),

we have RF (u, x) ∪RF (x, v) ⊆ RF (u, v). We now present the main definition of this paper.

Definition 2.2 (Conflict-free function). Let G be a graph and C : V (G) × V (G) → 2V (G) be a
function. Let RC be the reach extension of C, see Definition 2.1. We say that C is conflict-free if
for each pair u, v of nonadjacent vertices, it satisfies the following two conditions:

• RC(u, v) ∩N [u, v] = ∅.

• ∀x ∈ C(u, v), N [RC(u, x)] ∩RC(x, v) = ∅.

Note that if C is a conflict free function and RC the reach extension of C then for all u, v ∈ V (G)
and all x ∈ C(u, v), we have |RC(u, x) ∪ RC(x, v)| < |RC(u, v)|. We now describe a simple
algorithm which can be used to solve the Maximum Weight Independent Set problem. The
algorithm takes as input a graph G with vertex weights (w(v) for each v ∈ V (G)) and a conflict-
free function C. We will fill a table M using dynamic programming. An entry M [u, v], where
(u, v) 6∈ E(G) will hold the weight of an independent set (sum of weights of vertices present in
the independent set) in G[RC(u, v) ∪ {u, v}], however it will not always be an independent set of
maximum weight.

Algorithm 1 Weighted Independent Set by a conflict-free function

Input: A graph G and a conflict-free function C : V (G)× V (G)→ 2V (G)

Output: The weight of an independent set in G;

∀(u, v), initialize M [u, v] = −∞;
for i = 0 to |V (G)| do

for u, v ∈ V (G) such that u 6= v and (u, v) 6∈ E(G) and |RC(u, v)| = i do
Set M [u, v] = w(u) + w(v);
for x ∈ C(u, v) do

Set M [u, v] = max(M [u, v],M [u, x] +M [x, v]− w(x));
end for

end for
end for
return max entry in M .

Theorem 2.3. Let G be a graph, C be a conflict-free function, and RC be the reach extension of
C. Algorithm 1 returns the weight of an independent set in G in O(n3 + T) time, where T is the
total time for computing C(u, v) and RC(u, v) for each pair of nonadjacent vertices.

Proof. We will prove that the table entry M [u, v], for all pairs u, v ∈ V (G) where (u, v) 6∈ E(G),
stores the weight of an independent set in the graph G[RC(u, v) ∪ {u, v}]. We do the proof by
induction on |RC(u, v)|. The base cases are all pairs u, v where RC(u, v) = C(u, v) = ∅ and these
are set to w(u)+w(v) in the first iteration of the “for” loop and never updated. Since by definition
(u, v) 6∈ E(G), all base cases are correct.

Let u, v ∈ V (G) be two nonadjacent vertices and let i = |RC(u, v)|. Assume that the table is
correct for all pairs u′, v′ with |RC(u′, v′)| < i and that i > 0. The value in M [u, v] must have been
created by some x ∈ C(u, v), and {u, x, v} must be an independent set. By Definition 2.1 and 2.2,

3

we know that |RC(u, x) ∪RC(x, v)| < |RC(u, v)| and hence by the inductive assumption, M [u, x]
and M [x, v] are the weights of appropriate independent sets. Let Iu and Iv be the independent sets
whose weights are stored in M [u, x] and M [x, v] respectively. We need to show that I = Iu ∪ Iv is
an independent set in G[RC(u, v) ∪ {u, v}].

By assumption Iu ⊆ RC(u, x) ∪ {u, x} and Iv ⊆ RC(x, v) ∪ {x, v} and x ∈ C(u, v). As a
consequence of Definition 2.1, we know that RC(u, x) ∪ RC(x, v) ⊆ RC(u, v) and hence I ⊆
RC(u, v)∪{u, v}. From the first condition of Definition 2.2, we get that N [u, x, v]∩(I \ {u, x, v}) =
∅. From the second condition of Definition 2.2, we get that N [Iu \ {x}] ∩ Iv = ∅, hence I is an
independent set of G[RC(u, v) ∪ {u, v}]. By induction every entry in M is the weight of some
independent set in G.

We can precompute all values for the function C in T time such that lookup can be done in
constant time, computing RC(u, v) can be done in O(n3) time by building the directed acyclic
graph representing the recursive calls made according to Definition 2.1. There are O(n2) entries
in the table which are filled, initializations take constant time and updates take O(n) time once
we are given the set C(u, v), hence the total runtime is O(n3 + T).

We will now show an example of a conflict-free function, this definition will not be important
for the results of this paper, but will help provide intuition for conflict free functions.

Definition 2.4 (Sσ(u, v)). Let G be a graph and σ an ordering of V (G). For any pair of nodes
u, v ∈ V (G), we define the following set:

Sσ(u, v) = {x : ∀y ∈ (N(x) \N(u, v) ∪ {x}) , σ(u) < σ(y) < σ(v)}

Theorem 2.5. For all graphs G and all orderings σ of V (G), the function Sσ(u, v) is conflict-free.

The proof of this theorem is moved to the appendix.

2.1 Outersegment graphs

Definition 2.6 (Outersegment graph). An outersegment graph is the intersection graph of a set of
line segments R such that each segment has one endpoint on a circle B and the rest of the segment
is completely in the interior of B. Such a set R of segments is an outersegment representation of
G.

Let G be an outersegment graph and R be an outersegment representation of G inside the
circle B. Let seg(u) denote the segment representing vertex u in R. Then start(u) is the endpoint
of seg(u) on B and end(u) is the endpoint of seg(u) inside B, see Figure 1. Let arc(u, v) be
the arc of B starting at start(u) going in clockwise direction to start(v) and b(u, v) be the line
segment end(u), end(v). For nonadjacent vertices u and v, let A(u, v) be the area bounded by
seg(u), arc(u, v), seg(v), b(u, v). Since A(u, v) may not be a convex area, we need some extra
definitions in order to capture a convex part of A(u, v). Let cord(u, v) be the unique cord of B
which contains both end(u) and end(v). The line cord(u, v) splits A(u, v) into at most 3 convex
parts. Let A′(u, v) be the convex part having b(u, v) as part of its border, see Figure 1 for an
example of each of the three cases. For a line segment s, let cross(s) denote the set of all vertices
x such that seg(x) intersects s and let cross(u, v) = cross(seg(u))∪ cross(b(u, v))∪ cross(seg(v)).
We now define a function OS and show that this is a conflict-free function. For u not adjacent to
v, let

OS(u, v) = {x : end(x) ∈ A′(u, v) and x 6∈ cross(u, v)}

We define the reach extension of OS as ROS, c.f. Definition 2.1.

4

arc(u, v)

seg(u)

end(u)

seg(v)

end(v)

b(u, v)

A′(u, v)

1

b(u, v)

cord(u, v)

A′(u, v)

1

b(u, v)

A′(u, v)

1

Figure 1: Three different cases for which we define A′ with some notation marked on the figures.
b(u, v) and chord(u, v) are drawn in red.

Lemma 2.7. Let G be a graph and R be an outersegment representation of G. For every u, v ∈
V (G), we have ∀y ∈ ROS(u, v), the segment seg(y) lies completely inside A(u, v).

Proof. For every y ∈ ROS(u, v), either y ∈ OS(u, v) or there exist x ∈ OS(u, v) such that
y ∈ ROS(u, x) ∪ ROS(x, v). For every y ∈ OS(u, v) we have end(y) ∈ A′(u, v) ⊆ A(u, v) and
since y 6∈ cross(u, v), we conclude that seg(y) lies completely inside A(u, v). For every y ∈
ROS(u, v) \ SO(u, v) there must exist x ∈ OS(u, v) such that y ∈ ROS(u, x) ∪ ROS(x, v). Since
A′(u, v) is convex and end(x) lies in A′(u, v), the triple end(u), end(v), end(x) forms a triangle T
and that none of the segments seg(u), seg(v), seg(x) intersects T other than in the corners, this
implies that A(u, x) ∪ A(x, v) ⊆ A(u, v), see Figure 2. We do induction on |ROS(u, v)|, the base
cases are when ROS(u, v) = ∅ for which the lemma is trivially true. Assume the lemma true
for every u′, v′ with |ROS(u′, v′)| < |ROS(u, v)|. Since y ∈ ROS(u, x) ∪ ROS(x, v) we have by
assumption that seg(y) ∈ A(u, x) ∪ A(x, v) and we conclude that seg(y) lies completely inside
A(u, v). By induction the lemma is true for all u, v, y.

A(u, x)A(x, v)

seg(x)

seg(u)seg(v)

1

Figure 2: When updating the table, we choose an x to divide A(u, v) into three parts
A(u, x), A(x, v) and a triangle. The main point of the proof of optimality is that for any in-
dependent set there exists an x in the independent set such that no segment belonging to a vertex
in the independent set intersects with the triangle.

Lemma 2.8. Let G be an outersegment graph and R be an outersegment representation of G.
Then OS is a conflict-free function.

5

Proof. Since neither u, nor v, nor any element of cross(u, v) lies in ROS(u, v), we have that
ROS(u, v) ∩ N [u, v] = ∅. Since A(u, x) is disjoint from A(x, v), by Lemma 2.7, N [ROS(u, x)] ∩
ROS(x, v) = ∅. Hence OS satisfies the conditions of Definition 2.2.

This implies that Algorithm 1 returns the weight of an independent set. Now we will show how
to ensure the returned solution is optimal.

Definition 2.9 (Normalized outersegment representation). Let G be an outersegment graph, R
be an outersegment representation of G, and ROS be the reach function of OS. We define R as
normalized if for all nonadjacent u, v ∈ V (G), we have

ROS(u, v) = {x : seg(x) ⊂ A(u, v)}.

We can modify any outersegment graph G with a representation R, with end points in general
position, to become normalized by adding 3n isolated vertices of weight 0 and corresponding
segments of length ε as described in Figure 3.

1

Figure 3: For every vertex v, add two segments starting at distance ε from start(v), one on each
side of seg(v) and in additional, add one such segment where the extension of seg(v) would cross
the the circle B. The added segments are drawn in red.

Lemma 2.10. The process described in Figure 3 will produce a normalized graph.

Proof. Define X(u, v) = {x : seg(x) ⊂ A(u, v)}. It follows from Lemma 2.7 that for all nonadjacent
u, v ∈ V (G), we have ROS(u, v) ⊆ X(u, v). Assume for contradiction that u, v is the pair with
minimal arc(u, v) such that there exists y ∈ X(u, v)\ROS(u, v). Since y 6∈ ROS(u, v), we conclude
that y 6∈ OS(u, v) and hence end(y) ∈ A(u, v) \A′(u, v) implying that A(u, v) is not convex. Thus
we are in either the second or third case illustrated in Figure 1. If start(y) ∈ A′(u, v), then there
will be a segment y′ of length ε with start(y′) at distance ε from start(y) such that end(y′) is visible
from both end(u) and end(v) in A′, hence y′ ∈ OS(u, v) and seg(y) ⊂ A(u, y′) or seg(y) ⊂ A(y′, v).
Then since arc(u, v) is minimal seg(y) is in either ROS(u, y′) or ROS(y′, v) contradicting that
y 6∈ ROS(u, v). If start(y) 6∈ A′(u, v), then the whole segment seg(y) must lie in A(u, v) \A′(u, v).
Hence for one of the ε length segments x on the extensions of seg(u) and seg(v) will lie inside
A′(u, v) and we have x ∈ OS(u, v) \ N(y). Then seg(y) is in either X(u, x) \ ROS(u, x) or
X(x, v) \ROS(x, v) contradicting the minimality of arc(u, v).

Theorem 2.11. Given an outersegment graph G with n vertices and an outersegment represen-
tation R of G, the Maximum Weight Independent Set problem can be solved in O(n3) time.

Proof. By Lemma 2.10, we can make G and R normalized in linear time and the graph still has
O(n) vertices. We assume that R has been normalized using the process described in Figure 3.
By using Lemma 2.7, we can precompute OS(u, v) and ROS(u, v) for all pairs in O(n3) time since
checking for segment intersection and containment in A(u, v) or A′(u, v) can be done in constant
time. It follows from Lemma 2.8 and Theorem 2.3 that Algorithm 1, if called on G and OS, always

6

returns the weight of an independent set and terminates in O(n3) time. We need to prove that for
any independent set I, Algorithm 1 will return a weight that is at least w(I). Note that it suffices
to assume that all weights are non-negative and I is a maximal independent set.

We prove by induction on |ROS(u, v)| that for all u, v ∈ I, the weight stored in M [u, v] is at
least the weight of I ∩ (ROS(u, v) ∪ {u, v}). The statement is trivially true for ROS(u, v) = ∅.
Let u, v ∈ I and assume the statement is true for all u′, v′, where |ROS(u′, v′)| < |ROS(u, v)|.
There is a vertex x ∈ I ∩OS(u, v) since OS(u, v) = ∅ ↔ ROS(u, v) = ∅ and I is maximal. Let Iuv
be I ∩ ROS(u, v). Since R has been normalized by the procedure of Figure 3, and I is maximal,
Iuv will consist of groups of three segments, one original and two parallel of length ε, plus also
singleton segments of length ε. Let P Iuv be the simple polygon that starts at end(v), then proceeds
clockwise to end(u) then to each of end(si) where i ∈ {1, 2, . . . , k} and si is the i-th clockwisemost
segment in Iuv, and then back to end(v), see Figure 4.

In a triangulation of P Iu,v there is a segment seg(x) such that end(x), end(u), end(v) forms a
triangle which does not intersect seg(u) nor seg(v). We know that end(x) must be in A′(u, v)
and hence x ∈ OS(u, v). Since x ∈ I, we know that N(x) ∩ I = ∅ and by the choice of x, we
know that no vertex in I ∩ ROS(u, v) intersects with the triangle end(u), end(x), end(v). Hence
I ∩ (ROS(u, x) ∪ROS(x, v)) ∪ {u, x, v} ⊇ I ∩ROS(u, v) ∪ {u, v}. Algorithm 1 will do the update

M [u, v] = max(M [u, v],M [u, x] +M [x, v]− w(x)).

By the induction hypothesis, M [u, x] ≥ w(I∩ROS(u, x)∪{u, x}) and M [x, v] ≥ w(I∩ROS(x, v)∪
{x, v}) and thus M [u, v] ≥ w(I ∩ (ROS(u, x)∪ROS(x, v)∪{u, x, v}). By induction every entry of
the table will be correct.

b(u, v)

P I
u,v

1

Figure 4: I ∩ROS(u, v) drawn in black and P Iu,v drawn in dashed red.

2.2 Outerstring graphs

Outerstring graphs are intersection graphs of curves in the plane that lie inside a circle such
that each curve intersects the boundary of the circle in one of its endpoints. An outerstring
representation is an intersection model of non self-intersecting polygonal lines in the plane with
one endpoint on a circle B, letN denote the total number of segments. There are outerstring graphs
which require strings with exponential many segments in their outerstring representation [14].

Our runtime will be polynomial in the total number of segments, N , needed to represent the
strings. We now adapt the OS function, defined for outersegment graphs, to work for outerstring
graphs, the proofs are similar to those of Section 2.1 and we will redefine the notation from that
section.

7

Let G be an outerstring graph and R be a representation as polygonal lines inside a circle
B. Let str(u) denote the string representing u in R, start(u) denote the start-point of str(u) on
B, and end(u) denote the end-point of str(u) inside B. Let b(u, v) be the straight line-segment
end(u), end(v). Let arc(u, v) be the arc of B starting at start(u) going in clockwise direction to
start(v). For a string s, let cross(s) denote the set of all vertices x such that str(x) intersects
s and let cross(u, v) = cross(str(u)) ∪ cross(b(u, v)) ∪ cross(str(v)). Note that we may assume
u 6∈ cross(str(u)), but might have u ∈ cross(b(u, v)). We say a set S ⊆ V (G) is open if S is
independent and S ∩

⋃
u,v∈S cross(b(u, v)) = ∅. For all pairs u, v, such that {u, v} is open, we

define A(u, v) be the area enclosed by str(v), b(u, v), str(u), and arc(u, v). For all pairs u, v, such
that {u, v} is not open, we define OS(u, v) = ∅; otherwise

OS(u, v) = {x : start(x) ∈ arc(u, v) and {u, x, v} is open }.

Let ROS be the reach extension of OS.

Lemma 2.12. Let G be a graph and R be an outerstring representation of G, for every u, v ∈ V (G),
we have ∀x ∈ ROS(u, v), the segment str(x) will lie completely inside A(u, v).

Proof. For every x ∈ OS(u, v) we have, {u, x, v} is open, hence the triangle end(u), end(x), end(v)
does not intersect str(u)∪str(x)∪str(v). Since start(x) ∈ A(u, v) and x 6∈ cross(u, v), we conclude
that str(x) will lie completely inside A(u, v). This implies that A(u, x) ∪ A(x, v) ⊆ A(u, v), we
conclude by same argument as for Lemma 2.7 that for every x ∈ ROS(u, v), seg(x) will lie
completely inside A(u, v).

Lemma 2.13. The function OS is conflict-free.

Proof. From Lemma 2.12 we know that OS(u, v) only contains vertices whose strings start on
arc(u, v) and lie entirely inside the area A(u, v). This implies that ROS(u, v) ∩ N [u, v] = ∅.
For any x ∈ OS(u, v) we have A(u, x) ∩ A(x, v) = ∅. Since every string belonging to a vertex
in ROS(u, x) lies inside A(u, x) and every string belonging to a vertex in ROS(x, v) lies inside
A(x, v) we get that N [ROS(u, x)] ∩ ROS(x, v) = ∅. Hence the conditions for being conflict-free
are satisfied.

This implies that calling Algorithm 1 on an outerstring graph will find an independent set, but
not necessarily an optimal solution. We will now show how to draw an outerstring in a normalized
form. We assume that the points in the outerstring representation are in general position, i.e. no
three points on the bends of the polygonal paths are collinear.

Definition 2.14 (Normalized outerstring representation). Let G be an outerstring graph, R be
an outerstring representation of G, and ROS be the reach extension of OS. We define R as
normalized if for all nonadjacent u, v ∈ V (G), we have

ROS(u, v) = {x : str(x) ⊂ A(u, v)}.

We now describe a normalization procedure which is illustrated in Figure 5. Let G be a graph,
and R be an intersection model of G by polygonal paths inside a circle B. For u ∈ V (G), where
str(u) = (start(u) = b0u, b

1
u, b

2
u, . . . b

k
u = end(u)) and for each bend biu, i = k − 1, k − 2, . . . 1 add

two vertices to G adjacent to all vertices whose corresponding strings intersect str(u) closer to
the start than biu and set their weight to 0. Add two polygonal paths to R, one on each side of
str(u) at distance ε from the previously added polygonal path associated with u following str(u)
from start(u) ending at bii. Next, add two isolated vertices to G of weight 0 and corresponding
segments to R of length ε at distance ε from the most recently added segments associated with u.
Also, for each bend biu of u, i = 1 . . . k , add a segment of length ε where the ray beginning at bi−1u

containing biu intersects the circle B. The graph now has 3N strings.

8

1

Figure 5: The result of the normalizing process, the added strings are drawn in red.

Lemma 2.15. The process described above will produce a normalized outerstring graph.

Proof. Let X(u, v) = {x : str(x) ⊂ A(u, v)}. Assume for contradiction that u, v is the pair
with minimum length of arc(u, v) such that X(u, v) \ ROS(u, v) 6= ∅. Let y be a vertex in
X(u, v) \ ROS(u, v). Since y 6∈ ROS(u, v) also y 6∈ OS(u, v). We will show that there exists a
vertex x ∈ OS(u, v) such that y ∈ ROS(u, x) ∪ROS(x, v). The desired x has start(x) ∈ arc(u, v)
with {u, x, v} open.

Let lu and ru be the points of length ε added close to start(u) and pu be the point where the
ray beginning at bi−1u containing biu intersects the circle B. We have OS(u, v) 6= ∅ since either
some bend biu of str(u), ly, ry, pu or pv is visible from both u and v and hence the normalization
has added a vertex which is in OS(u, v).

We now describe a procedure to find x which we call the sweep procedure, refer to Figure 6.
The idea is to sweep a maximal line segment s parallel to b(u, v) such that s ⊂ A(u, v) \ str(y).
The endpoints of s may lie on str(u), str(v), str(y) or circle B. Let s be at distance ε from b(u, v).
Now transform s by moving it away from b(u, v) maintaining each endpoint of s in the segments
or arc that presently contains it while keeping s parallel to b(u, v). Let x be the first vertex such
that end(x) ∈ s and {u, v, y, x} is an independent set.

If x is close to a bend or start point of str(z) for some z ∈ {u, v, y}, then we know that str(x)
is tracing str(z) within distance f(ε) of str(z), since {u, v, y} is an independent set we know that
{u, v, y, x} is an independent set.

At this point we have identified vertex x with {u, x, v} open, such that y ∈ ROS(u, z) or
y ∈ ROS(z, v). Since ROS(u, v) contains ROS(u, z) ∪ROS(z, v), this contradicts the minimality
of arc(u, v).

Theorem 2.16. Given an outerstring graph G with n vertices and an outerstring representaion
R of G with N segments the Maximum Weight Independent Set problem can be solved in
O(N4) time.

Proof. By Lemma 2.15, we make G and R normalized in O(N) time and the graph has O(N)
vertices. We can precompute OS(u, v) and ROS(u, v) for all pairs in O(N4) time by using the
adjacency information of G and testing all triples u, x, v, since checking for containment in A(u, v)
can be done in O(N) time. It follows from Lemma 2.13 and Theorem 2.3 that Algorithm 1, if
called on G and OS, always returns the weight of an independent set and terminates in O(N3)
time. We need to prove that for any independent set I, Algorithm 1 will return a weight that is
at least w(I). Note that it suffices to assume that I is a maximal independent set.

We prove by induction on |ROS(u, v)| that for all u, v ∈ I, the weight stored in M [u, v] is at
least the weight of I∩ (ROS(u, v)∪{u, v}). The statement is trivially true for ROS(u, v) = ∅ since
this can only happen if X(u, v) = ∅. Let u, v ∈ I and assume the statement is true for all u′, v′

where |ROS(u′, v′)| < |ROS(u, v)|. Since I is maximal and thus contains all ε length segments in
A(u, v), by a sweep procedure similar to that outlined in the proof of the previous lemma we can

9

u

y

v
x

b(u, v)

A(u, v)

1

u

y

v

pu = x

b(u, v)
A(u, v)

1

Figure 6: Sweeping s into A(u, v) to find x

locate a vertex x ∈ I ∩ OS(u, v). Since end(x), end(u), end(v) forms a triangle which is a subset
of the area swept, the triangle does not intersect any string belonging to a vertex in I, hence we
know that I ∩ (ROS(u, x) ∪ROS(x, v) ∪ {x}) = I ∩ROS(u, v). Algorithm 1 will do the update

M [u, v] = max(M [u, v],M [u, x] +M [x, v]− w(x)).

By the induction hypothesis M [u, x] ≥ w(I ∩ROS(u, x)∪{u, x}) and M [x, v] ≥ w(I ∩ROS(x, v)∪
{x, v}) and thus M [u, v] ≥ w(I ∩ (ROS(u, x)∪ROS(x, v)∪{u, x, v}). By induction every entry of
the table will be correct.

References

[1] Seymour Benzer. On the topology of genetic fine structure. Proceedings of the National
Academy of Sciences, 47:1607, 1959.

[2] Sergio Cabello, Jean Cardinal, and Stefan Langerman. The clique problem in ray intersection
graphs. In ESA, pages 241–252, 2012.

[3] Holger Flier, Matús Mihalák, Anita Schöbel, Peter Widmayer, and Anna Zych. Vertex disjoint
paths for dispatching in railways. In ATMOS, pages 61–73, 2010.

[4] Holger Flier, Matús Mihalák, Peter Widmayer, and Anna Zych. Maximum independent set
in 2-direction outersegment graphs. In WG, pages 155–166, 2011.

[5] Jacob Fox and János Pach. Computing the independence number of intersection graphs. In
SODA, pages 1161–1165, 2011.

[6] Jacob Fox and János Pach. Coloring Kk-free intersection graphs of geometric objects in the
plane. Eur. J. Comb., 33(5):853–866, 2012.

[7] Jacob Fox and János Pach. String graphs and incomparability graphs. Advances in Mathe-
matics, 230:1381–1401, 2012.

[8] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama. Data mining
with optimized two-dimensional association rules. ACM Transactions on Database Systems,
26(2):179–213.

10

[9] Fanica Gavril. Maximum weight independent sets and cliques in intersection graphs of fila-
ments. Information Processing Letters, 73:181–188, 2000.

[10] Jan Kratochv́ıl. String graphs. I. the number of critical nonstring graphs is infinite. J. Comb.
Theory, Ser. B, 52(1):53–66, 1991.

[11] Jan Kratochv́ıl. String graphs. II. recognizing string graphs is NP-hard. J. Comb. Theory,
Ser. B, 52(1):67–78, 1991.

[12] Jan Kratochv́ıl, Miroslav Goljan, and Petr Kučera. String Graphs. Academia, Prague, 1986.

[13] Jan Kratochv́ıl, Anna Lubiw, and Jaroslav Nesetril. Noncrossing subgraphs in topological
layouts. SIAM J. Discrete Math., 4(2):223–244, 1991.

[14] Jan Kratochv́ıl and Jiŕı Matousek. String graphs requiring exponential representations. J.
Comb. Theory, Ser. B, 53(1):1–4, 1991.

[15] Jan Kratochv́ıl and Jaroslav Nesetril. Independent set and clique problems in intersection-
defined classes of graphs. Comment. Mat. Univ. Carolinae, 31:85–93, 1990.

[16] Doron Rotem Martin Golumbic and Jorge Urrutia. Comparability graphs and intersection
graphs. Discrete Mathematics, 43:37–46, 1983.

[17] M. Middendorf and F. Pfeiffer. The max clique problem in classes of string-graphs. Discrete
Mathematics, 108:365–372, 1992.

[18] Marc van Kreveld Pankaj Agarwal and Subhash Suri. Label placement by maximum indepen-
dent set in rectangles. Computational Geometry: Theory and Applications, 11(3):209–218.

[19] S. Even S. Ehrlich and R.E. Tarjan. Intersection graphs of curves in the plane. J. Combin.
Theory Ser. B., 21:8–20, 1976.

[20] Marcus Schaefer, Eric Sedgwick, and Daniel Stefankovic. Recognizing string graphs is in NP.
J. Comput. Syst. Sci., 67(2):365–380, 2003.

[21] F.W. Sinden. Topology of thin film rc-circuits. Bell System Technological Journal, 45:1639–
1662, 1966.

11

A Extra Figures

String
graphs

Segment
graphs

Outer string
graphs

Outer segment
graphs

2-directional
segment graphs

Ray graphs
2-directional outer

segment graphs

2-directional
ray graphs

chordal
graphs

circle graphsinterval graphs

co-comparability
graphs

interval filament
graphs

subtree filament
graphs

Figure 7: Containment relationships between various graph classes referred to in this paper

B Proof of Theorem 2.5

Lemma B.1. Let u, v ∈ V (G), then for any σ, we have Sσ(u, v) ∩N [u, v] = ∅.

Proof. Assume for contradiction that there is a vertex x ∈ Sσ(u, v)∩N [u, v]. Then by the definition
of Sσ(u, v) (the strict inequalities) x 6∈ {u, v}. Hence we must have x ∈ N(u, v). Without loss of
generality, assume that u ∈ N(x). Then N(x) \N(u, v) will contain u and the condition will fail
for y = u.

Lemma B.2. Let G be a graph and {u, x, v} ⊆ V (G) be an independent set. Let σ be an ordering
of V (G) such that σ(u) < σ(x) < σ(v). Then there is no edge (a, b) ∈ E(G) such that, a ∈ Sσ(u, x)
and b ∈ Sσ(x, v).

Proof. Assume for contradiction that a ∈ Sσ(u, x), b ∈ Sσ(x, v) and (a, b) ∈ E(G). By Lemma B.1,
we get that b 6∈ N [x, v] and neither can we have b ∈ N(u). Since b ∈ Sσ(x, v) implies σ(x) < σ(b),
b ∈ (N(a) \N(u, x)) but (x, b) 6∈ E. The condition that a ∈ Sσ(u, x) when y = b gives that
σ(u) < σ(b) < σ(x) but this contradicts b ∈ Sσ(x, v).

Lemma B.3. Let G be a graph and u, v ∈ V (G). If z ∈ Sσ(u, v), then Sσ(u, z) ⊂ Sσ(u, v).

Proof. Assume for contradiction that ∃x ∈ (Sσ(u, z) \ Sσ(u, v)). Since z ∈ Sσ(u, v) and x ∈ Su,z
we have σ(u) < σ(x) < σ(z) < σ(v) and by definition

∀y ∈ (N(z) \N(u, v) ∪ {z}) , σ(u) < σ(y) < σ(v) and

12

∀y ∈ (N(x) \N(u, z) ∪ {x}) , σ(u) < σ(y) < σ(z) < σ(v)

We see that the set (N(z) \N(u, v) ∪ {z}) ∪ (N(x) \N(u, z) ∪ {x}) contains N(x) \ N(u, v),
hence by combining the two above statements we get

∀y ∈ (N(x) \N(u, v) ∪ {x}) , σ(u) < σ(y) < σ(v)

Contradicting x ∈ (Sσ(u, z) \ Sσ(u, v)).

Theorem 2.5 For all graphs G and all orderings σ of V (G), the function Sσ(u, v) is conflict-free.

Proof. Given σ, let S be Sσ. First we show that the reach extension RS of S is identical to the
function S. By definition S(u, v) ⊆ RS(u, v). We show that RS(u, v) = S(u, v) by induction on
the size of S(u, v). If S(u, v) = ∅, then RS(u, v) = S(u, v) by definition. From Lemma B.3, we
get that ∀x ∈ S(u, v) : S(u, x) ∪ S(x, v) ⊂ S(u, v), hence by induction hypothesis ∀x ∈ S(u, v) :
S(u, x) ∪ S(x, v) = RS(u, x) ∪RS(x, v). Combining this with Definition 2.1, we get

RS(u, v) = S(u, v) ∪
⋃

x∈S(u,v)
(S(u, x) ∪ S(x, v)) = S(u, v).

The theorem now follows from Lemma B.1, B.2 and B.3.

Lemma B.4. Given G and σ, we can compute Sσ(u, v) for all pairs u, v ∈ V (G) in O(n3 + n2m)
time.

Proof. Let u, v ∈ V with σ(u) < σ(v). By Lemma B.1, u, v ∈ Sσ(u, v). Let x ∈ V and σ(u) <
σ(x) < σ(v). We need to check for all y ∈ (N(x) \N(u, v)) ∪ {x}, σ(u) < σ(y) < σ(v). This can
be done by taking a neighbor y of x and checking whether y is a neighbor of u or neighbor of v.
The checking of whether y is a neighbor of u or v can be done in constant time by looking up in
the adjacency matrix which can be computed in O(n2) time. If y is either a neighbor of u or v,
then discard x; otherwise include x to Sσ(u, v). Again since the choice of x can be at most n, the
computation of Sσ(u, v) takes at most O(n+m) time. There are at most n2 pairs of such u and v.
So the computation of Sσ(u, v) for all pairs u and v in G takes at most O(n2(n+m)) = O(n3+n2m)
time.

13

	Introduction
	Algorithms
	Outersegment graphs
	Outerstring graphs

	Extra Figures
	Proof of Theorem 2.5

