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Abstract. It is well-known that for graphs with high edge density the tree-width is al-
ways high while the clique-width can be low. Boolean-width is a new parameter that is
never higher than tree-width or clique-width and can in fact be as small as logarithmic
in clique-width. Boolean-width is defined using a decomposition tree by evaluating the
number of neighborhoods across the resulting cuts of the graph. Several NP-hard prob-
lems can be solved efficiently by dynamic programming when given a decomposition of
boolean-width k, e.g. Max Weight Independent Set in timeO(n2k22k) and Min Weight
Dominating Set in timeO(n2+nk23k). Finding decompositions of low boolean-width
is therefore of practical interest. There is evidence that computing boolean-width is
hard, while the existence of a useful approximation algorithm is still open. In this paper
we introduce and study a heuristic algorithm that finds a reasonably good decomposi-
tion to be used for dynamic programming based on boolean-width. On a set of graphs of
practical relevance, specifically graphs in TreewidthLIB, the best known upper bound
on their tree-width is compared to the upper bound on their boolean-width given by our
heuristic. For the large majority of the graphs on which we made the tests, the tree-width
bound is at least twice as big as the boolean-width bound, and boolean-width compares
better the higher the edge density. This means that, for problems like Dominating Set,
using boolean-width should outperform dynamic programming by tree-width, at least
for graphs of edge density above a certain bound. In view of the amount of previous
work on heuristics for tree-width these results indicate that boolean-width could in the
future outperform tree-width in practice for a large class of graphs and problems.

1 Introduction

Many NP-hard graph problems become polynomial-time solvable when restricted to graphs
of bounded tree-width or bounded clique-width. These algorithms usually have two stages,
a first stage finding a decomposition of width k of the input graph, and a second stage of
dynamic programming along the decomposition. The dynamic programming is typically ex-
ponential in k, e.g. given a decomposition of tree-width k it solves Maximum Weight Inde-
pendent set in time O(n2k) and Minimum Weight Dominating set in time O(n3kk2) [23]. It
is therefore important to have fast algorithms for the first stage, i.e. to find decompositions of
small width. For clique-width such algorithms are not known, apart from the 2OPT approx-
imation achieved through rank-width [18]. For tree-width there is an O(nck

3

) algorithm for
finding a decomposition of tree-width k, if it exists, for some constant c [4]. This algorithm
is not practical [20], but much work has been done on finding decompositions of low tree-
width in practical settings, see the overviews [6,5]. The web site TreewidthLIB [22] has been
established to provide a benchmark and to join the efforts of people working in experimental
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settings to solve graph problems using tree-width and branch-width [15,19]. This includes
problems from computational biology [21,24,25], constraint satisfaction [11,14], and proba-
bilistic networks [17]. However, tree-width and branch-width are unsuitable for non-sparse
graphs, as a decomposition of tree-width or branch-width k means the graph has O(k2n)
edges. Clique-width, on the other hand, can be low for dense graphs, but so far no experi-
mental study has been done for clique-width or similar notions. To our knowledge this paper
is the first case of an experimental study on computing a notion of width that works also for
non-sparse graphs.

Boolean-width is a recently introduced graph parameter motivated by algorithms [10]. It
is defined by a decomposition tree that minimizes the number of different unions of neigh-
bourhoods across resulting cuts of the graph. This decomposition is natural to solve problems
where vertex sets having the same neighborhoods across the cuts can be treated as equiva-
lent. This includes problems related to Independent Set, Dominating Set, Perfect Code, In-
duced k-Bounded Degree Subgraph, H-Homomorphism, H-Covering, H-Role Assignment
etc [1]. Similarly to treewidth, dynamic programming algorithms to solve these problems
using boolean-width employ a table at each node of the decomposition tree, to store solu-
tions to partial problems. In contrast to treewidth, the dynamic programming for boolean-
width involves a non-negligible pre-processing phase computing indices of the tables, the
so-called ’representatives’. Regardless, the total runtimes are in many cases close to those
for treewidth, e.g. given a decomposition of boolean-width k Max Weight Independent Set
is solved in time O(n2k22k) and Min Weight Dominating Set in time O(n2 + nk23k) [10].
These boolean-width-based algorithms are straightforward and have been implemented in
Java, without much effort, using only the description in [10]. Let us compare dynamic pro-
gramming based on tree-width versus boolean-width, to solve Independent Set and Domi-
nating Set, with focus on exponential factors. For Independent Set the exponential factor in
the runtimes are 2tw versus 22boolw, given decompositions of treewidth tw or boolean-width
boolw, and boolean-width becomes preferable when tw > 2boolw. For Dominating Set the
exponential factor in the runtime is 3tw versus 23boolw and the cutoff is a bit lower, i.e. when
tw ≥ 1.9boolw. Oftentimes it is memory which is the bottleneck in these dynamic program-
ming algorithms [2], and it is worth to note that for Dominating Set the treewidth algorithms
use more memory, i.e. the tables will have size 3tw versus 2boolw+1.

It is known that boolean-width is never higher than tree-width or clique-width and it
can be as low as logarithmic in clique-width [10]. For example, any interval graph or per-
mutation graph has boolean-width O(logn) while there exist such graphs of clique-width
Ω(
√
n) [3,8,13]. Also, a random graph with constant edge probability will almost surely have

boolean-width Θ(log2 n) [1] but linear clique-width and tree-width. While these theoretical
results favor boolean-width over tree-width, the cutoff tw ≥ 2boolw that we arrived at above
applies when we are given a decomposition of treewidth tw or boolean-width boolw, as the
output of a first stage algorithm. In this paper we give a heuristic for the first stage, taking as
input a graph G and finding a decomposition of G having reasonably low boolean-width. We
tried various heuristics and present the one with best performance, which is a local search al-
gorithm where the search for new solutions is based on interweaving between greedy choices
and random choices. Theoretical evidence that random choices are useful for boolean-width,
at least for random graphs, comes from the analysis of [1] showing that any decomposition of
a random graph is expected to be a decomposition of relatively low boolean-width. On a set
of graphs of practical relevance, specifically graphs in TreewidthLIB, the best known upper
bound on their tree-width is compared to the upper bound on their boolean-width given by our



heuristic. For 78% of those graphs in TreewidthLIB where both tree-width and boolean-width
upper bounds were encountered, the tree-width bound is at least twice the boolean-width
bound, thus meeting the tw ≥ 2boolw bound mentioned above. A drawback of tree-width is
that it is always high when edge density is high. In contrast, boolean-width is typically low
for dense graphs and our experiments show that within reasonable time we can find decom-
positions witnessing this. Our results indicate that, for problems like Dominating Set, using
boolean-width will outperform dynamic programming by tree-width, at least for graphs of
edge density above a certain bound. In view of the amount of previous work on heuristics for
tree-width we expect that further work on boolean-width heuristics will substantially increase
the class of graphs for which boolean-width outperforms tree-width, also for other problems
besides Independent Set and Dominating Set.

The rest of the paper is organized as follows. In Section 2 we define partial and full de-
composition trees and boolean-width. In Section 3 we describe the heuristic finding a decom-
position of low boolean-width. In Section 4 we describe the experimental results on graphs
in TreewidthLIB, and also on small grid graphs. In Section 5 we draw some conclusions.

2 Boolean-width

We consider undirected graphs G = (V,E) without loops. We denote the neighborhood
of a vertex v by N(v) and the union of neighborhoods of a vertex subset A by N(A) =
∪v∈AN(v). The complement of A ⊆ V is denoted by Ā = V \ A and we call (A, Ā) a cut
of G. A partition of a set S consists of non-empty and disjoint subsets of S whose union is
S. We follow custom by referring to vertices of a graph and nodes of a tree.

Definition 1 (Full and partial decomposition trees). A partial decomposition tree of a
graph G = (V,E) is a pair (T, δ), where T is a full binary tree and δ is a mapping from
the nodes of T to non-empty subsets of V , satisfying the following: if x is the root of T then
δ(x) = V and if nodes y and z of T are children of a node x then (δ(y), δ(z)) is a partition
of δ(x). If a subtree of T rooted at x has |δ(x)| leaves then it is called a full decomposition
subtree. If T has |V | leaves then (T, δ) is called a full decomposition tree.

Note that in a partial decomposition tree (T, δ) of a graph G, if L is the set of leaves of T
then {δ(x) : x ∈ L} is a partition of V . Hence in a full decomposition tree there will for each
vertex v of G be a unique leaf x of T with δ(x) = {v}. Likewise for each vertex of δ(x) in a
full decomposition subtree rooted at x.

Definition 2 (Unions of neighborhoods and boolean-width). Let (T, δ) be a partial de-
composition tree of a graph G. Let V (T ) be the nodes of T . Every node x ∈ V (T ) defines
a cut (δ(x), δ(x)) of G. The set of unions of neighborhoods of subsets of A across the cut
(A,A) is UN(A) = {N(X) ∩A : X ⊆ A}. The boolean-width of (T, δ) is

boolw(T, δ) = max
x∈V (T )

{log2|UN(δ(x))|}

The boolean-width of a graphG is the minimum boolean-width over all its full decomposition
trees boolw(G) = min

full (T,δ)ofG
{boolw(T, δ)}.

Note that UN(A) are the subsets of A for which there exists an X ⊆ A with N(X) ∩ A
being that subset, so we always have ∅ ∈ UN(A). It is known from boolean matrix theory



[16] that |UN(A)| = |UN(A)| and this is sometimes used by our code. Let us consider some
examples. If |UN(A)| = 2 then the set of edges crossing the cut (A,A) induce a complete
bipartite graph. If the set of edges crossing the cut (A,A) induce a perfect matching of G
then |UN(A)| = 2|V/2|. In the definition of boolean-width we take the logarithm base 2 of
|UN(A)| which ensures that 0 ≤ boolw(G) ≤ |V |. If a graph has boolean-width one then it
has a full decomposition tree such that, for every cut defined by a node of the tree, the edges
crossing the cut, if any, induce a complete bipartite graph. From this it follows that the graphs
of boolean-width one are exactly the distance-hereditary graphs [9].

Definition 3 (Split). A split of a set P is a partition into two subsets A and B, with the
constraint that min{|A|, |B|} ≥ 1

3 |P |.

3 Heuristic Algorithm

We present a local search heuristic that given a graphG computes a full decomposition tree of
G. The search for new solutions in the space of candidate solutions is based on a fine balance
between greedy choices and random choices. The heuristic, given in Algorithm 1, runs for a
pre-defined length of time and then returns the best full decomposition found. Each heuristic
pass iterates over all decomposition nodes of the current partial decomposition tree, including
the children created by this heuristic pass. A newly created tree node always starts out as a
leaf node, which δ maps to a set of vertices of G that may be larger than one. We keep track
of the best full decomposition subtrees found for each P ⊆ V encountered so far and call it
Best(P ).

Algorithm 1 : Generate a full decomposition of a given graph
Input: a graph G
Output: a full decomposition tree (T, δ) of G
Step 1: /∗Greedily generate initial full decomposition tree∗/

Initialize T with V (T ) = {root}, δ(root) = V
while ∃ leaf x of T with |δ(x)| > 1

(A,B) = Split(δ(x));
Add leaves y and z as children of x with δ(y) = A and δ(z) = B

for all x ∈ V (T ) store Best(δ(x)), the subtree rooted at x
Step 2: /∗Local Search for better trees∗/

for fixed amount of time do
TryToImproveSubtree(root)
if (T, δ) is a full decomposition tree then Best(V ) = (T, δ)

return Best(V )

3.1 Greedy Initialization

Step 1 of Algorithm 1 greedily generates a full decomposition tree, to serve as the starting
tree for the local search in Step 2. The greedy initialization starts with T containing a single
node x (as both root and leaf) with δ(x) = V and repeatedly calls the Split subroutine until
we get a full decomposition tree. The Split(P ) subroutine returns a split (A,B) of P and



is given in Algorithm 2. Starting with A being a random half of the vertices of P (unless
P=V ), it adds new vertices to A one by one in a greedy fashion while minimizing |UN(A)|
and |UN(P \ A)|, and returns the best split found along the way complying with the split
constraint. The call of Split(V ) at the root sets the initial conditions for the later splits and
for this root-case we start with A = ∅, rather than a random half of the vertices, to allow the
full benefit of the greedy choices. The local search in TryToImproveSubtree will for leaves
of the current tree make calls to Split(P ) but not for P = V , since the root of T will never
become a leaf and instead the RandomSwap subroutine described in the next subsection will
be applied to the root.

Algorithm 2 : Split(P )

Input: Set of vertices P ⊆ V .
Output: a partition (A,B) of P s.t. min{|A|, |B|} ≥ 1

3
|P |.

if P = V then A1 ← ∅
else A1 ← random half of the vertices in P
i = 1
while |P \Ai| ≥ 1

3
|P | do

find x ∈ P \Ai s.t. max{UN(Ai ∪ {x}),UN((P \Ai) \ {x})} is minimized.
Ai+1 = Ai ∪ {x}.
i = i+ 1.

end while
find i such that max{UN(Ai),UN(P \Ai)} is minimized and |Ai| ≥ 1

3
|P |.

return (Ai,P \Ai).

The objective function optimized locally in Split is |UN(A)|, the number of unions of
neighborhoods of A, which directly relates to boolean-width, see Definition 2. The computa-
tion of |UN(A)| is done in a separate subroutine called UN(A) given in Algorithm 3. This
subroutine starts by restricting from the cut (A,A) to the subsets of vertices (S1, S2) having
an edge going across the cut (A,A). The list LN is used to accumulate the set UN(A) in a
straightforward way. Correctness is easy to show by induction on |S1|. Early termination of
the UN(A) subroutine is not shown in Algorithm 3 but is done if it is determined that |LN |
is too large for the cut (A,A) to be interesting.

Algorithm 3 : UN(A)

Input: Set of vertices A ⊆ V .
Output: |UN(A)|, the number of unions of neighborhoods of the cut (A,A)
if |UN(A)| has already been computed return the stored value
S1 = {v ∈ A : ∃u ∈ A ∧ (u, v) ∈ E}
S2 = {v ∈ A : ∃u ∈ A ∧ (u, v) ∈ E}
LN ← {∅} /∗neighborhood set accumulator∗/
for all u ∈ S1 do

for all Y ∈ LN do
X ← (N(u) ∩ S2) ∪ Y
if X /∈ LN then add X to LN

return The number of elements in LN



3.2 Local Search

The local search used to improve the current decomposition tree is initiated at the root of
the tree T , in Step 2 of Algorithm 1. In the subroutine TryToImproveSubtree(x), given in
Algorithm 4, x is a node of the current partial decomposition tree (T, δ) and the goal is to
improve the subtree of T rooted at x. That subroutine has four main parts.

(1) if x leaf then find candidate for split of its subset
(2) if x non-leaf then find candidate for swap of its two children subsets
(3) conditionally update (T, δ)
(4) for each child of x either use stored subtree or recurse

For (1) we use the Split subroutine described earlier. For (2) we use the RandomSwap(A,B)
subroutine given in Algorithm 5 that randomly swaps vertices between A and B while com-
plying with the split constraint. At the very onset of the local search, the current (T, δ) is the
full decomposition tree found by the greedy initialization. However, the current decomposi-
tion tree ceases to be full as soon as the split given by RandomSwap(δ(y), δ(z)) in (2) is a
good one and (3) updates (T, δ) so that y and z become leaves. If the new δ(y) is a subset of
vertices for which a full decomposition subtree has never been stored, or the stored one is not
good enough, then in (4) a recursive call is made to TryToImproveSubtree(y), with y a leaf
of the current tree. If in that recursive call the split found in (1) is not good then in (3) we will
return with y a leaf of the current (T, δ) having |δ(y)| > 1, which explains the if-statement
at the very end of Algorithm 1.

Algorithm 4 : TryToImproveSubtree(x)
Input: a node x of T with |δ(x)| > 1

(1) if x is a leaf then (A,B) = Split(δ(x))
(2) else

Let y and z be the children of the node x.
(A,B)=RandomSwap(δ(y), δ(z))

(3) if max{UN(A),UN(B)} < boolw(Best(V ))
then Set y and z as new leaf children of x with δ(y) = A and δ(z) = B

else if x is still a leaf then return /* in case we came from (1) */

(4) if max{UN(δ(y)),UN(δ(z))} < boolw(Best(V )) then
for w ∈ {y, z}

if subtree for δ(w) is stored and boolw(Best(V )) > boolw(Best(δ(w)))
then use root of Best(δ(w)) as w.

else if |δ(w) > 1| call TryToImproveSubtree(w)
if the subtree Tx rooted at x is a full subtree of δ(x)

then update Best(δ(x)) to Tx

Note that the local improvements made in the local search are based on randomly swap-
ping vertices between δ(y) and δ(z) for two nodes y and z with the same parent. As usual in
local search, there is a fine balance to trying new splits versus sticking with old splits. The
goal is to neither get stuck in local minima nor to swap so many nodes that we re-randomize
completely and don’t get a hill-climbing effect. Note in (4) that we store for each subset P of



vertices encountered so far the best found full decomposition subtree Best(P ). The decision
of when to try new splits and when to use the old splits is tied to the boolean-width of the
best subtrees, and to the upper bound on boolean-width of G given by Best(V ).

Algorithm 5 : RandomSwap(δ(y), δ(z))
Input: δ(y), δ(z) ⊆ V for sibling nodes y and z of T .
Output: split (A,B) of δ(y) ∪ δ(z).
Let x be the parent of y and z.
choose randomly i in 0..(|δ(y)| − |δ(x)|

3
) and j in 0..(|δ(z)| − |δ(x)|

3
).

choose randomly Mi ⊂ δ(y) and Mj ⊂ δ(z) with |Mi| = i and |Mj | = j.
A = (δ(y) \Mi) ∪Mj

B = (δ(z) \Mj) ∪Mi

return (A,B).

3.3 Discussion and Implementation Details

We made our implementations in Java. Subsets of vertices are stored as bitvectors of length n,
i.e. the number of vertices in the graph. We expect most of the subsets we store to be of size
at least n2 so this is an efficient way to store subsets. We also limited the boolean-width to 31,
i.e. |UN(A)| ≤ 231, but none of the graphs tested reached this limit. The bottleneck is rather
the memory available on our machines. Let us explain. Our implementation of Algorithm ??
uses memory proportional to n∗|UN(A)| bits. Since |UN(A)| ≤ 2min(|A|,|A|) the ’boolean-
width 31’ becomes a bottleneck only if the graph has at least 64 vertices. In that case the
implementation is handling a list of neighborhoods of size 64 ∗ 231 bits which is 16 GB of
memory and that is more memory than our desktop had. It is part of future research to find
memory efficient methods to compute the boolean-width of a cut.

As described, we are currently storing the best full decompositions of subtrees. Since
bitvectors are easy to compare they are stored in a binary search tree for quick look-up. Stor-
ing all these solutions eats up memory, and for some big graphs this is the limiting factor.
In the future we will consider more advanced schemes for storing the partial solutions en-
countered. In particular one should throw out elements that are no longer below the upper
bound.

The search for new solutions in the space of candidate solutions is based on a fine balance
between greedy choices and random choices, a balance that was arrived at mainly through
experimentation. This appears e.g. in the choice of letting the Split subroutine start with
a random half of the nodes on one side before trying vertices one-by-one in the more costly
greedy stage. Similarly for the fully random choice of swapping in subroutine RandomSwap,
and in the conditional tests in (3) and (4) of TryToImproveSubtree.

Although not specified in the pseudocode, for small subtrees we just return an arbitrary
one, since if |δ(x)| ≤ boolw(Best(V )) then any full subtree at x will have boolean-width
at most boolw(Best(V )). The Split(P ) subroutine given in Algorithm 2 could be stopped
as soon as a subset Ai with low |UN(Ai)| and |UN(P \ Ai)| values has been found. It
is not clear that this is always better and currently it is not done. There are many calls of
UN(A) for many subsets A that only differ in a few vertices. A possible improvement is
to store the sets of unions of neighborhoods UN(A) and use these e.g. when computing



UN(A∪ {v}) for a single added vertex v. The UN(A) subroutine given in Algorithm 3 does
not recompute known values, but otherwise it may seem naive. It forms the inner loop of the
heuristic and it is the bottleneck for running on graphs with many vertices. We tried different
approaches such as randomly sampling subsets to approximate |UN(A)| and exploiting a
correlation between the degree of a vertex and its contribution to |UN(A)|. These tests led
to only insignificant improvements so for the moment we kept the naive algorithm. There
are other, similar, improvements to UN(A) that can be attempted, and although they may
not asymptotically improve the running-time of the heuristic they could potentially be of big
help.

The balance between trying new splits and sticking to old splits is guided by the condi-
tional test in (3) of Algorithm 4. We did try imposing stronger conditions in order to arrive at
better splits sooner, but only minor improvements were seen, and only in some cases.

The heuristic ran for a predefined amount of time for each graph but there are several
ways of experimenting with the stopping criteria, for example based on the size of the input
graph, or on the fraction of time since an improved tree was last found.

4 Experimental Results

All presented results have been carried out on a Linux machine with 2.33 GHz Intel Core
2Duo CPU E6550 and 2 GB RAM. Our aim was not fast benchmark results, but to explore
heuristics for finding decompositions of low boolean-width. TreewidthLIB is an online depos-
itory containing a collection of 710 graphs, to be used as a benchmark for the comparison of
algorithms computing treewidth. TreewidthLIB provides selected instance graphs, for which
computing the treewidth is relevant, originating from applications like probabilistic networks,
vertex coloring, frequency assignment and protein structures [6]. We ran our heuristic on the
graphs in TreewidthLIB.

TreewidthLIB contains 710 graphs. For 482 graphs a tree-width bound is given in Treewidth-
LIB, and for 426 graphs we give a boolean-width bound using our heuristic. For the compar-
ison we concentrate on the 300 graphs for which we have a bound on both tree-width and
boolean-width, but let us first discuss the remaining 410 graphs. Among these 410 graphs,
there are 126 having only a boolean-width bound, 182 having only a tree-width bound, and
102 having neither. The 126 graphs having only a boolean-width bound are listed in the ap-
pendix. Among the 182 graphs having only a tree-width bound there are some where the input
format is flawed, containing e.g. edges between non-existing vertices, but for the majority of
these graphs our heuristic simply timed out already at the greedy initialization stage. Note
that for these 182 graphs, if we were given the decomposition of low tree-width k, we could
easily have produced a decomposition of boolean-width at most k, using the algorithm in [1].

We now summarize our findings for the 300 graphs having both a tree-width bound and
a boolean-width bound. Firstly, the boolean-width bound is always better than the tree-width
bound, with the ratio of the tree-width bound divided by the boolean-width bound ranging
from 1.15 to 29, with an average of 3.13. Not surprisingly, the ratio increased with higher
edge density. In Fig.1 we have plotted this ratio against the edge density of the graphs for a
total of 300 graphs. The trend line shows the growth of ratio with edge density.
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Our heuristic algorithm starts with greedily finding a full decomposition tree giving an
Initial Bound on boolean-width and then improves this bound iteratively. In the experiments
we kept track of the decrease in the boolean-width over time. In Fig. 2 and Fig. 3 the up-
per bounds on boolean-width, i.e. the values of boolw(BEST (V )), are shown as they de-
crease over time, for the two graphs called eil51.tsp (V =51 and E=140) and miles1500
(V=128,E=5198). For the graph eil51.tsp the Initial Bound was 9.1 after less than a sec-
ond, then at the ’knee’ of the curve before the improvement decays we found a Fast Bound
of 6.2 after 4 seconds, and finally the Best Bound of 5.8 was found after 124 seconds. For
each graph, we can likewise speak of three bounds: i) the Initial Bound given by the greedy
initialization, ii) a Fast Bound found at the ’knee’ of the curve, and iii) the Best Bound found
possibly after a long runtime.
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In Table 1 we summarize results for 8 selected graphs having a good variety of num-
ber of vertices V , edge density density, Time in seconds to find Initial Bound, Fast Bound,
and Best Bound on boolean-width, its best known treewidth upper bound TWUB, and Ra-
tio=TWUB/BWUB(Best Bound). The graphs are sorted by this Ratio. The miles1500 graph is
translated from the Stanford GraphBase. The zeroin.i.1 and mulsol.i.5 graphs originate from
the 2nd DIMACS implementation challenge [12] and are generated from a register alloca-
tion problem based on real code. The queen8 12 also comes from the DIMACS[12] graph
coloring problems and is an example of n-queens puzzle. The graph 1awd is from the field
of computational biology with each vertex representing a single side chain and each edge
representing the existence of a pairwise interaction between the two side chains. The graph
celar06-wpp is a frequency assignment instance. The graph BN 28 originates from Bayesian
Network from evaluation of probabilistic inference systems at UAI 2006. The graph eil51.tsp
is a Delauney triangulation of a traveling salesman problem.

Table 1. Results for selected graphs

Edge Initial Bound Fast Bound Best Bound
Graph name V density BWUB Time(s) BWUB Time(s) BWUB Time(s) TWUB Ratio
miles1500 128 0.64 5.5 32.6 4.9 345.7 4.8 609.6 77 15.85
zeroin.i.1 211 0.19 4.0 74.1 3.8 116.2 3.7 168.0 50 13.51
mulsol.i.5 186 0.23 6.4 55.3 5.4 130.0 4.9 365.2 31 6.25
queen8 12 96 0.30 16.7 3055 16.7 3055 16.7 3055 65 3.91
1awd 89 0.27 13.3 67.5 11.1 521.1 10.8 702.9 38 3.52
celar06-wpp 34 0.28 4.5 0.1 3.2 0.8 3.0 4.8 11 3.37
BN 28 24 0.18 3.3 0.02 2.3 0.05 2.0 0.3 5 2.50
eil51.tsp 51 0.11 9.1 0.9 6.2 4.1 5.8 124.6 9 1.55

4.1 Grid graphs

We also ran our heuristic on graphs corresponding to the n× n grid. These are sparse graphs
having tree-width n and the upper bound we find on boolean-width is below this. See Figure
4. The boolean-width of square n × n grids is a topic we are investigating and our current
guess is that the optimal upper bound, holding for all n, is about 0.8 ∗ n. If this is correct,
the value computed by the heuristic is close to optimal, which is somewhat interesting as it
is our understanding that the heuristics for finding decompositions of low tree-width do not
perform well on grid graphs.
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Fig. 4. Upper-bound on boolean-width, as computed by our heuristic, for the n×n grid, with n ranging
from 2 to 9. Tree-width is given by the dotted line x = y.

5 Conclusion

We presented the first experimental study for finding decompositions useful also for non-
sparse graphs, based on the boolean-width parameter. Experiments with the graphs in Treewidth-
LIB show the strength of boolean-width versus tree-width, in a practical setting, in particular
for graphs of edge density above a certain value. For more examples of real-world graphs of
high edge density and high tree-width we could also look beyond the TreewidthLIB library.
There are a number of open problems related to boolean-width heuristics. Firstly, we need a
fast heuristic that directly constructs a reasonable upper bound on the boolean-width for any
graph, regardless of how big the graph is or what its edge density is. The main issue will be
to give a fast heuristic for the computation of a good upper bound on |UN(A)|. Secondly,
we need to consider heuristics for computing lower bounds on boolean-width, just as it has
been done for tree-width [7]. Thirdly, we should explore pre-processing to simplify the graph
instances, again this has been done extensively for tree-width [5]. On the theoretical side, a
prime open problem is to find an algorithm computing boolean-width exactly. These prob-
lems are of interest since our results indicate that using boolean-width could in the future
outperform the use of tree-width in practice for a large class of graphs and problems.
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A Appendix

In the following table we list the graphs with both treewidth and boolean-width upper bounds. Graphs are sorted by ratio of tree-width
divided by boolean-width.

Graph name Vertices Edge density BWUB TWUB Ratio

zeroin.i.1-pp 54 0.89 1.58 46 29.02
mulsol.i.1-pp 73 0.83 2.32 50 21.53
miles1500 128 0.64 4.86 77 15.85
zeroin.i.1 211 0.19 3.70 50 13.51
fpsol2.i.1-pp 233 0.40 4.91 66 13.45
mulsol.i.1 197 0.20 4.00 50 12.50
zeroin.i.2-pp 57 0.69 2.81 32 11.40
zeroin.i.3-pp 57 0.69 3.00 32 10.67
mulsol.i.5-pp 119 0.36 3.00 31 10.33
celar06-pp 16 0.84 1.58 11 6.94
mulsol.i.4 185 0.23 4.81 32 6.65
mulsol.i.2 188 0.22 4.81 32 6.65
mulsol.i.3 184 0.23 4.95 32 6.46
celar04-pp-001 16 0.78 1.58 10 6.31
mulsol.i.5 186 0.23 4.95 31 6.26
zeroin.i.3 206 0.17 5.39 32 5.93
zeroin.i.2 211 0.16 5.39 32 5.93
celar04-pp-001-000 15 0.74 1.58 9 5.68
celar05-pp-001 19 0.66 2.00 11 5.50
oesoca+-pp 14 0.82 2.00 11 5.50
1fjl-pp-003 11 0.85 1.58 8 5.05
celar02-pp 19 0.67 2.00 10 5.00
sodoku 81 0.25 9.00 45 5.00
celar01-pp-002 19 0.65 2.00 10 5.00
celar11-pp-001 19 0.65 2.00 10 5.00
munin3-pp-002 7 0.81 1.00 5 5.00
munin3-pp-001 7 0.81 1.00 5 5.00
sodoku-elim1 80 0.28 9.47 45 4.75
weeduk 15 0.47 1.58 7 4.42
munin-pp-001 6 0.80 1.00 4 4.00
munin-pp-002 6 0.80 1.00 4 4.00
diabetes-pp-001 6 0.80 1.00 4 4.00
queen8 12 96 0.30 16.7 65 3.91
mainuk-pp 9 0.78 1.58 6 3.79
celar06-wpp 34 0.28 3.00 11 3.67
huck 74 0.11 2.81 10 3.56
celar02-wpp 30 0.33 2.81 10 3.56
1awd 89 0.28 10.80 38 3.52
games120-pp-001 14 0.69 2.58 9 3.48
anna-pp 22 0.64 3.46 12 3.47
1cc8 70 0.34 9.35 32 3.42
queen8 8 64 0.36 13.16 45 3.42
1igq-pp 52 0.37 6.74 23 3.41
1bf4-pp 57 0.39 7.63 26 3.41
queen5 5 25 0.53 5.29 18 3.41
queen9 9 81 0.33 17.07 58 3.40
1ptf 87 0.30 11.21 38 3.39
queen7 7 49 0.40 10.36 35 3.38
1ljo 74 0.29 8.88 30 3.38
1ljo-pp 71 0.31 8.92 30 3.36
1i0v 100 0.24 12,21 41 3.36
1gcq-pp 64 0.36 8.95 30 3.35
1erv 101 0.25 12.26 41 3.35
1iib-pp 102 0.27 11.98 40 3.34
1igq 54 0.35 6.89 23 3.34
1aac 204 0.25 12.29 41 3.34
1ldd 74 0.31 9.60 32 3.33
1gef-pp 117 0.22 12.93 43 3.33
1dj7-pp 70 0.30 8.12 27 3.33
1c9o 66 0.34 8.75 29 3.31
1czp 94 0.27 11.47 38 3.31
1iqz 77 0.29 10.00 33 3.30



Table 2 – Continued
Graph name Vertices Edge density BWUB TWUB Ratio
1g2b-pp 59 0.37 8.50 28 3.29
1r69 63 0.35 9.12 30 3.29
1fjl 65 0.29 7.90 26 3.29
1bf4 63 0.34 7.90 26 3.29
1pwt 61 0.36 8.81 29 3.29
1hg7 66 0.33 8.81 29 3.29
1c4q 67 0.34 9.45 31 3.28
1pwt-pp 59 0.38 8.85 29 3.28
queen6 6 36 0.46 7.65 25 3.27
1igd-pp 59 0.36 7.66 25 3.26
1c5e 95 0.26 11.06 36 3.26
1rb9 48 0.37 6.77 22 3.25
1bkf-pp 105 0.23 11.10 36 3.24
1k61-pp 56 0.37 8.02 26 3.24
1fjl-pp-004 57 0.35 8.03 26 3.24
1igd 61 0.34 7.75 25 3.23
1i2t 61 0.35 8.38 27 3.22
1sem-pp 56 0.37 8.09 26 3.21
1g2b 62 0.34 8.72 28 3.21
1gcq 68 0.33 9.36 30 3.21
celar08pp-pp-033 39 0.38 5.00 16 3.20
1jo8 58 0.37 8.46 27 3.19
david-pp 29 0.47 4.09 13 3.18
1j75 56 0.36 8.51 27 3.17
1iib 103 0.26 12.62 40 3.17
1fjl-pp 63 0.30 8.20 26 3.17
1gef 119 0.21 13.60 43 3.16
1ig5 75 0.29 10.45 33 3.16
1cka 57 0.38 8.55 27 3.16
1f9m 109 0.23 14.27 45 3.15
1fse 67 0.33 8.58 27 3.15
celar08-pp-001 39 0.38 5.09 16 3.14
1mgq 74 0.30 8.91 28 3.14
1brf-pp 48 0.36 7.01 22 3.14
1brf 49 0.35 7.01 22 3.14
1l9l 70 0.29 9.26 29 3.13
1kq1-pp 59 0.35 8.63 27 3.13
1k61 60 0.33 8.32 26 3.12
1sem 57 0.36 8.32 26 3.12
1e0b-pp 55 0.33 7.69 24 3.12
1mgq-pp 72 0.31 8.98 28 3.12
1g2r-pp 93 0.26 11.87 37 3.12
1i27-pp 70 0.30 8.67 27 3.11
1plc 98 0.25 11.28 35 3.10
1lkk-pp 99 0.24 11.00 34 3.09
1ku3-pp 60 0.33 7.46 23 3.08
1bkf 106 0.23 11.69 36 3.08
1i27 73 0.28 8.78 27 3.08
1ctj 87 0.25 10.74 33 3.07
1kq1 60 0.34 8.79 27 3.07
BN 16-pp-015 34 0.28 3.58 11 3.07
1ctj-pp 86 0.25 10.78 33 3.06
1gut-pp 61 0.33 7.19 22 3.06
1bkr 107 0.24 14.40 44 3.06
1bbz-pp 56 0.35 8.18 25 3.05
1ku3 61 0.32 7.53 23 3.05
1g2r 94 0.25 12.17 37 3.04
1c75 69 0.29 9.88 30 3.04
1b0n-006 98 0.21 10.58 32 3.03
1bbz 57 0.34 8.30 25 3.01
celar02 100 0.06 3.32 10 3.01
celar06-pp-000 8 0.43 1.00 3 3.00
1jhg-pp 91 0.19 8.34 25 3.00
1dp7 76 0.27 9.01 27 3.00
1kw4 67 0.30 9.39 28 2.98
1ail 69 0.27 8.07 24 2.98
1d3b 69 0.29 8.44 25 2.96
1b0n 103 0.19 10.81 32 2.96



Table 2 – Continued
Graph name Vertices Edge density BWUB TWUB Ratio
1ail-pp 68 0.28 8.11 24 2.96
1e0b 60 0.29 8.13 24 2.95
1gut 67 0.28 7.47 22 2.95
1d4t-pp 99 0.23 11.88 35 2.95
1fr3-pp 62 0.32 7.16 21 2.93
1dp7-pp 71 0.30 9.21 27 2.93
celar07-pp-001 45 0.32 5.46 16 2.93
1d3b-pp 68 0.30 8.54 25 2.93
celar06 100 0.07 3.81 11 2.89
BN 16-pp-014 34 0.28 3.81 11 2.89
1fr3 67 0.28 7.29 21 2.88
1fk5 85 0.23 10.76 31 2.88
1aba 85 0.25 10.13 29 2.86
1lkk 103 0.22 11.89 34 2.86
celar07pp-pp-012 45 0.32 5.61 16 2.85
1kth 52 0.32 7.04 20 2.84
1kth-pp 51 0.33 7.06 20 2.83
1jhg 101 0.17 8.87 25 2.82
1qtn-pp 77 0.25 8.56 24 2.80
1rro 107 0.23 15.36 43 2.80
1oai 58 0.32 7.87 22 2.80
1dj7 73 0.28 9.66 27 2.79
1oai-pp 57 0.32 7.94 22 2.77
1ezg 66 0.25 8.33 23 2.76
1g6x 52 0.31 6.89 19 2.76
oesoca+-wpp 28 0.36 4.00 11 2.75
1a8o 64 0.27 9.11 25 2.75
1d4t 102 0.22 12.87 35 2.72
1a62 122 0.21 13.62 37 2.72
1i07 59 0.23 5.52 15 2.72
1i07-pp 51 0.28 5.55 15 2.70
celar07-wpp 97 0.01 6.00 16 2.67
celar07-pp 92 0.12 6.00 16 2.67
celar10-pp-001 16 0.51 3.00 8 2.67
celar08pp-pp-032 16 0.51 3.00 8 2.67
celar09-pp-001 16 0.51 3.00 8 2.67
celar08-pp-002 16 0.51 3.00 8 2.67
1dd3 128 0.17 11.68 31 2.66
1qtn 87 0.21 9.15 24 2.62
celar11-pp-003 48 0.23 5.73 15 2.62
myciel6 95 0.17 13.40 35 2.61
celar07pp-pp 75 0.15 6.17 16 2.59
celar01-pp-001 47 0.25 5.88 15 2.55
1a62-pp 120 0.21 14.70 37 2.52
BN 29 24 0.18 2.00 5 2.50
BN 28 24 0.18 2.00 5 2.50
celar07pp-pp-011 14 0.52 2.81 7 2.49
celar11-pp-002 13 0.59 2.81 7 2.49
celar05-pp-002 47 0.25 6.07 15 2.47
1fs1 114 0.21 13.79 34 2.47
david 87 0.11 5.32 13 2.44
1b67 68 0.25 6.61 16 2.42
1b67-pp 67 0.25 6.61 16 2.42
celar03-pp-001 38 0.34 5.81 14 2.41
water-pp-001 21 0.45 3.81 9 2.36
1en2 69 0.20 7.24 17 2.35
1bx7-pp 34 0.31 4.70 11 2.34
myciel5 47 0.22 8.12 19 2.34
miles500 128 0.14 9.42 22 2.34
celar07-pp-002 16 0.45 3.00 7 2.33
celar04-pp-002 62 0.17 6.86 16 2.33
pathfinder-pp 12 0.65 2.58 6 2.32
jean 80 0.08 3.91 9 2.30
oesoca+ 67 0.09 4.81 11 2.29
1en2-pp 66 0.21 7.46 17 2.28
celar03-wpp 89 0.11 6.17 14 2.27
celar03-pp 81 0.13 6.19 14 2.26
celar11-pp 96 0.10 6.64 15 2.26



Table 2 – Continued
Graph name Vertices Edge density BWUB TWUB Ratio
1bx7 41 0.24 4.91 11 2.24
munin4-pp-003 38 0.16 3.58 8 2.23
munin4-pp-001 23 0.26 3.58 8 2.23
munin4-pp-002 23 0.26 3.58 8 2.23
1on2-pp 133 0.17 16.26 36 2.21
celar10-pp-002 76 0.15 7.25 16 2.21
celar04-pp 110 0.09 7.29 16 2.19
celar08-pp-003 76 0.15 7.41 16 2.16
water-pp 22 0.42 4.17 9 2.16
water-wpp 22 0.42 4.17 9 2.16
celar01-pp-003 58 0.19 6.97 15 2.15
celar09-pp-002 76 0.15 7.46 16 2.14
1dd3-pp 124 0.17 14.60 31 2.12
homer-pp 95 0.17 14.61 31 2.12
celar01-wpp 158 0.06 7.09 15 2.12
barley-pp-001 16 0.42 3.32 7 2.11
celar11-wpp 99 0.10 7.17 15 2.09
celar05-pp 80 0.13 7.20 15 2.08
1bkb 131 0.17 14.53 30 2.06
water 32 0.25 4.39 9 2.05
celar01-pp 157 0.07 7.39 15 2.03
munin2-pp-007 17 0.35 3.46 7 2.02
munin2-pp-011 17 0.35 3.46 7 2.02
munin2-pp-010 17 0.35 3.46 7 2.02
munin2-pp-008 17 0.35 3.46 7 2.02
1ubq-pp 47 0.16 5.95 12 2.02
celar04-wpp 116 0.07 7.95 16 2.05
myciel4 23 0.28 5.00 10 2.00
fungiuk 15 0.34 2.00 4 2.00
celar06-pp-003 4 0.50 1.00 2 2.00
celar05-wpp 89 0.11 7.52 15 1.99
munin1-pp 66 0.09 5.58 11 1.99
munin1-pp-001 63 0.09 5.58 11 1.97
mainuk 48 0.18 3.58 7 1.95
pathfinder-pp-001 11 0.58 2.58 5 1.93
1bkb-pp 127 0.18 15.55 30 1.93
munin4-pp-004 38 0.16 4.17 8 1.92
graph05-pp-001 87 0.10 12.68 24 1.89
celar11-pp-004 16 0.36 3.17 6 1.89
barley-pp 26 0.24 3.70 7 1.89
celar09-wpp 142 0.06 8.49 16 1.88
munin4-pp-006 55 0.11 4.32 8 1.85
1ubq 74 0.08 6.51 12 1.84
barley-wpp 29 0.20 3.81 7 1.84
munin4-pp-005 55 0.11 4.39 8 1.82
miles250 128 0.05 4.95 9 1.82
1ubq 74 0.08 6.61 12 1.81
pathfinder 109 0.04 3.32 6 1.81
anna 138 0.04 6.67 12 1.78
graph01-pp-001 85 0.09 13.40 24 1.79
celar10-pp 133 0.07 9.08 16 1.76
graph05 100 0.08 13.70 24 1.75
barley 48 0.11 4.00 7 1.75
munin2-pp-009 18 0.31 3.46 6 1.73
munin2-pp-012 18 0.31 3.46 6 1.73
graph05-pp 91 0.10 13.84 24 1.73
diabetes-pp-002 8 0.61 2.32 4 1.72
a280.tsp-pp 92 0.06 8.23 14 1.70
munin3-pp-003 79 0.09 4.17 7 1.68
graph05-wpp 94 0.09 14.38 24 1.67
munin2-pp-005 16 0.30 3.00 5 1.67
munin2-pp-006 16 0.30 3.00 5 1.67
pcb3038-pp-002 15 0.30 3.00 5 1.67
myciel3 11 0.36 3.00 5 1.67
pcb3038-pp-001 11 0.40 3.00 5 1.67
celar08-wpp 190 0.05 9.64 16 1.66
graph01 100 0.07 14.61 24 1.64
graph01-pp 89 0.08 14.62 24 1.64



Table 2 – Continued
Graph name Vertices Edge density BWUB TWUB Ratio
graph01-wpp 93 0.07 14.69 24 1.63
munin3-pp 96 0.07 4.32 7 1.62
graph03-pp-001 71 0.11 12.53 20 1.60
pigs-pp 48 0.12 5.70 9 1.56
munin2-pp-003 16 0.30 3.17 5 1.58
munin2-pp-004 16 0.30 3.17 5 1.58
graph03-wpp 84 0.09 12.74 20 1.57
eil51.tsp 51 0.11 5.78 9 1.56
mildew-wpp 15 0.30 2.58 4 1.55
alarm 37 0.10 2.58 4 1.55
kroE100.tsp-pp 92 0.06 6.48 10 1.54
graph03-pp 79 0.10 12.99 20 1.54
munin1-wpp 90 0.05 7.23 11 1.52
pigs-pp-001 47 0.12 5.95 9 1.51
graph03 100 0.07 13.29 20 1.50
knights8 8-pp 60 0.09 10.77 16 1.49
knights8 8 64 0.08 11.06 16 1.45
kroC100.tsp-pp 97 0.06 6.94 10 1.44
rl5934-pp-001 10 0.44 2.81 4 1.42
fl3795-pp-001 10 0.44 2.81 4 1.42
fl3795-pp-003 10 0.44 2.81 4 1.42
fl3795-pp-002 10 0.44 2.81 4 1.42
ch130.tsp-pp 125 0.05 8.67 12 1.38
mildew 35 0.13 3.00 4 1.33
fl3795-pp-004 11 0.42 3.00 4 1.33
fl3795-pp-006 26 0.16 3.81 5 1.31
kroA100.tsp-pp 95 0.06 7.61 10 1.31
oesoca 39 0.09 2.32 3 1.29
oesoca42 42 0.08 2.32 3 1.29
munin2-pp 167 0.03 5.49 7 1.27
fl3795-pp-005 19 0.22 3.32 4 1.20
pcb3038-pp-003 29 0.12 4.32 5 1.16

In the following table we present the graphs where boolean-width upper bound is known but no treewidth bound is reported.

Graph name Vertices Edge density BWUB

BN 14-pp 87 0.10 19.27
BN 9 105 0.07 19.05
BN 3-pp 81 0.12 17.31
BN 2 100 0.10 17.24
BN 4-pp 81 0.16 17.22
BN 3 100 0.09 17.09
BN 7-pp 79 0.16 17.03
BN 2-pp 81 0.14 16.24
BN 8-pp 72 0.14 15.25
BN 12-pp 73 0.16 14.71
1aac-pp 103 0.25 14.53
BN 102 76 0.13 14.47
BN 103 76 0.13 14.47
BN 0-pp 67 0.11 13.93
BN 1-pp 74 0.13 13.85
kneser8-3 56 0.18 13.77
BN 102-pp 64 0.16 12.94
BN 103-pp 64 0.16 12.85
BN 10 85 0.09 12.72
BN 10-pp 57 0.16 11.84
1psr-pp 94 0.22 10.75
BN 99 57 0.17 10.40
BN 98 57 0.17 10.31
1psr 98 0.20 10.14
BN 100 58 0.17 10.06
BN 101 58 0.17 10.06



Table 3 – Continued

Graph name Vertices Edge density BWUB

BN 99-pp 47 0.22 9.77
BN 98-pp 47 0.22 9.63
BN 100-pp 51 0.20 9.61
BN 101-pp 51 0.20 9.54
BN 96-pp 48 0.21 9.18
BN 97-pp 48 0.21 9.15
BN 97 54 0.17 9.10
BN 96 54 0.17 9.10
BN 94 53 0.18 8.85
BN 95 53 0.18 8.84
BN 94-pp 44 0.23 8.26
BN 95-pp 44 0.23 8.26
pr76.tsp 76 0.08 7.84
pr76.tsp-pp 73 0.08 7.71
DSJC125.9 125 0.90 7.34
macaque71 71 0.18 7.27
eil76.tsp-pp 75 0.08 7.17
pr299.tsp-pp 80 0.07 7.17
rd100.tsp-pp 97 0.06 7.17
lin105.tsp-pp 96 0.06 7.17
eil76.tsp 76 0.08 7.17
macaque71-pp 58 0.25 7.13
rat99.tsp 99 0.06 6.94
BN 78 54 0.16 6.83
rat99.tsp-pp 96 0.06 6.78
pr152.tsp 152 0.04 6.70
BN 79 54 0.16 6.39
BN 78-pp 33 0.33 6.07
BN 79-pp 33 0.33 6.07
pr124.tsp-pp 85 0.07 5.78
pr107.tsp-pp 93 0.06 5.78
BN 123 50 0.60 5.61
BN 122 50 0.60 5.52
BN 115 50 0.60 5.52
BN 114 50 0.60 5.52
BN 112 50 0.59 5.46
BN 121 50 0.60 5.43
BN 113 50 0.59 5.43
BN 120 50 0.60 5.43
BN 124 50 0.60 5.43
BN 125 50 0.60 5.43
BN 104 50 0.60 5.32
ship-ship 50 0.09 5.32
ship-ship-wpp 38 0.13 5.29
BN 107 50 0.62 5.29
BN 106 50 0.62 5.25
BN 105 50 0.60 5.21
BN 119 50 0.60 5.17
BN 90-pp 38 0.56 5.13
BN 116 50 0.61 5.13
BN 110 50 0.60 5.13
BN 118 50 0.60 5.13
BN 117 50 0.61 5.09
BN 111 50 0.60 5.09
BN 108 50 0.60 5.09
BN 86-pp 38 0.56 5.04
BN 91-pp 38 0.56 5.04
BN 109 50 0.60 5.04
BN 89-pp 38 0.56 5.00
BN 93-pp 38 0.56 5.00
BN 88-pp 38 0.56 4.95
BN 87-pp 38 0.56 4.95
BN 92-pp 38 0.56 4.91
ship-ship-pp 30 0.18 4.70
oesoca+-hugin 67 0.09 4.64
oow solo 40 0.11 4.58
oow solo-wpp 29 0.16 4.17



Table 3 – Continued

Graph name Vertices Edge density BWUB

oow solo-pp 27 0.18 4.17
Clebsch 16 0.33 4.00
oesoca+-hugin-wpp 28 0.36 4.00
oow-trad 33 0.14 4.00
BN 80-pp 29 0.71 3.81
oow-trad-pp 23 0.21 3.81
oow-trad-wpp 25 0.19 3.81
BN 85-pp 29 0.71 3.81
BN 81-pp 29 0.71 3.70
BN 84-pp 29 0.71 3.70
BN 83-pp 29 0.71 3.70
BN 82-pp 29 0.71 3.70
risk-pp 18 0.26 3.32
oow bas 27 0.15 3.32
risk 42 0.10 3.32
petersen 10 0.33 3.00
munin kgo complete-
wpp

95 0.06 3.00

oow bas-wpp 17 0.26 2.81
vsd-hugin 38 0.09 2.58
myciel2 5 0.50 2.00
wilson-hugin 21 0.13 2.00
munin kgo complete-pp 16 0.34 2.00
oesoca+-hugin-pp 14 0.82 2.00
MCSTestGraph 7 0.52 2.00
MCSTestGraph2 9 0.36 2.00
a280.tsp-pp-001 3 1.00 1.00
1fjl-pp-002 8 1.00 1.00
1b0n-003 8 1.00 1.00
1b0n-005 8 1.00 1.00
1b0n-004 8 1.00 1.00
1b0n-001 7 1.00 1.00
1b0n-002 8 1.00 1.00
1fjl-pp-001 6 1.00 1.00


