
Feedback vertex set on graphs of low clique-width†

B.-M. Bui-Xuan O. Suchý J. A. Telle M. Vatshelle

Department of Informatics, University of Bergen, Norway.

Department of Applied Mathematics, Charles University, Prague, Czech Republic
[buixuan,telle,vatshelle]@ii.uib.no, suchy@kam.mff.cuni.cz

Abstract

The Feedback Vertex Set problem asks whether a graph contains q vertices meet-
ing all its cycles. This is not a local property, in the sense that we cannot check if q
vertices meet all cycles by looking only at their neighbors. Dynamic programming
algorithms for problems based on non-local properties are usually more complicated.
In this paper, given a graph G of clique-width cw and a cw -expression of G , we
solve the Minimum Feedback Vertex Set problem in time O(25cw log2 cwn2) Our al-
gorithm applies dynamic programming on a so-called k -module decomposition of
a graph, as defined by Rao [29], which is easily derivable from a k -expression of
the graph. The related notion of module-width of a graph is tightly linked to both
clique-width and NLC-width, and in this paper we give an alternative equivalent
characterization of module-width.

1 Introduction

The problem of finding a minimum Feedback Vertex Set (FVS) in a graph, i.e. the small-
est set of vertices whose removal results in a graph that has no cycles, has many applica-
tions. For example to optical networks [21], circuit testing, deadlock resolution, analyzing
manufacturing processes and computational biology (see [9] and its bibliography). It is
one of the classical NP-complete problems from the 1972 list of Karp [20] and has been
extensively studied from many viewpoints, including linear programming [7], approx-
imation algorithms [2, 12, 15, 21], exact algorithms [13] and parametrized complexity
[6, 9, 16, 24, 28].

The minimum FVS problem is 2-approximable in polynomial time [1]. The fastest ex-
act algorithm has runtime O(1.7548n) [13]. The fastest FPT (Fixed Parameter Tractable)
algorithm when parametrized by the size q of the FVS has runtime O(5qqn2) [6]. These
algorithmic results are quite strong, but are not useful for cases of input graphs having a
large number of vertices n , and a large minimum FVS q , if we want the actual smallest

†Supported by the Norwegian Research Council, project PARALGO.

1

FVS. For such cases we may instead hope that the input graph has a bounded width param-
eter. For example, if G is a planar graph of treewidth tw then Kloks et al [22] give a dy-
namic programming algorithm solving minimum FVS on G in time O(2O(tw log tw)n) . A
similar algorithm can be devised also for non-planar G of treewidth tw , given with an op-
timal tree-decomposition, but it is an open problem if algorithms with runtime O(2O(tw)n)
exist for minimum FVS, even though such algorithms exist for a large variety of NP-hard
problems. However, for minimum FVS it would require a small breakthrough to get such
an algorithm. One reason for this is that FVS is not a locally checkable property, in the
sense that if given q vertices we cannot check that they form an FVS simply by looking
at the neighbors of these q vertices. One also has to consider paths between pairs of
vertices. The same issue arises when parametrizing by q the size of the FVS, but Dehne
et al [9] gave an O(2O(q)n) algorithm using the tequnique of iterative compression. In
this paper we consider graphs of clique-width cw , that encompass large classes of graphs
of unbounded treewidth, and for which powerful algorithmic results are known. For in-
stance, we have that any graph problem expressible in MSO1 -logic, as is the case with
minimum FVS, is FPT when parametrized by clique-width (roughly, apply [19], then [26,
Proposition 6.3], then [8]). The long series of papers improving FVS parameterized by q
the size of the FVS should inspire us to try the same for tw or cw . Note that bounded
clique-width does not imply bounded treewidth, hence we can not directly translate FPT
algorithms parametrized by treewidth to FPT algorithms parametrized by clique-width.
Still it is possible (however unlikely) that it is easier to find an O∗(2O(cw)) algorithm than
an O∗(2O(tw)) algorithm, since for some graphs treewidth is larger than clique-width. In
this paper we will be interested in as low exponential dependency on cw as possible, and
for this we need to use a specially designed dynamic programming algorithm.

The complement of a FVS is a vertex subset inducing a forest, and we may as well
look for such a set of maximum cardinality. Solving such treelike problems using dy-
namic programming based on clique-width are usually more complicated than dynamic
programming based on treewidth. Independently, two lines of research have investigated
minimum FVS on graphs of bounded cliquewidth, when given an optimal decomposition.
One led to an O∗(2O(cw2 log cw)) algorithm [5] and the other to an O∗(2O(rw2)) algorithm
[14], whose runtime can also be expressed as O∗(2O(cw2)) . The algorithm of [5] is an ex-
tension of the treewidth algorithm with the key observation that we only need to consider
cw2 components of the complement of a FVS. The algorithm of [14] uses linear algebra
techniques and cleverly reduces the number of components to be considered to cw. In
this paper we give an algorithm with runtime O∗(2O(cw log cw)) , which improves on our
algorithm from [5] by applying the technique of ’expectation from the outside’ during the
dynamic programming stage. We first used this technique in [3] for finding a minimum
dominating set along a so-called H -join decomposition. Roughly, when operating on
some reduced instance – e.g., some subgraph G[A] induced by vertex subset A – we not
only compute solutions – e.g., FVS, dominating sets, etc. – depending on G[A] , but also
those solutions satisfying specific constraints depending on G[V (G) \A] . As opposed to
classical dynamic programming, a consequence of “expectation from the outside” will be
that we no longer partition the set of possible solutions (of G[A]) into equivalence classes
with a 1-1 correspondence between such classes and indices of the table used in the dy-
namic programming. Instead, each possible solution now can influence several indices of

2

the table.
The exponential dependency on clique-width of our algorithm matches asymptotically

the current best known algorithms based on treewidth. More precisely, our algorithm finds
a minimum FVS on a graph G of clique-width cw in time O(25cw log2 cwn2) , when given
a cw -expression of G which is a decomposition of the graph showing that it has clique-
width cw .

Clique-width is related to the notion of NLC-width of a graph [11] with which it shares
most properties but we have chosen to use clique-width in this paper simply because that
notion is more well known. More specifically, our algorithm applies dynamic program-
ming on a so-called k -module decomposition of a graph, as defined by Rao [29], which
is easily derivable from a k -expression of the graph. The related notion of module-width
of a graph is tightly linked to both clique-width and NLC-width, and in this paper we give
an alternative equivalent characterization of module-width.

2 Framework

Let G be a graph with vertex set V (G) and edge set E(G) . Consider the following
unifying decomposition framework for several decomposition schemes. A binary tree is
a rooted tree where every internal node has exactly two children.

Definition 2.1 (Decomposition tree) A rooted decomposition tree of a graph G is a pair
(T, δ) where T is a binary tree having n = |V (G)| leaves and δ is a bijection between
the vertices of G and the leaves of T .

Roughly, trees with their leaves in a bijection with the vertices of G are important
for techniques like divide-and-conquer or dynamic programming since they show how
to “divide” the graph instance into several sub-instances and recurse. Clearly, any tree
with the right number of leaves and a bijection can be considered as a decomposition tree.
Then, a common technique to select those that are more suited for some task is to use an
evaluating function.

Definition 2.2 (Decomposition and width parameters) Let G be a graph, f : 2V (G) →
R a function assigning a non-negative real value to subsets of V (G) , and (T, δ) a rooted
decomposition tree of G . For every node u of T , let Vu denote the vertex subset of
G induced by the leaves of the subtree of T rooted at u . The f -width of (T, δ) is the
maximum value of f(Vu) , taken over every node u of T . An optimal f -decomposition
of G is a rooted decomposition tree of G having minimum f -width. The f -width of G
is the f -width of an optimal f -decomposition of G .

If f is also required to be symmetric, namely that f(Vu) = f(V (G)\Vu) for every Vu ,
then the above framework, up to unrooting the tree T and setting f(V (G)) = f(∅) = 0 ,
is equivalent to the one developed for the study of branch decomposition of symmetric
and submodular functions (see, e.g., [26, Section 2] for a short and recent introduction).

3

This includes the branch-width [30], rank-width [26], and boolean-width [4] decompo-
sitions of graphs. On the other hand, rooted decomposition trees as defined here can be
used for situations where the symmetry does not occur, for instance with a branch-like
decomposition of a submodular function that is not necessarily symmetric, a clique-width
or NLC-width expression, or a so-called k -module decomposition as will be presented
below.

For an efficient complexity analysis of the algorithm that will be described in Sec-
tion 4, we will be interested in the following definition of f -width, so-called module-
width in [25, 31].

Definition 2.3 Let G be a graph and let X ⊆ V (G) be a vertex subset. A subset A ⊆ X
is a twin set of X if, for every z ∈ V (G) \ X and pair of vertices x, y ∈ A , we have
x adjacent to z if and only if y adjacent to z . A twin set A is a twin-class of X if A
is maximal. The set of all twin-classes of X forms a partition of X , that we call the
twin-class partition of X .

Definition 2.4 (Module-width) The function µG : 2V (G) → N is defined such that
µG(X) is the number of twin-classes of X in the graph G . The module-width decompo-
sitions and parameters of G refer to those of Definition 2.2 when f = µG . The µG -width
of G will be called the module-width of G and denoted by µw(G) .

The above terminology of module-width is according to the name given to an equiv-
alent notion that was mentioned in [25, last two pages] and formalized in [31, Section
6.1.2]. Indeed, one can use a similar decomposition framework, so-called k -module de-
composition, in order to result in the same parameter as follows.

Definition 2.5 ([25, 31]) Let G be a graph. A vertex subset X ⊆ V (G) is a k -module
if there exists a partition of X into k twin sets. G is a k -module decomposable graph
if there is a rooted decomposition tree (T, δ) such that every vertex subset of G that is
induced by the leaves of some subtree of T is also a k -module of G . The module-width
of G is the minimum integer k such that G is k -module decomposable.

Definitions 2.4 and 2.5 both lead to the same notion of module-width thanks to the
following simple observations. Firstly, if X is a k -module, then it is also a (k + 1)-
module as long as k + 1 ≤ |X| . Secondly, the minimum number k such that X is a
k -module is exactly µG(X) .

Clique-width and NLC-width expressions are constructions of a graph using logic
operations. For a proper introduction to clique-width and NLC-width refer to [8, 11]. The
underlying graphs of clique-width and NLC-width expressions are rooted trees where
every internal node has at most two children and where the leaves are in a bijection with
the vertices of the graph. This, up to contracting one child nodes, can be seen as a rooted
decomposition tree. The clique-width cw(G) and the NLC-width nlc-w(G) of a graph
G are parameters of G having powerful algorithmic properties. For instance, we have
that any graph problem expressible in MSO1 -logic is FPT when parametrized by one of
these two parameters (roughly, apply [19], then [26, Proposition 6.3], then [8]). They are
closely linked to module-width by the following property.

4

Theorem 2.6 ([31, Theorem 6.6]) We have for any graph G that

µw(G) ≤ nlc-w(G) ≤ cw(G) ≤ 2µw(G).

We now give an alternative viewpoint of these module-width decompositions, that will
link module-width to the so-called H -join decomposition framework [3] in an unexpected
way.

Definition 2.7 Let H be a bipartite graph with color classes V1 and V2 , thus V (H) =
V1 ∪ V2 . Let G be a graph and X ⊆ V (G) a subset of its vertices. We say that G is
an H -join across the ordered cut (X, V (G) \X) if there exists a partition of X with set
of classes P and a partition of V (G) \ X with set of classes Q , and injective functions
f1 : P → V1 and f2 : Q → V2 , such that for any x ∈ X and y ∈ V (G) \X we have x
adjacent to y in G if and only if x belongs to a class Pi of P and y to a class Qj of Q
with f1(Pi) adjacent to f2(Qj) in H .

We will abusively refer to ordered cuts simply by cuts. Twins in a bipartite graph are
vertices in the same color class having exactly the same neighborhood. A twin contraction
is the deletion of a vertex when it has a twin. Notice that H -joins are insensitive to twin
contractions: if H ′ is obtained from H by a twin contraction then G is an H -join across
some cut if and only if G is an H ′ -join across the same cut. Note also that we do allow
a twin-free bipartite graph to have one isolated vertex in each color class. We model the
joining in module-width decompositions by using the following graph.

Definition 2.8 For a positive integer k we define a bipartite graph Yk having for each
integer i of {1, 2, . . . , k} a vertex ai ∈ A and having for each subset S of {1, 2, . . . , k}
a vertex bS ∈ B , with V (Yk) = A∪B . This gives k vertices in A and 2k vertices in B .
A vertex ai is adjacent to a vertex bS if and only if i ∈ S .

Lemma 2.9 Let k be an integer, let H be a bipartite graph over color classes V1 ∪ V2

with |V1| ≤ k . Then, applying successive twin contractions in H until stability will
always result in a graph that is isomorphic to an induced subgraph of Yk .

Proof Just give an arbitrary ordering over the vertices of V1 = (v1, v2, . . . , vl) , and map
them to the l first vertices a1, a2, . . . , al of Yk , respectively (note that l ≤ k by hypothe-
sis). Then, for every vertex u ∈ V2 of H , let N(u) =

⋃
i∈S vi , and map u to vertex bS

of Yk . Hence, H is an induced subgraph of Yk . Now, applying twin contractions on a
subgraph of Yk will always result in another induced subgraph of Yk . 2

Corollary 2.10 The function µG of Definition 2.4 is exactly equal to the function ηG

defined by

ηG(X) = min{k : G is a Yk-join across the cut (X, V (G) \X)}, for all X ⊆
V (G)

Proof In Definition 2.7 of an H -join across (X, V (G) \ X) , if we consider as joining
partition of X the twin-class partition of X , then H is a bipartite graph having exactly
µG(X) vertices on one of its color class. Lemma 2.9 then allows to conclude. 2

5

3 Computing the twin-classes

In the next section we will give a dynamic programming algorithm to solve the feedback
vertex set problem on an input made by an n-vertex m-edge graph G and one of its rooted
decomposition trees (T, δ) . Note that the underlying graph of a clique-width expression
of G is a rooted tree where each internal node has at most two children, and the leaves
are in a bijection with the vertices of G . Contracting the internal nodes having one child
will result in a rooted decomposition tree of G . Moreover, it can also be obtained from
the proof of Theorem 2.6 that the module-width of this rooted decomposition tree is at
most the clique-width of the clique-width expression. Consequently, if the input to our
algorithm is the graph G and a clique-width k expression of G , we can transform them
in a straightforward manner to an input made of G and one of its rooted decomposition
tree of module-width at most the value of k .

For every internal node u of T with Vu being the vertex subset of G induced by the
subtree of T rooted at u , we will need to compute the twin-classes of Vu as mentioned in
the definition of µG in Definition 2.4. For this, the algorithm given in [26] for transform-
ing a rank decomposition into a clique-width expression can be used for a global runtime
in O(n222rw(G)) . In this section, we will describe such a computation for every internal
node u of T , with global runtime O(n2) .

We will use the so-called partition refinement algorithmic technique (refer to, e.g., [17,
27] for details). Partitions will be represented by double-linked lists. A refinement op-
eration of a partition Q = (Q1, Q2, . . . , Qk) of Vu using A ⊆ Vu as pivot is the act of
splitting every Qi into Qi ∩ A and Qi \ A . The output of a refinement operation can be
of two types. It can be made of one partition of Vu which is the result of removing all
empty sets from (Q1 ∩ A,Q1 \ A,Q2 ∩ A,Q2 \ A, . . . , Qk ∩ A,Qk \ A) . We refer to
these as 1-1 refinements. It can also be composed of two partitions (one of A and one of
Vu \ A) which result from removing all empty sets from (Q1 ∩ A,Q2 ∩ A, . . . , Qk ∩ A)
and (Q1 \A,Q2 \A, . . . , Qk \A) . We refer to these as one-to-two refinements. With the
appropriate data structure, all these types of refinement operations can be implemented to
run in O(|A|) time for each operation (refer to, e.g., [17] for details).

A simple way to compute the twin-class partition of Vu is to initialize Q = (Vu) and,
for every vertex z ∈ V (G) \ Vu , perform a 1-1 refinement of Q using the neighborhood
N(z) of z as pivot. The correctness follows directly from the definition of twin-classes.
This computation would have O(m) runtime for each internal node u of T , hence a
global O(nm) runtime.

The main idea to reduce this runtime is to observe that, in the above operations, we can
use N(z)∩Vu as pivot instead of N(z) (for every z ∈ V (G)\Vu) without modifying the
refined partition of each step. However, the sum over every possible Vu and z ∈ V (G)\Vu

of the value |N(z)∩Vu| might still be large. We will observe a second fact. For a partition
Q = (Q1, Q2, . . . , Qk) of X and a subset Y ⊆ X , we denote by Q[Y] the partition of
Y which results from removing all empty sets from (Q1 ∩ Y,Q2 ∩ Y, . . . , Qk ∩ Y) .

Remark 3.1 Let w be an internal node of T with children a and b . Let Vw , Va , and
Vb be the vertex subsets of G induced by the leaves of the subtrees of T rooted at w , a ,

6

and b , respectively. Let Qw = (Qw(1), Qw(2), . . . , Qw(hw)) be the twin-class partition
of Vw . Then, initializing Q = Qw[Va] and refining Q using N(z) ∩ Va as pivot for all
z ∈ Vb will result to the twin-class partition of Va .

Basically, the algorithmic difference given by the remark is that we can now be re-
stricted to z ∈ Vb instead of using all z ∈ V (G) \ Va as before. The main point is that
the sum over every possible Va and z ∈ Vb of the value |N(z)∩Va| will be at most twice
the value n+m (every edge of G appears at most twice in the sum). We now implement
Remark 3.1.

First of all, the bottleneck of using N(z) ∩ Va as pivot will be that, unlike the case
with N(z) which can be read simply in the adjacency list of G , we will need to compute
N(z) ∩ Va for every possible Va and z . We do this as a preprocessing step as follows.

We prepare the tree T as described in [18] so that afterwards we can, given two leaves
x and y of T , compute the lowest common ancestor w of x and y in T in O(1) time.
This can also be done in such a way that, if a and b denote the children of w , then we can
in O(1) time decide whether x is a descendent of a or it is a descendent of b . Then, for
every internal node w of the tree T , with children a and b , we initialize two tables N b→a

w

and Na→b
w that will contain, for every vertex z in Vb (respectively Va), the neighborhood

of z in Va (respectively Vb). Now, we scan through every edge xy of G and compute the
lowest common ancestor w of x and y , as well as the children a and b of w such that
x is a descendent of a , and finally add x to N b→a

w [y] and y to Na→b
w [x] . Clearly, after

scanning all edges of G , we have that N b→a
w [z] = N(z)∩ Va for all w , a , b , and z . This

preprocessing takes O(m) time.
We come to the proper computation of the twin-class partitions. The twin-class par-

tition associated to the root of T only has one class, which is V (G) . Suppose that we
have computed the twin-class partition Qw of an internal node w having children a and
b . This partition Qw is stored in a double-linked list w.r.t. the data structure used for
partition refinement. Basically, the following operations can operate directly on this data
structure, if we allow ourselves to modify the double-linked list. However, the informa-
tion on the twin-classes of Vw would then be lost. For this reason, before continuing, we
duplicate the data structure of Qw so that we store the twin-classes of Vw in a private
place of node w . Then, we can compute Qw[Va] and Qw[Vb] simply by performing an
one-to-two refinement of Qw using either Va or Vb as pivot (cf. Vb = Vw \ Va) for each
w . Duplication and refinement using Va (or Vb) as pivot take O(n) time for every node
w , hence an O(n2) global runtime.

We then initialize Q = Qw[Va] and, for every entry z of the table N b→a
w , refine Q

using N b→a
w [z] as pivot. As mentioned before, the main point of all these procedures is

that the sum of the size of all possible pivots will now be at most twice the value n+m .
Hence, the global runtime of this step is in O(n + m) . We deduce the following lemma,
whose proof is straightforward. Recall that from the input of a clique-width expression
of G , we can derive a rooted decomposition tree simply by contracting all internal nodes
having one child in the underlying graph of the clique-width expression. The module-
width of this decomposition tree is at most the clique-width of the expression.

7

Lemma 3.2 Given a graph G and either (T, δ) a rooted decomposition tree of G , or
a clique-width expression tree of G . Then in O(n2) global runtime we can compute
and store, for every internal node u of T with Vu being the vertex subset of G induced
by the leaves of the subtree of T rooted at u , the partition of Vu into its twin-classes
Qu(1), Qu(2), . . . , Qu(hu) .

4 Solving the Feedback Vertex Set Problem

Definition 4.1 A Feedback Vertex Set of a graph G is a subset S of the vertices of G with
G[V (G) \ S] a forest. A Forest Inducing Set (FI-set) of a graph G is a subset of vertices
S with G[S] a forest.

Fact 4.2 If S is a FI-set of maximum cardinality then V (G) − S is a Feedback Vertex
Set of minimum cardinality.

We give dynamic programming algorithms that given a graph G and a rooted decom-
position tree (T, δ) of G will find the size of a minimum Feedback Vertex Set of G , by
computing the size of a maximum FI-set in G . Recall that in Section 3 Va, Vb, Vw were
the vertex subsets corresponding to subtrees rooted at nodes a, b, w of T . For simplicity
we adopt A = VA, B = Vb,W = Vw for the rest of this section. The runtime of the
algorithm will be expressed as a function of µG(A) , i.e. the number of twin-classes of
such vertex subsets A = Va .

4.1 Definition of Tables

For A ⊆ V (G) let T CA = {TC1
A, TC

2
A, ...TC

k
A} be the twin-classes of A , using k =

µw(V (G)) and allowing some empty classes.The indices of table Taba will consist of
pairs (PA, CA) where PA is a partition of T CA and C is a partition of a subset of T CA .
We denote the classes of PA by Q0

A, Q
1
A, R

0
A, R

1
A, ..., R

k
A , allowing some empty classes.

C will be a partition of T CA \(Q0
A∪R0

A) and a coarsening of R1
A, R

2
A, ..., R

k
A in the sense

that two twin-classes both in Ri
A , for some 1 ≤ i ≤ k , must belong to the same class in

C .
Before defining the contents of the table formally, let us briefly give some intuition.

An index (P , C) of a table Taba will store a largest FI-set S ⊆ A satisfying certain
properties, e.g. where Q0

A and Q1
A are those twin-classes containing exactly zero and one

vertex from S and the remaining classes of PA consist of twin-classes containing at least
two vertices of S . Among these, the twin-classes of R0

A are exactly those containing
vertices that should not get any further FI-set neighbors as we progress up to the root of
the decomposition tree. The partition of the remaining twin-classes into R1

A, R
2
A, ..., R

k
A

is part of the ’expectation from the outside’. As we progress up the path to the root two
nodes receive a new common FI-neighbor if and only if they are in twin-classes belonging
to the same Ri

A . The partition class C is also part of the expectation and tells us about
connected components of FI-sets.

8

Definition 4.3 For every partition P of T CA into k + 3 parts Q0
A, Q

1
A, R

0
A, R

1
A, ..., R

k
A

(allowing empty classes) and every partition C of T CA \ (Q0
A ∪R0

A) that is a coarsening
of R1

A, R
2
A, ..., R

k
A , we have an index (P , C) in Taba . The contents of Taba[P , C] will

be a vertex subset S ⊆ A of maximum cardinality among all S ⊆ A satisfying the pair
(P , C) , where such S is said to satisfy (P , C) if

1. Q0
A = {TCi

A : |TCi
A ∩ S| = 0}

2. Q1
A = {TCi

A : |TCi
A ∩ S| = 1}

3. The graph G(P , S) is a forest, where G(P , S) is constructed from G[S] by adding
new intermediate vertices {v1, v2, ..., vk} , and edges from vi to all vertices in twin-
classes belonging to Ri

A , for 1 ≤ i ≤ k .

4. Two vertices u ∈ TCi
A ∩ S and v ∈ TCj

A ∩ S with TCi
A, TC

j
A not in R0

A belong
to the same connected component of G(P , S) if and only if TCi

A, TC
j
A are in the

same class of C .

If no set S ⊆ A satisfying (P , C) exists then the contents of Taba[P , C] should be
Dummy .

4.2 The dynamic programming algorithm

We are now ready to describe the algorithm computing the cardinality of a maximum FI-
set of G . The algorithm starts by initializing all table entries of all tables of the tree T to
Dummy .

At any leaf a of the tree T we have A = {δ(a)} and T CA = {{δ(a)}} . Two entries
of the table Taba will be updated to something other than Dummy corresponding to the
two choices for a set satisfying an index (P , C) , namely S = {δ(a)} and S = ∅ . The first
choice gives Taba[P , C] = {δ(a)} for P having empty classes except Q1

A = {{δ(a)}}
and C = {{δ(a)}} . The second choice gives Taba[P , C] = ∅ for P having empty classes
except Q0

A = {{δ(a)}} and C the partition of the empty set.
In a bottom-up dynamic programming traversal of the tree T , when reaching an inter-

nal node w having children a and b we do the following update:

For all index triples (PA, CA), (PB, CB), (PW , CW)
If Taba[PA, CA] = SA and Tabb[PB, CB] = SB (i.e. not Dummy entries)

and SA ∪ SB satisfies (PW , CW)
and Tabw[PW , CW] = Dummy or |Tabw[PW , CW]| < |SA ∪ SB|

Then update Tabw[PW , CW] := SA ∪ SB

After the bottom-up traversal filling all tables output the entry Tabroot[P , C] at the
root of T , for P having empty classes except R0

root = {V (G)} and C the partition of the
empty set.

9

5 Correctness and timing

Let us start by noting that at the root of T we have T Croot = {V (G)} and the value of
Tabroot[P , C] for the partition where R0

root = {V (G)} and C the partition of the empty
set will by Definition 4.3 be a maximum FI-set of G . A central part of the correctness
argument is to show that the FI-set stored in a table entry will induce an acyclic graph.
This will be done by contradiction, showing that a cycle in one graph can be replaced
in another graph by a walk starting and ending in the same vertex and using some edge
exactly once, and then applying the following easy observation.

Lemma 5.1 Consider a graph H containing a walk starting and ending in the same
vertex. If some edge uv appears exactly once in the walk then the subgraph H ′ of H
induced by the edges in the walk contains a cycle.

Proof Note that removing the edge uv from the walk leaves a walk from u to v , hence u
and v is in the same connected component of H ′ even after removing the edge uv from
H ′ . Since adding a new edge to a connected graph will give a graph with a cycle the
graph H ′ must have contained a cycle. 2

Lemma 5.2 The dynamic programming algorithm will correctly fill all tables.

Proof The lemma is proved by bottom-up induction on the tree T . Leaves of T are
correctly updated since we try both subsets of nodes as FI-sets for the unique indices that
they satisfy. Consider an internal node w of T with children a, b and assume inductively
that Taba and Tabb are correct. We show that Tabw is then updated correctly. Recall
that A,B,W are the vertex subsets corresponding to subtrees rooted at a, b, w .

For any index (PW , CW) we must show that if there is a set satisfying (PW , CW) then
Tabw[PW , CW] is not equal Dummy and that, if Tabw[PW , CW] = SW then SW ⊆ W is
a largest set satisfying (PW , CW) . First, note that in the latter case we know SW satisfies
(PW , CW) as this was checked in the algorithm.

Thus, assume for contradiction that there is a set FW ⊆ W satisfying (PW , CW) and
that we have either |FW | > |Tabw[PW , CW]| or we have Tabw[PW , CW] = Dummy .
From PW , CW , FW we first construct (PA, CA), (PB, CB) such that FW = FA ∪ FB and
FA satisfies (PA, CA) and FB satisfies (PB, CB) . Note that we will not be using CW as
the pair PW , FW uniquely defines CW . Let FA = FW ∩ A and FB = FW ∩B .

We now construct PA = Q0
A, Q

1
A, R

0
A, R

1
A, ..., R

k
A . We set Q0

A = {TCi
A : |TCi

A ∩
FA| = 0} and Q1

A = {TCi
A : |TCi

A ∩ FA| = 1} and Q0
B = {TCi

B : |TCi
B ∩ FB| = 0}

and Q1
B = {TCi

B : |TCi
B ∩ FB| = 1} . Recall that T CW is a coarsening of T CA ∪ T CB ,

so that a class of T CW is the union of some classes of T CA and some of T CB . For
any Ri

W with i > 0 the twin-classes of T CA that are subsets of Ri
W , but have not been

assigned to Q0
A ∪Q1

A , will be assigned to Ri
A .

A twin-class TCh
A of T CA that has not been assigned yet (neither to Q0

A, Q
1
A nor any

Ri
A) must be a subset of R0

W and must have at least two vertices in FA . If TCh
A does

10

not have a neighbor in FB then it is assigned to R0
A . If TCh

A does have a neighbor in
FB then since FA ∪ FB contains no cycle all vertices in TCh

A have a single neighbor vh

in FB common to them all. We arbitrarily pick indices j ∈ {1, 2, ..., k} with Rj
A still

empty (since k = µw(V (G)) we can find enough such j). We then assign remaining
twin-classes using these indices such that two remaining twin-classes TCh

A and TCg
A

both belong to the same Rj
A if and only if they have the same common neighbor in FB .

All remaining Ri
A should be empty. This completes the construction of PA . For PB we

do the analogous construction.

Claim 5.3 The graph G(PA, FA) is isomorphic (respecting twin-classes) to the subgraph
of G(PW , FA ∪ FB) induced on edges with either both endpoints in FA or exactly one
endpoint in a twin-class belonging to Ri

A for some i . Same holds for G(PB, FB) .

Proof Note that G(PA, FA) and G(PW , FA ∪FB) clearly induce the same graph on FA .
All remaining edges of G(PA, FA) are, by definition of G(PA, FA) , accounted for by
noting that two vertices in some twin-class of Ri

A have a common neighbor (not in A) if
and only if their twin-classes belong to the same Ri

A for i > 0 . But then they then have a
common neighbor also in G(PW , FA∪FB) , since by construction Ri

A is one of two types:
either all twin-classes in Ri

A are subsets of some twin-class in Ri
W , in which case these

vertices have a common neighbor in G(PW , FA ∪ FB) , or all vertices of all twin-classes
in Ri

A have a common neighbor in FB . Since we are only showing that G(PA, FA)
is (isomorphic to, while respecting twin-classes) a subgraph of G(PW , FA ∪ FB) this
suffices. 2

We now construct CA , following Definition 4.3. Consider the graph G(PA, FA) con-
structed from G[FA] by adding new vertices {v1, v2, ..., vk} , and edges from vi to all
vertices in all twin-classes belonging to Ri

A , for 1 ≤ i ≤ k . We define CA to be the
partition of T CA \ (Q0

A ∪ R0
A) such that TCi

A, TC
j
A not in (Q0

A ∪ R0
A) are in the same

class of CA if and only if two vertices u ∈ TCi
A ∩ FA and v ∈ TCj

A ∩ FA belong to
the same connected component of G(PA, FA) . For CB we do the analogous construction.
We are thus done with construction of indices (PA, CA) and (PB, CB) in Taba and Tabb .

Claim 5.4 FA satisfies (PA, CA) and FB satisfies (PB, CB) .

Proof We give the argument for FA only since the argument for FB is symmetric. It
is obvious from the construction that FA will satisfy the two first constraints in Defini-
tion 4.3 for (PA, CA) . By Claim 5.3 and the fact that FA ∪ FB satisfies (PW , CW) the
graph G(PA, FA) is a forest so that it satisfies the third constraint. By construction of CA
it is clear that FA satisfies the fourth constraint. 2

Based on the inductive assumption that Taba and Tabb are correct we know that since
FA satisfies (PA, CA) and FB satisfies (PB, CB) we have Taba[PA, CA] = SA for some
largest SA ⊆ A satisfying (PA, CA) , Taba[PB, CB] = SB for some largest SB ⊆ B
satisfying (PB, CB) , and thus |SA| ≥ |FA| , and |SB| ≥ |FB| . Consider what happens
when the algorithm considers the triple (PA, CA), (PB, CB), (PW , CW) . If SA ∪ SB

11

satisfies (PW , CW) then we are guaranteed that |Tab[PW , CW]| ≥ |SA ∪ SB| ≥ |FA ∪
FB| = |FW | which will establish the contradiction.

Thus, it remains only to show that SA ∪ SB satisfies (PW , CW) , as in Definition 4.3.
From Definition 4.3 we get that if TCi

A belongs to Q0
A or Q1

A then |SA ∩ TCi
A| =

|FA ∩ TCi
A| , same holds for B . A twin-class TCi

W is a union of some twin-classes
from T CA and T CB . If TCi

W belongs to Q0
W or Q1

W then it is a union of twin-classes
belonging to Q0

A , Q1
A , Q0

B or Q1
B and hence |(SA ∪ SB) ∩ TCi

W | = |FW ∩ TCi
W | .

Therefore by construction SA ∪ SB satisfies the first two constraints of Definition 4.3
for (PW , CW) . The following claims will be useful to show that the third constraint is
satisfied.

Claim 5.5 For any i ≥ 1 all vertices in any non-empty twin-class of Ri
A have, in the

graph G(PW , SA ∪ SB) , exactly one neighbor not in A , which is common to them all.
Same for Ri

B .

Proof We first show that no vertex x of a twin-class that is a subset of Ri
A can have more

than one neighbor outside A in G(PW , SA ∪ SB) . We do this by a case analysis showing
that I: it cannot have any neighbor in an Rj

B -class, II: it cannot have two neighbors in
Q1

B -classes, III: it cannot have two new intermediate neighbors, and IV: it cannot have
one intermediate neighbor and one neighbor in a Q1

B -class.
Since by Claim 5.4 FA, SA satisfy (PA, CA) and also FB, SB satisfy (PB, CB) all

twin-classes of Ri
A contain at least two vertices of SA and of FA , and Rj

B (for j > 0 an
index of a non-empty Rj

B) contain at least two vertices of SB and of FB . Therefore, since
all vertices in a twin-class of T CA have the same neighbors outside A case I must hold
since otherwise we would have a 4-cycle in G(PW , FA∪FB) , contradicting that FA∪FB

satisfies (PW , CW) . Likewise all twin-classes of Qi
B contain one vertex of both SB and

of FB . Therefore, case II must hold since otherwise we would again have a 4-cycle in
G(PW , FA ∪ FB) . By Definition 4.3 no vertex in the graph G(PW , SA ∪ SB) has more
than one intermediate neighbor so case III holds. For case IV note first that the only way
vertex x in a twin-class of Ri

A can have an intermediate neighbor in G(PW , SA ∪ SB)
is if its twin-class is a subset of Rj

W for some j > 0 . But then the vertex of FA in the
same twin-class will also have an intermediate neighbor in G(PW , FA ∪ FB) . Since all
twin-classes of Qi

B contain one vertex of both SB and of FB we conclude that case IV
must hold since otherwise we would again have a 4-cycle in G(PW , FA ∪ FB) .

We now show that every vertex in any twin-class of Ri
A has a common neighbor

outside A in G(PW , SA ∪ SB) . Firstly, every vertex whose twin-class is a subset of Rj
W

for j > 0 has a common intermediate neighbor. Secondly, for a vertex whose twin-class
is a subset of R0

W any neighbor it has outside A must be in SB . Any two vertices of
FA in twin-classes of Ri

A have in G(PA, FA) a common neighbor, by Claim 5.4. By
Claim 5.3 these two vertices of FA have also in G(PW , FA ∪ FB) a common neighbor,
which must be in FB since Ri

A is a subset of R0
W . If any two vertices x, y in FA have a

common neighbor in FB then any two vertices in SA from the same twin-classes as x, y
must have a common neighbor in FB . This concludes the proof. 2

12

Claim 5.6 The graph G(PA, SA) is isomorphic (respecting twin-classes) to the subgraph
of G(PW , SA ∪ SB) induced on edges with either both endpoints in SA or exactly one
endpoint in a twin-class belonging to Ri

A for some i . Same holds for G(PB, SB) .

Proof Note that G(PA, SA) and G(PW , SA ∪ SB) clearly induce the same graph on
SA . For the edges with exactly one endpoint in a twin-class belonging to Ri

A Claim 5.5
implies that such an edge exists in both graphs or none of the two graphs. No other edges
exist in G(PA, SA) . 2

To show that SA ∪SB satisfies the third constraint of Definition 4.3 for (PW , CW) we
show that G(PW , SA ∪ SB) is a forest. We will prove this by contradiction, showing that
if we have a cycle Ψ in G(PW , SA ∪SB) then we also have a walk Ψ′ containing a cycle
in G(PW , FW) (which we know is a forest). We assume that the cycle Ψ is induced and
break it into parts uniquely as follows (after first uniquely choosing parts of type 1 below
and then of type 2 below the rest of the cycle will uniquely be of types 3 and 4 below):

1. maximal paths starting and ending in SA containing at least one edge of G[SA] and
otherwise only containing edges with exactly one endpoint in a twin-class belong-
ing to Ri

A for some i .

2. maximal paths starting and ending in SB containing at least one edge of G[SB] and
otherwise only containing edges with exactly one endpoint in a twin-class belong-
ing to Ri

B for some i .

3. crossings from SA to SB directly by one edge.

4. crossings using one intermediate new vertex vi .

We assume additionally that the cycle Ψ has the smallest number of parts over all
induced cycles. Each part starts and ends in a vertex of SA ∪ SB and these endpoints are
called special vertices.

Claim 5.7 Each twin-class of T CA and T CB contains at most one special vertex.

Proof Assume for contradiction that some twin-class contains two special vertices x, y .
This twin-class must be some Ri

A (or Ri
B) since these are the only classes containing

more than one vertex of SA (or SB). Any special vertex x in SA (respectively SB)
has two neighbors x1, x2 in the cycle Ψ . These two neighbors cannot both be in SA

(respectively SB), since x would then not be a special vertex. By Claim 5.5, x, y have
exactly one neighbor not in A , thus wlog we can assume x1 = y1 ∈ B so that the cycle
Ψ has consecutive vertices x, x1, y . Their other neighbor(s) x2, y2 in the cycle are in SA

and thus x, y are not special vertices. 2

Claim 5.8 Ψ cannot have only one part.

13

Proof Note that Ψ must have at least two parts since if it had only one part this part
would have to be of type 1 (or type 2) and be a cycle in which case Claim 5.6 would
imply that G(PA, SA) (or G(PB, SB)) had a cycle, and thus not satisfy (PA, CA) (or
(PB, CB)) contradicting Claim 5.4. 2

We are ready to start constructing Ψ′ . First, we choose for each special vertex v ∈ SA

(respectively SB) of Ψ an arbitrary vertex of FA (respectively FB) from the same twin-
class as v . By Claim 5.7 we have thus chosen at most one vertex from each twin-class.
We then replace each part of Ψ in G(PW , SA ∪ SB) by a path in G(PW , FW) between
the two chosen vertices and call the resulting graph Ψ′ .

Claim 5.9 Parts of type 1 (respectively 2) can be replaced by paths in G(PW , FA ∪ FB)
containing at least one edge of G[FA] and otherwise only containing edges with exactly
one endpoint in a twin-class belonging to Ri

A for some i (respectively for type 2, replac-
ing A by B).

Proof By Claim 5.6 a part of type 1 in Ψ , i.e. a path in G(PW , SA ∪ SB) , gives a path
in G(PA, SA) . Since both SA and FA satisfy (PA, CA) this gives a path in G(PA, FA) .
This means that for any part of type 1 between special vertices u, v there is a path in
G(PA, FA) between the vertices u′v′ chosen from the same twin-classes as u, v , having
edges in G[FA] and edges with exactly one endpoint in a twin-class belonging to Ri

A . We
now show that there is such a path in G(PA, FA) between u′, v′ containing at least one
edge of G[FA] . Note that if u, v both belong to the same Ri

A then u, v have a common
neighbor in SB and Ψ would have only one part and we apply Claim 5.8. Thus u′, v′ are
in twin-classes belonging to different classes of the partition PA . Any path in G(PA, FA)
between vertices in twin-classes belonging to different classes of PA must contain an
edge of G[FA] .

Let us now argue that the existence of such a path from u′ to v′ in G(PA, FA) implies
the existence of a similar path in G(PW , FA ∪FB) . Firstly, on FA the induced subgraphs
are the same in both graphs. Secondly, by construction of PA from PW any two vertices
of FA having in G(PA, FA) a common neighbor outside FA also have in G(PW , FA∪FB)
a common neighbor outside FA .

We can similarly argue for parts of type 2. 2

Parts of type 3 are easy to replace since if there is an edge in G(PW , SA ∪SB) from a
vertex in a twin-class TCi

A to a vertex in a twin-class TCj
B then in the graph G(PW , FW)

any vertex in TCi
A will be connected to all vertices in TCj

B . Parts of type 4 are also easy
to replace: such a part goes from a vertex in a twin-class TCi

A via an intermediate new
vertex to a vertex in twin-class TCj

B with both twin-classes belonging to the same Rk
W

and thus since FW satisfies PW , CW the same edges are present in G(PW , FW) . This
finishes the construction of Ψ′ from Ψ .

Note that the subgraph Ψ′ must be connected since we started with a cycle Ψ , then
first replaced each special vertex v by some v′ and then replaced paths of the cycle be-
tween special vertices u, v by paths connecting u′ and v′ . Ψ′ is therefore a walk starting

14

and ending in the same vertex and that is why Lemma 5.1 is useful to show that Ψ′ con-
tains a cycle.

Claim 5.10 If Ψ contains an edge from a special vertex u in a twin-class of Q1
A (respec-

tively Q1
B) to a vertex w not in A nor in a twin-class of Ri

B (respectively not in B nor in
a twin-class of Ri

A) then Ψ′ contains a cycle.

Proof Note that for u ∈ Q1
A there are only two choices for w : it can either belong to

a twin-class of Q1
B or it can be an intermediate vertex between u and a special vertex

of B . The special vertex u of Ψ is replaced in Ψ′ by u′ in the same twin-class and no
other special vertex of Ψ is replaced by u′ . We argue that there will be an edge u′w
appearing exactly once in Ψ′ , and the statement will follow from Lemma 5.1. The edge
u′w does not belong to G[FA] nor to G[FB] and neither u′ nor w belongs to some Ri

A

or Ri
B . Therefore, by Claim 5.9 parts of type 1 or 2 in Ψ will never be replaced by a

path containing the edge u′w . A part of type 3 will be replaced by a single edge, and a
part of type 4 by a path on two edges, from A to B . Two parts of type 3 cannot both be
replaced by the same edge u′v′ since then the cycle Ψ would have contained the edge uv
twice contradicting the fact that Ψ was chosen to be simple. Similarly, two parts of type 4
cannot both be replaced by a path containing the edge u′w since then the cycle Ψ would
have contained the edge from u to its intermediate neighbor twice contradicting the fact
that Ψ was chosen to be simple. Similarly we can argue for u ∈ Q1

B . 2

Claim 5.11 If all edges of Ψ belong either to G[SA] or G[SB] or have at least one
endpoint in Ri

A or Ri
B then Ψ′ contains a cycle.

Proof By Claim 5.5 a vertex u in Ri
A (respectively Ri

B) has a single neighbor outside B
so that if the cycle Ψ contains a vertex u in a twin-class of Ri

A (respectively Ri
B) then

Ψ must contain an edge uv of G[SA] (G[SB]). Thus, if Ψ had no vertices in Ri
A the

conditions in the claim and the fact that a part of type 2 is chosen to be maximal would
imply that Ψ had only one part, and that part would be of type 2, contradicting Claim 5.8.
Similarly for Ri

B . Therefore Ψ must contain at least one part of type 1 and one of type 2.
We now argue that the condition in the claim implies that the parts of Ψ must alternate

between being: of type 1 (containing at least one edge of G[SA]), then crossing parts of
type 3 or 4 (containing no edges of G[SA] or G[SB]), then of type 2 (containing at least
one edge of G[SB]), then again crossings, and so forth. Consider a part of type 1 ending
in a special vertex u ∈ SA . The other part with special vertex u cannot be of type 1 or
2 since parts of type 1 are maximal and parts of type 2 have special vertices in SB . We
need to show that going around the cycle Ψ from u we must encounter a part of type 2
before we encounter a part of type 1 (i.e. they alternate). When going around the cycle
Ψ from u there are two cases, either we encounter a vertex in a twin-class of some Ri

B

before encountering an edge of G[SA] (case I), or not (case II). By the observation at the
start of the proof of this Claim 5.11 note that in case I we would next encounter an edge
of G[SB] and would be done. In case II the condition in the claim implies that every edge

15

of Ψ between u and the occurrence of the edge of G[SA] would have an endpoint in Ri
A .

We conclude that the parts alternate as described above.
Parts of type 3 and 4 in Ψ are replaced in Ψ′ by crossings containing no edges of

G[A] or G[B] and by Claim 5.9 parts of type 1 (respectively 2) are replaced in Ψ′ by
paths containing at least one edge of G[A] and no edge of G[B] (respectively at least one
edge of G[B] and no edge of G[A]). Call an edge of Ψ′ with both endpoints in G[A]
or both in G[B] a one-sided edge. Firstly, if there is some one-sided edge uv of Ψ′ that
appears only once in the walk defined by Ψ′ then by Lemma 5.1 the walk Ψ′ contains a
cycle. Otherwise, take a one-sided edge uv such that there are two appearances of it in
the walk Ψ′ with no other one-sided edge appearing twice in the part of the walk between
these two appearances of uv .

The subgraph induced by the edges between these two uses of uv in the walk Ψ′ must
contain a one-sided edge yz (on the other side). We therefore have a walk in Ψ′ starting
and ending in vertex u containing an edge yz used exactly once, so that Ψ′ contains a
cycle by Lemma 5.1. 2

If Ψ does not fulfill the condition of Claim 5.11 then it contains an edge having
one endpoint in a twin-class of Q1

A (respectively Q1
B) and the other endpoint not in A

(respectively not in B) and not in a twin-class of Ri
B (respectively Ri

A). But then Ψ
fulfills Claim 5.10. Thus the existence of a cycle Ψ in G(PW , SA ∪ SB) implies a cy-
cle in G(PW , FW) either by Claim 5.10 or 5.11, contradicting the fact that FW satisfies
(PW , CW) . Thus, we have shown that SA ∪ SB satisfies the third constraint of Defini-
tion 4.3 for (PW , CW) . We now show that it satisfies also the fourth constraint.

The argument for the fourth constraint is similar to the one for the third constraint but
a bit simpler since we only need to replace paths by connected graphs and not cycles by
connected graphs containing a cycle.

We show there exists a path Γ in G(PW , SA ∪ SB) from a vertex in TCi
W /∈ R0

W to a
vertex in TCj

W /∈ R0
W if and only if there exists a path Γ′ in G(PW , FW) from a vertex in

TCi
W to a vertex in TCj

W . Since FW satisfies the fourth constraint of Definition 4.3 for
(PW , CW) , showing this will imply that also SA ∪ SB satisfies it. Given Γ we construct
Γ′ as follows. Break Γ into parts of 4 types in such a way that the endpoints of a part
contains no vertex from R0

W .

1. paths having edges in A only

2. paths having edges in B only

3. a single edge from SA to SB

4. a path of length two from SA to SB via a new vertex vi

This can be done since vertices of R0
W have no crossing edges. First replace each

vertex v ∈ TCp
A (respectively v ∈ TCp

B) that is the endpoint of a part of Γ by an
arbitrary vertex v′ of FW in TCp

A (respectively TCp
B). A part (of type 1) with endpoints

u, v containing only edges from A is a path also in G(PA, SA) , and since both SA and FA

16

satisfy (PA, CA) such a part can be replaced by a path between u′, v′ in G(PA, FA) , and
since by Claim 5.3 G(PA, FA) is a subgraph of G(PW , FW) it can be replaced by a path
between u′, v′ in G(PW , FW) . The same holds for parts (of type 2) with endpoints u, v
containing only edges from B . A part of type 3 is easy to replace: edges from SA to SB

are replicated in FW since all vertices in a twin-class have the same neighbors on the other
side. A part of type 4 is also easily replaced since they go from a vertex in a twin-class
TCi

A to a vertex in a twin-class TCi
B both in Ri

W and thus in G(PW , FW) all vertices
of these two twin-classes will be connected by such a path of length two via new vertex
vi . This concludes the construction of Γ′ and shows that there is a path between u′, v′ in
G(PW , FW) . The opposite direction, given Γ′ constructing Γ , is done in an analogous
manner. Thus SA ∪ SB satisfies the fourth constraint of Definition 4.3 for (PW , CW) .

We have shown that SA ∪ SB satisfies (PW , CW) . Therefore we cannot have that
Tabw[PW , CW] = Dummy and since |SA ∪ SB| = |SA| + |SB| ≥ |FA| + |FB| = |FW |
and we cannot have |FW | > |Tabw[PW , CW]| , to finish the proof. 2

Theorem 5.12 Given either a rooted decomposition tree (T, δ) of module-width k of
a graph G , or a k -expression of a graph G of clique-width at most k , we can in
O(25k log2 kn2) steps solve the Minimum Feedback Vertex Set problem on G .

Proof Consider first the case of input being a rooted decomposition tree. By Lemma 3.2
we can compute twin-classes for all nodes of the tree in time O(n2) . Note that for any
node a of the tree T the number of twin-classes in T CA of A = Va is at most k . By
Definition 4.3 and Lemma 5.2 the maximum value over all entries in the table at the root
of our dynamic programming algorithm will correctly solve the problem.

Note that O(25k log2 k) = O(k5k) . The tables are indexed by P , an ordered partition
of T CA into k + 3 parts and C an unordered partition of a subset of the twin-classes
in T CA defined by P . There are O(kk+3) ordered partitions of k elements into k + 3
parts. The number of unordered partitions of k elements is bounded by the number of
ordered partitions. Note that the number of unordered partitions are so much smaller than
the number of ordered partitions that it will cancel all factors polynomial in k , hence
the size of the tables are O(k2k) . For the runtime, the bottleneck is the inner node update
procedure which loops over all triples of table indexes (PA, CA), (PB, CB), (PW , CW) and
check if the union of the two elements SA = Taba[PA, CA] and SB = Tabb[PB, CB]
satisfies (PW , CW) . This gives a total of O(k6k) iterations, however CW is uniquely
defined by the other 5 elements hence only O(k5k) iterations are needed. To check if
SA ∪ SB satisfies (PW , CW) we first make the union in O(n) time and then check the
four constraints of Definition 4.3 for (PW , CW) . The two first constraints are checked in
O(n) time, building the graph G(PW , SA ∪ SB) and checking if it is a forest is straight
forward to do in O(m) time. However if the two graphs G[SA] and G[SB] are stored
from the previous step, then one can build the graph (or conclude that it is not a forest
since it has more than n − 1 edges) in O(k2n) time. Since a forest has at most n − 1
edges we can also check if G(PW , SA ∪ SB) is a forest in O(n) time. Checking that
the connected components match CW is also done in O(n) time as long as the graph is a
forest. In total the combine step is O(k5kn) . The preprocessing is done in O(n2) time,

17

initialization is done in O(k2kn) time. Filling the tables requires n combine steps, hence
the total runtime is O(n2k5k) = O(25k log2 kn2) .

Note that within the same runtime we could instead have taken as input a k -expression
of a graph G of clique-width at most k . This since by Theorem 2.6 the module-width of
G is no larger than the clique-width of G , and from the k -expression we easily derive a
rooted decomposition tree of module-width at most k . 2

6 Conclusion

The Feedback Vertex Set problem has a non-local property that does not lend itself to
easy dynamic programming. Using the technique of ’expectation from the outside’ in the
definition of tables of the dynamic programming, and not the standard technique of par-
titioning the solution space into equivalence classes, we have given an FPT algorithm for
FVS parametrized by the clique-width of a given decomposition. The exponential run-
time of this algorithm matches the runtime of the best known algorithm when parametriz-
ing by treewidth. Note that many graph classes have unbounded treewidth and bounded
clique-width but the opposite cannot occur. It is already an open problem to solve FVS
in exponential time O∗(2O(tw)) , so maybe O∗(2O(cw)) is too much to hope for. Boolean-
width and rank-width are parameters bounded on the same graph classes as clique-width,
but their values can be exponentially smaller than clique-width. The best runtime known
for FVS on graphs of bounded rank-width=rw is O(25rw2

rw3n) [14], and from this we
can deduce an algorithm with runtime O(25(22bw)n) for bw=boolean-width. Can we get
runtime O∗(2poly(bw)) for some polynomial function poly?

References

[1] V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM Journal on Discrete Mathematics 12:289–297,
1999.

[2] R. Bar-Yehuda, D. Geiger, J. Naor, and R. Roth. Approximation algorithms for the
feedback vertex set problem with applications to constraint satisfaction and Bayesian
inference. SIAM Journal on Computing 27:942–959, 1998.

[3] B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. H -join decomposable graphs and
algorithms with runtime single exponential in rank-width. to appear in Discrete Ap-
plied Mathematics: special issue of GROW.

[4] B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Fast FPT algorithms for vertex subset
and vertex partitioning problems using neighborhood unions.
http://arxiv.org/abs/0903.4796

[5] B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Feedback Vertex Set on Graphs of
Low Cliquewidth. In Proceedings of IWOCA 2009, pages 113–124.

18

[6] J. Chen, F. Fomin, Y. Liu, S. Lu, and Y. Villanger. Improved Algorithms for the
Feedback Vertex Set Problems. In Proceedings of WADS’07, LNCS 4619, pages
422–433, 2007.

[7] F. Chudak, M. Goemans, D. Hochbaum, and D. Williamson. A primal-dual inter-
pretation of two 2-approximation algorithms for the feedback vertex set problem in
undirected graphs. Operations Research Letters 22:111–118, 1998.

[8] B. Courcelle, J.A. Makowsky, U. Rotics. Linear time solvable optimization problems
on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000.

[9] F. Dehne, M. Fellows, M. Langston, F. Rosamond, and K. Stevens. An O(2O(k)n3)
FPT Algorithm for the Undirected Feedback Vertex Set Problem. In Proceedings of
COCOON’05, LNCS 3595, pages 859–869, 2005.

[10] R.Downey and M.Fellows. Parameterized Complexity, Springer-Verlag (1999)

[11] W. Espelage, F. Gurski, E. Wanke. How to Solve NP-hard Graph Problems on
Clique-Width Bounded Graphs in Polynomial Time. Proceedings WG 2001: 117-
128

[12] G. Even, J. Naor, B. Schieber, and L. Zosin. Approximating minimum subset feed-
back sets in undirected graphs with applications. SIAM Journal on Discrete Mathe-
matics 13:255–267, 2000.

[13] F. Fomin, S. Gaspers, A. Pyatkin, and I. Razgon. On the Minimum Feedback Vertex
Set Problem: Exact and Enumeration Algorithms. Algorithmica, 52:293–307, 2008.

[14] R. Ganian and P. Hliněný. On Parse Trees and Myhill-Nerode-type Tools for han-
dling Graphs of Bounded Rank-width.
to appear in Discrete Applied Mathematics (2009).

[15] M. Goemans and D. Williamson. Primal-dual approximation algorithms for feed-
back problems in planar graphs. Combinatorica 18(1):37–59, 1998.

[16] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Compression-based
fixed-parameter algorithms for feedback vertex set and edge bipartization. Journal of
Computer and System Sciences 72(8):1386-1396, 2006.

[17] M. Habib, C. Paul, L. Viennot. Partition Refinement Techniques: An Interesting
Algorithmic Tool Kit. International Journal of Foundations on Computer Science,
vol 10, 2, 147–170, 1999

[18] D. Harel and R. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
Journal on Computing, 13(2):338–355, 1984.

[19] P. Hliněný, S. Oum. Finding branch-decompositions and rank-decompositions.
SIAM Journal on Computing 38(3):1012–1032, 2008.

19

[20] R. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103, 1972.

[21] J. Kleinberg and A. Kumar. Wavelength conversion in optical networks. Journal of
Algorithms 38:25–50, 2001.

[22] T. Kloks, C. Lee, J. Liu. New Algorithms for k -Face Cover, k -Feedback Vertex Set,
and k -Disjoint Cycles on Plane and Planar Graphs. In Proceedings of WG’02 LNCS
2573, pages 282–295, 2002.

[23] D. Kobler, U. Rotics. Edge dominating set and colorings on graphs with fixed clique-
width. Discrete Applied Mathematics 126(2-3): 197-221 (2003).

[24] A. Koutsonas and D. Thilikos. Planar Feedback Vertex Set and Face Cover: Com-
binatorial Bounds and Subexponential Algorithms. In Proceedings of WG’08, LNCS
5344, pages 254–274, 2008.

[25] J.-M. Lanlignel. Autour de la décomposition en coupe. Ph. D. thesis, Université
Montpellier II, 2001.

[26] S. Oum, P. Seymour. Approximating clique-width and branch-width. J. Com-
bin.Theory Ser. B 96(4):514–528, 2006.

[27] R. Paige, R. Tarjan. Three partition refinement algorithms. SIAM Journal on Com-
puting 16(6):973–989, 1987.

[28] V. Raman, S. Saurabh, and C. Subramanian. Faster fixed parameter tractable algo-
rithms for finding feedback vertex sets. ACM Transactions on Algorithms 2(3):403–
415, 2006.

[29] M. Rao. Clique-width of graphs defined by one-vertex extensions. Discrete Mathe-
matics 308(24):6157–6165, 2008.

[30] N. Robertson, P. Seymour. Graph minors X: Obstructions to tree-decomposition.
Journal on Combinatorial Theory Series B, 52:153–190, 1991.

[31] M. Rao. Décompositions de graphes et algorithmes efficaces. Ph. D. thesis, Univer-
sité Paul Verlaine, Metz, 2006.

20

