INF329

Presentation of

by Anne Elise Weiss
2012-02-06
Last time

- Domain Engineering in general
- Definition of a domain
- Some DE methods
- Problems wrt DE + OOA/D
- Some OOA/D methods supporting DE
Purpose and scope of the report

- Identify methodologies
- Identify and select language for generic models
- Summarize different models, notations and tools
- Analyse compliance of GMV-proposed approach with ISO 12207
Methodologies

Divides DE into three phases:
● Domain analysis
● Domain design
● Domain implementation

Work to be carried out according to the SOW:
● Perform a DE analysis through a variation analysis of space systems
● Perform a DE design to be reused for design and development of future space crafts
Methodologies

The phases:

1. Domain analysis
 Discovers and formally describes the commonalities and variabilities. Output: domain model; explicit representation

Domain model consists of:
- Domain dictionary – defines terms
- Context models – specify boundaries
- Feature models – hierarchical decomposition of features
2. Domain design
 ● Input: Domain model
 ● Applies a partitioning strategy to produce a generic design
 ● Defines different elements and how the domain features are allocated to them

3. Domain implementation
 ● Input: Design models and generic architectures
 ● Main output: reusable assets, application generations, domain languages
Main groups of DE methods

- Feature
 - DARE
 - FORM
 - ODM
 - DSSA
 - FODA
 - FeatureRSEB
 - Sherlock
 - OOram
 - JODA

- Object-Oriented

- Product Line
 - FAST
 - PuLSE
Methods based on the analysis of the domain

ODM (Organization Domain Modeling)
Developed to provide an overall framework for a DE life cycle.

Divides DE into three phases:
- Plan the domain – "Domain of focus" based on stakeholders' interests
- Model the domain – document domain information, produce domain model
- Engineer an asset base – sub-phases to scope, architect and implement
Methods based on analysis of the domain

ODM (Organization Domain Modeling)

Advantages:
● Useful for a wide range of organisations and domains
● May be integrated with a variety of SE processes, methods and implementation technologies

Disadvantage:
● No support for creating DSL and application generators

Most successful: mature, stable, economically viable domains.
Methods based on analysis of the domain

FODA (Feature-Oriented Domain Analysis)
- Based on identification, analysis and documentation of the main features
- Result: generic domain products based on abstraction

Three phases:
1. Context analysis – Establish bounds of domain, relation with other domains
 - Result: structure and data-flow diagrams
2. Domain modelling – Analyse context model to generate domain models
Methods based on analysis of the domain

FODA (Feature-Oriented Domain Analysis)

Three phases:

3. Architecture modelling – create high-level architecture model from the domain model

- FODA's features represented hierarchically --> simple to identify and understand feature model
 - Component-based development not encouraged, but can be achieved using Object Connection Architecture
- FODA has no specific process for req. spec, verification and management
Methods based on analysis of the domain

FORM (Feature-Oriented Reuse Method)
- Extends FODA to the design phase
- Uses feature model to develop domain architectures and components
- Reason: Features + code should be packed, managed and reused as software modules

Three phases:
- Context analysis: identify scope and interaction
- Feature modelling: commonalities and variabilities. Hierarchical feature diagram
- Architecture/component modelling: define a set of reference architectures
Methods based on analysis of the domain

FORM (Feature-Oriented Reuse Method)

- Reference architectures are defined using the feature model
- Organized in three hierarchical levels
 - Subsystem model (system structure)
 - Process model (dynamic behaviour)
 - Module model (set of features)

- The modules are basis for generation of reusable components.
- Mapping between feature and architectural model is needed.
Methods based on analysis of the domain

FeatureRSEB (Feature Reuse-Driven Software Engineering Business)

- Process that has integrated the feature modelling of FODA into processes and work products of Reuse-Driven Software Engineering Business (RSEB).
- RSEB: Use-case driven systematic reuse process based on UML.

RSEB DE activities:

- Application Family Engineering (higher level)
- Component System Engineering (lower level)
Methods based on analysis of the domain

FeatureRSEB

● FeatureRSEB developed because RSEB is based on modelling variability, but doesn't include DA techniques or description of a systematic way to perform the asset development

● Combines FODA and ODM concepts

● Feature models are simpler than FODA's

● Architecture + reusable subsystems: use-case diagrams, transformed into object models
FeatureRSEB

- Includes DA, solving the limitations of RSEB
 - DA starts with domain scoping and feature modelling
 - Components
 - High level use case model
 - Next: identification of commonality and variability of the elements.
 - Use case and object model: domain entities and the interaction between them
 - Sequence and interaction diagrams: dynamic relations among the domain entities
Methods based on analysis of the domain

DSSA (Domain-Specific Software Architectures)
● Architecture for a specific domain based on commonalities and differences
● Focus on the process: how to define these features and derive the final architecture

● Domain analysis:
 ○ capture components and operations in a class of similar systems in a particular domain
 ○ define relationships + data and control flow
 ■ result: requirements document
 ○ Identify constraints and requirements
Methods based on analysis of the domain

DSSA (Domain-Specific Software Architectures)

- Develop architecture

- Last step: Develop reusable components based on the architecture and information
Methods based on analysis of the domain

Sandwich method

● Specifies components that can be implemented and put into a library
● Domain models: generic architecture or standard designs
● Low-level components act as building blocks --> reuse guaranteed

Domain analysis:

● Domain information, entities, models, expand and verify models and classification
● Result: Domain model
Methods based on analysis of the domain

Sandwich method

Domain model includes:
- Concepts to enable specification of systems
- Plans describing how to map specifications into code
- Rationales for the specification concepts

Two procedures:
- Bottom-up activities, low-level common functions. Products are associated with the structures derived by:
- Top-down activities, for system analysis. Result: generic architectures

Drawbacks:
- Little information related to the whole process
- No support for development of languages
Methods based on analysis of the domain

DARE (Domain Analysis and Reuse Environment)
- Support environment for partially automating the activities of domain analysis
- Focus: activities to acquire and structure knowledge
- Domain Analysis Book
- Domain must already be defined

Four activities (iterative):
1. Acquire domain knowledge
2. Structure domain knowledge automatically
3. Identify commonalities
4. Generate domain models
DE methods based on the product line

- Methods linked to product lines and software families
 - groups of products that share common features and meet the needs of a particular market area
- Few available methodologies

FAST (Family-Oriented Abstraction, Specification and Translation)

- Defines DE + Application Engineering process
 --> covers the whole product-line engineering process

Domain has to satisfy these requirements:
- mature
- stable
- experts must exist and be available
DE methods based on the product line

FAST

● Software family is defined
● Environment for producing family members is developed
● DE process is based on sharing common features

Two phases:

● Domain/commonality analysis
 ○ Collect/document knowledge
 ○ Define decision model
 ○ Design Application Modelling Language (AML)

● Domain implementation
 ○ Development and refinement of the specified environment
DE methods based on the product line

FAST

- No specific technique recommended
- When domain specified: translation into products is carried out using a DSL, so translation can be done automatically
DE methods based on the product line

PuLSE (Product Line Software Engineering)

Elements:
- Four deployment phases
 - Initialization
 - Infrastructure construction
 - Infrastructure usage
 - Management/evolution
- Technical components
- Support components

No recommended tool or technique for any of the activities.
DE and OOA/D methods

OOram (Object Oriented Role Analysis and Modelling)
- Provides a framework for creating a variety of methodologies
- Dev. cycle focused on interactions: improves reuse, traceability, complexity
- Idea: different methodologies needed for different purposes
- Defines a "role model", collecting objects together according to common goal

Three processes
- Model creation process
- System development process
- Reusable asset building process
DE and OOA/D methods

JODA (Joint Integrated Avionics Working Group Object-Oriented Domain Analysis)
- Uses OOA/D instead of functional methods for domain analysis
- DA: what is reusable, how can it be structured and reused

DA consists of three phases:
- Domain preparation
- Domain definition
- Domain modelling -- which extends from OOA/D
 1. Def. attributes and services, objects, relationships
 2. Domain scenarios
 3. Abstraction and grouping of objects
DE and OOA/D methods

Sherlock

- Product line practice
- Uses OOA for analysis
- Uses different diagrams for modelling
- Input: informal description of the domain
- Output: set of architectural models
- Tool support for managing each activity
- No specific technique for req.spec., verification, traceability
SODA (Strategic Options design and Assessment)

- Approach to design long-lived system architectures

Activities:
1. Develop strategic scenarios
2. Propose business strategies
3. Design architectural scenarios (result: proposed architectures)
4. Assess scenario feasibility

- Aim for the final result: flexible architecture that is adaptable to change over time
Architectural analysis methods

● Methods concerning the transition from the domain modelling to the domain architecture definition

● During the architectural analysis, the domain engineer selects an appropriate design approach for building a generic design

● Many methods only provide a high-level feature model --> a transition from the domain model to the final architectural design is needed
Architectural analysis methods

OCA (Object Connection Architecture)

- Architectural model used to structure a generic design
- Typically used with FODA
- Input: domain model, architecture information
- Result: generic design, used in application development

Mapping process:
1. Analysis of the domain model
2. Process of mapping objects and subsystems onto code templates
DE notations and tools

- During DA: the bounds of a domain are identified
- These bounds have to be represented somehow

Some notations linked to features:
- SADT (Structured Analysis and Design Technique): describing systems as a hierarchy of functions
- UML (Unified Modelling Language): semi-formal, object-oriented
- SysML (System Modelling Language): based on UML 2.0, DSML for system engineering applications.

The generated reusable assets: output to XML files
Many domain analysis methodologies are based on features, so tools that can model features are also needed. E.g.:

- Xfeature – supports feature modelling, uses standard technology
- RequiLine – requirements engineering tools for management of software product lines
- pure::variants – commercial tool, supports feature modelling and configuration
DE notations and tools

Notations to represent the domain design:
- SysML
- UML2 – supports MDA and MDD
- AADL (Architecture Analysis and Design Language) – provides features for modelling a software system’s conceptual architecture

Tools for developing domain design:
CORBA, Eclipse framework, MS Visio, TOPCASED
DE notations and tools

Some notations supporting domain implementation

- MDA – provides a framework to MDD.
 - Basic function: generation of applications from a set of procedures (UML model) --> mechanism to transform the feature model instances into an executable application automatically or semi-automatically.

- HRT-UML (Hard-Real Time UML Models) – defines an extension profile of UML.
 - Used to model generic architectures, especially useful for modelling hard real-time systems.
Conclusion

Conclusion regarding the most suitable DE approach: Feature-Oriented Domain Analysis (FODA).

Reasons:
- FODA represents the domain knowledge using several complementary models
- Oriented towards commonalities and variabilities
- Easily understandable feature models (end user + designer)
- The method is generic
- Tight relationship between FODA-generated models and those found in the majority of OOA/D
Conclusion

Reasons:
● FODA specifies the whole DA process until the architecture design
● Has been applied to several industry application domains with good results