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In a series of recent papers, Oren, Oren and Luenberger, Oren and Spedicato, and 
Spedicato have developed the self-scaling variable metric algorithms. These algorithms alter 
Broyden's single parameter family of approximations to the inverse Hessian to a double 
parameter family. Conditions are given on the new parameter to minimize a bound on the 
condition number of the approximated inverse Hessian while insuring improved step-wise 
convergence. 

Davidon has devised an update which also minimizes the bound on the condition number 
while remaining in the Broyden single parameter family. 

This paper derives initial scalings for the approximate inverse Hessian which makes 
members of the Broyden class self-scaling. The Davidon, BFGS, and Oren-Spedicato updates 
are tested for computational efficiency and stability on numerous test functions, with the 
results indicating strong superiority computationally for the Davidon and BFGS update over 
the self-scaling update, except on a special class of functions, the homogeneous functions. 

Key words: Unconstrained optimization, Variable metric methods, SSVM methods, Quasi- 
Newton methods. 

I. Introduct ion  

In a series of recent papers, Oren [9, 10], Oren and Luenberger [11], Oren and 
Spedicato [12], and Spedicato [15], have developed the self-scaling variable 
metric algorithms (SSVM's) for minimizing an unconstrained nonlinear function 
f ( x )  of a vector variable x. These algorithms are modifications of the well-known 
variable metric (quasi-Newton) algorithms which have been the subject of much 
recent study (see, for example, Dennis and Mor6 [4]). 

Briefly, these algorithms begin with an estimate x0 to the minimizer 2 and an 
estimate H0 to the inverse of the Hessian matrix of f ( x ) .  A sequence of points xi 
is then defined by 

X i + l  = X i  - -  otiHigi, gi = Vf(xi) ,  cti a scalar, (1) 
and 

Hi+l = [Hi  - ( H i Y i y } H i [ y } H i y i )  + Oil)il.)}]Ti -1- (PiP}/P}Yi) ,  (2) 

with 
Pi = Xi+l --  Xi, Yi = gi+l --  gi, 

'H  1/2 / , (3) 
Vi = (yi  iYi) [(t)i P i Y l ) - -  ( H i Y i / y } n i Y i ) ] ,  
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and ai, 0i, and ,/i are appropriately chosen scalars. For the remainder of this 
paper, we will omit the subscript i, replace the subscript i + 1 by the superscript 
*, and use the notation 

a = y ' H y ,  b = p ' y ,  c = p ' H - l p  = a Z g ' H g .  (4) 

We first note that the sequence of updates (2) reduces to the Broyden single 
parameter class [1], in the form introduced by Fletcher [5], by setting yl = 1. 
Oren and Luenberger  motivate the introduction of the second parameter  ~/ by 
considering scaling the object function by multiplication by a scalar. We note 
that under the scaling 

f ( x )  = c f ( x ) ,  ~ , (x)  = c g ( x )  and f (x )  = c J ( x ) ,  

where J ( x )  is the Hessian matrix of f. Thus the Newton sequence for f is defined 

by 
x *  = x - j - l  g,  (5) 

and for )~ by 

x *  = x - ~-t~, = x - c - l J - l ( c g )  = x - y - l g .  (5a) 

Thus the sequences are invariant under this scaling, while the sequence defined 
by eqs. (1)-(3) is not, unless either ~/~ is appropriately chosen or H0 is chosen to 
be a suitable function of either the initial gradient or the initial inverse Hessian 
matrix. 

Having thus motivated y, Oren and Luenberger  proceed to show that if f ( x )  is 
of the form 

f ( x )  = l ( x  - i ) ' a ( x  - ~)  + f ( ~ ) ,  (6) 

proper  choice of ~, insures at each step a reduction in the condition number of 

R = A 112HA v2. (7) 

Thus use this result to argue that proper choice of ~, can be used to improve 
the step-wise rate of convergence over members of the Broyden class, and show 
examples where for ~, = 1, 0 = 0 can actually increase the condition number of 
R* over that of R. They further show that there exist a continuum of y's which 
not only improve the rate of convergence,  but make the sequence (2) self- 
scaling. Subsequent papers then study principally the choice of y, and include 
numerical results purporting to show the superior computational efficiency of the 
new algorithm. 

In particular, Oren and Spedicato [12] consider the problem of minimizing the 
condition number of the matrix H - 1 H  *, and from this derive the relationship 

0 = ( b ( c  - b v ) l ~ ( a c  - bZ)). (7a) 

They then introduce Fletcher 's  concept  of duality to derive the self-dual update 
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defined by (2) with 

0 --- (1 + (ac/b2)l/2) - ' ,  T = (c /a )  1/2. (8) 

Davidon [3] similarly considered minimizing the condition number of H 1H* 
for the Broyden class, and arrived at the update defined by 

O = b ( c - b ) / ( a c - b  2) when b<-2ac/(a+c), (9) 
and 

O=b/ (b -a )  when b > 2 a c / ( a + c ) ,  (9a) 

where (9a) is the well-known symmetric rank one update. It should be noted here 
that Davidon's full new algorithm also modified the vectors y and p, using 
projections. In this paper, we are concerned solely with the choice of update 
parameters, and use no projections. The computational effects of using pro- 
jections have been studied by Shanno and Phua [16]. 

The principal drawback to the SSVM updates is that for a quadratic object 
function, the sequence (2) fails to converge to the inverse Hessian matrix. 
McCormick and Ritter [8] have shown that this convergence is desirable on a 
non-quadratic problem, and it is a property not to be cast aside lightly. 

Section 2 deals with a choice of H0 which leaves the SSVM sequence 
unchanged, but which makes the Broyden sequence self-scaling. The im- 
plications of this choice on matrix conditioning and computational stability will 
be discussed. 

Section 3 documents a special class of functions where the SSVM algorithms 
are superior, under certain conditions, to the Broyden class algorithms. 

Section 4 tests the scaled and unscaled BFGS and Davidon algorithms and the 
scale invariant SSVM defined by (2) and (8), and shows marked computational 
superiority of the scaled BFGS and Davidon algorithms over all problems tested 
except the special class discussed in Section 2, where the BFGS algorithm, 
defined by 3' = 1 and 0 = 1, is the algorithm introduced by Broyden [2], Fletcher 
[5], Goldfarb [6], and Shanno [13]. 

2. Scaling the initial approximation H0 

As noted in Section 1, invariance of the sequence (1) under scaling of the 
object function by multiplication by a constant depends either upon appro- 
priately choosing 3", or scaling of H0. In this section, we consider two possible 
initial scalings of H0, and show that in addition to providing the desired 
invariance, they also greatly enhance the numerical stability of members of the 
Broyden class of updates. 

Spedicato [15] has considered the problem of initializing H0, suggesting that 
H0 be set to a diagonal matrix whose elements are the reciprocals of the true 
diagonal elements of the Hessian evaluated at the initial approximation x0. There 
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is a major drawback to this, namely that it is often expensive to obtain these 
estimates. A second objection is that computational efficiency is not always 
improved. 

We here consider much simpler initial scalings which require no additional 
information about the object  function than that routinely required by variable 
metric algorithms. They thus overcome the major objection to Spedicato's 
scaling. Further,  they have the property that they leave the SSVM algorithms 
unchanged, while making the Broyden class algorithms self-scaling. Finally, the 
computational results documented in Section 5 show that while they sometimes 
improve, sometimes hurt computational efficiency on small problems (problems 
with few variables), they uniformly improve performance of both the BFGS and 
Davidon algorithms on large problems, and the amount of improvement  in- 
creases monotonically as the number of variables increases. 

The salient point in both of these scalings is that H0 = I may be used initially 
to determine xl, where a0 is chosen according to some steplength or linear 
search criterion to assure sufficient reduction in the function f. Once xl has been 
chosen, but before H~ is calculated, we now scale H0 by 

~o = a0H0, (10) 

then compute H1 using /40 rather than H0. Assuming only that the criterion for 
choosing a0 is sensitive to multiplication of the object  function by a constant,  an 
assumption satisfied by virtually all commonly used step determination methods, 
the sequence of approximations (2) thus becomes self-scaling without use of the 
parameter  3'. In fact, the parameter  3' derives from a composite scaling of the 
form 

121 = a H  ( l la )  

and 
H* = / ~  - (/~yy'/~/y'/-ly) + 0z3z3' + ( p p ' [ p ' y ) ,  

~, = y ' t2Iy[(p/p 'y)  - (/-ty/y'/~y)]. 

Substitution of ( l la )  into ( l lb )  yields 

H *  = [H - ( H y y ' H J y ' H y )  + Ovv']a + ( p p ' / p ' y ) .  (12) 

Thus a motivation for the SSVM updates is that if H is a good approximation to 
the true inverse Hessian, a will be 1. If a ~ 1, H is first scaled by multiplication 
by a, then the Broyden update applied. We note that while 3" is seldom chosen to 
be exactly equal to a, it is chosen to be a-sensitive, and increases or decreases 
directly as a is greater or less than 1. Then the above motivation is a valid 
motivation. The more sophisticated choice of 3", however,  used by Oren and 
Spedicato has a distinct advantage over using a, as will be explained in Section 
3. 

The difference between the SSVM's and the scaled Broyden class updates of 
this paper are that the SSVM's scale H by 3" at each step, while we propose 
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scaling only H0. After the initial iteration, the approximate Hessian is never 

rescaled. 

In practice, the above scaling has a major advantage beyond making the 

sequence (2) self-scaling with 3' = 1. Spedicato [15] tested a version of the BFGS 
and the Oren-Spedicato  Switch 2 SSVM on both the Rosenbrock and Powell 
functions, generalized to many dimensions. For  example, the generalized 
Rosenbrock function is 

l/2n 
f ( x )  = E 100(X2i - X2-1)2  + (1 - X2i_1) 2. 

i=1 

He shows that theoretically, as n increases, the number of iterations and 
function evaluations must remain constant on such functions with perfect  
arithmetic. His computational results, however,  show that both iterations and 
function evaluations increase markedly as n increases, with or without his initial 
scaling. 

Our computer  results, however,  show that without the scaling (10), both the 
BFGS and Davidon updates greatly increase the number of iterations and 
function evaluations as n increases, but with the scaling (10), the theoretical 
results of no increased computational effort are exactly borne out. However ,  the 
Switch 2 SSVM algorithm is not improved by this scaling, nor are any of the 
SSVM's,  and computational work does grow significantly as n grows. 

To examine the reasons for this phenomenon,  we first note that for  the Switch 
2 SSVM defined by (2) and (8), if at any step we use the composite update 

12I = oH,  p an arbitrary scalar (13a) 
and 

H *  = [I?t - (ISIyy'I2I/y'I?ty) + 0~']3" + ( p p ' / p ' y ) ,  (13b) 

substituting yields y'12Iy = p y ' H y ,  and p'ISI-~p = O - l p ' H - l p ,  and hence /~ and 

defined by (8) satisfy 

= {1 + [(pa)(p-lc/b2)]l/2} -l = 0 (14a) 

and 
~, = (p- l  clpa )lJ2 = 0-13". (14b) 

But as k = pllZv, substitution in (13b) yields 

H *  = [ H  - ( H y y ' H ] y ' H y )  + Ovv']3" + ( p p ' / p ' y ) .  (15) 

Thus the Switch 2 algorithm, and indeed all of the SSVM's considered by Oren 
and Luenberger ,  are invariant under transformations of this type. Thus no 
computational improvement  can be expected.  

For the Broyden class, however,  improvement  on large problems is due 
entirely to improved numerical stability. If the initial matrix is unscaled, or 
scaled without knowledge of the actual magnitude of the elements of the t rue 
inverse Hessian, severe loss of accuracy due to round-off can occur. To see this, 



154 D,F. Shanno, K.-H. Phua/ Matrix conditioning 

note that for the Broyden class, the update formula 

H *  = H - ( H y y ' H l y ' H y )  + Ovv' + ( p p ' l p ' y )  (16) 

can be grouped into the two components  

H~ = H - ( H y y ' H [ y ' H y )  + Ovv' (16a) 
and 

H2 = (pp ' [p '  y ). (16b) 

All terms in H,  are equally magnified when H is multiplied by a constant,  but 
/-/2 is invariant. An arbitrary initial scaling can cause large loss of accuracy in 

terms emanating from H2 if the scale of H is too large, or in terms from H1 if the 
scale of H is too small. Both losses are significant, as loss of accuracy in H2 
prevents convergence to an approximate Hessian, while loss in H1 drastically 
alters the search directions. As nothing can be determined about a good 
approximate scaling until one iteration has been completed, it then becomes 
important to scale at the end of the first iteration. 

We have so far considered only the initial scaling/40 = a0H0. While this is a 
natural scaling, another initial scaling in also attractive for the BFGS update. 
Recalling the Oren-Spedicato formula (7a) for the relationship between 0 and 3' 
which will optimally condition H - ~ H  *, we use the fact that for  the BFGS 0 = 1 
to derive the optimal y as 

3' = b/a,  (17) 

yielding the initial scaling 

I2Io = (b /a )Ho .  (18) 

The computational evidence of Section 5 shows both scalings are remarkably 
similar on small problems, but limited computational experience on a large 
problem where effort does increase with increase in size indicates the update 
(18) may be preferable.  

As an example, we will examine the results of updating H0 for the Rosenbrock 
function, both for scaled and unscaled H0. The MINI02 algorithm [14] initially 
sets H0 to Ho = 1.8219I. The step length found for the first search is a0 = 
0.00082253, and the Oren-Spedicato parameter  3' = 0.00044281. The matrix H~ is 

while 

H1 = [ 0.27830 -0.65550]  
[ -0 .65550 1.5439 J '  

H2 = [0.00069168 0.00028232] 
[0.00028232 0.00011523J" 

Thus the unscaled BFGS update is 

H *  = [ 0.27899 -0.65522]  
[ -0 .65522 1.5440 J' 
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while the scaled BFGS update is 

H*  = [ 0.00081482 -0.0000079435] 
[-0.0000079435 0.00079891 J" 

The fact that o~ is of the order of magnitude 10 -3 while the arbitrary H0 is of 
order 1 predicts the demonstrated result that the matrix H2 is significant in only 
the fourth significant figure unscaled, but is significant in every  significant figure 

scaled. 
This problem is solely a truncation, rather than a stability problem, as the 

example shows, and cannot be improved by using an LDL'  factorization of H -1. 
Indeed, the same problem, for n = 2 and 20 variables, was run using an LDL'  

factorization, both scaled and unscaled, with virtually identical results in each 
case to those reported in Section 4. 

As a final note in this section, the Davidon update can also be scaled by either 
(10) or (18), but if (18) is chosen, care must be used. In the case that b < 

2ac/(a  + c),  the initial scaling (18) yields the BFGS update on the scaled matrix. 
However ,  if b > 2ac/(a  + c) ,  the Davidon update is the symmetric rank one with 
a zero denominator.  As there is no intuitive reason to use (18) rather than (10) 
with the Davidon update, this latter problem would appear to suggest (10). 
However ,  on the Mancino problem documented in Section 5, the scaling (18) 
performed marginally better. Thus further investigation of the use of (18) with 
the Davidon update on large problems may be indicated. 

3. Homogeneous functions and the SSVM algorithms 

The subsequent section will demonstrate that the SSVM algorithms perform 

poorly compared to initially scaled BFGS and Davidon algorithms. Before 
proceeding, however,  we should note that there is a class of functions on which 
the Switch 2 SSVM algorithm is markedly superior to the Broyden class 
algorithm if exact  searches are not used to determine a at each step. These are 
the homogeneous functions. 

Jacobson and Oksman [7] define a homogeneous function as one which can be 
written as 

f ( x )  = ~--l(x - ~)g (x )  + f ( ~ ) ,  (19) 

where g ( x ) =  V f ( x ) ,  ~ is the minimizer, and ~- is the degree of homogeneity.  If 
J ( x )  is the Hessian of f, they then show by differentiating (19) that 

:f = x - O" - 1 ) J - ' ( x )g ( x ) .  (20) 

Thus the usual Newton step J - l ( x ) g ( x )  must be multiplied by 0" - 1) to get to the 
minimum. A typical homogeneous function of degree four is 

f ( x )  = ( x ' A x )  2. (21) 
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Spedicato [15] has shown that the SSVM method is equivalent to using a formula 
from the Huang two parameter family in which updates satisfy 

H *y =/3p. (22) 

The corresponding value of /3  is dependent  upon the choice of 7. 
Examination of (20) shows that, since g(2) = O, 

(~- - 1)-~(x - ~) = J(x) (g(x)  - g(2)), (23) 

so a similar equation, with /3 = (~- - 1) -1 is satisfied by homogeneous equations, 
not at all points, but at the minimum. Thus for proper choice of /3, SSVM's 
should predict better step-sizes than Broyden class updates for homogeneous 
functions. 

We have tested Oren's  test problem of the form (21), and this is certainly the 
case for the step size algorithm we use. In this algorithm, a point is accepted if 

p ' y > 0  and f*<f+O.OOOlp 'g ,  where p ' g < O .  As f ( x )  as defined by (26) is 
strictly convex,  p 'y  > 0 always holds. As the rate of descent  is rapid, a step size 
too small always satisfies f* < f  + 0.0001p'g. Thus small steps are predicted and 
accepted, and convergence is very slow. The switch 2 choice of % however,  
corresponds to a good choice of /3, and the SSVM automatically increases the 
step size, producing vastly improved computational performance.  Note that if 
exact  searches are used, as were used by Spedicato [15], this advantage largely 

disappears. 
As Jacobson and Oksman present a method with guaranteed n + 2  step 

convergence on homogeneous problems, a careful analysis of the SSVM's on 
this type of function must include a comparison with the Jacobson-Oksman 
algorithm. 

4. Computational results 

Five algorithms, a BFGS algorithm without initial scaling (BFGS), with the 
initial scaling (18), (BFGS18), Davidon unscaled (OCON), Davidon with scaling 
(10), (OCON10), and the Oren-Spedicato Switch 2 SSVM (OSS2) were tested 
using a variant of the MINI02 step length algorithm (see Shanno and Phua [14]). 
The algorithm was exactly as documented,  except  that for all algorithms except  
BFGS,  the portion of the code scaling the search vector during the first n 
iterations was removed.  The test functions included the extended Rosenbrock 
and extended Powell functions documented by Spedicato [15], defined respec- 
tively by 

n/2 
f ( x )  = ~'~ 100(x21 - x~i_02 + (1 - x2i_l) 2 (24) 

and i=1 
nl4 

f ( x )  = Z (X4i-3 "[- 10X4i-2)2 + 5(X4i-1 -- x4i)2 -I'- (X4i_ 2 -- 2x4/_04 
i=1 

q- 10(X4i-3 -- X4i) 4. ( 2 5 )  
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Both of these share the proper ty  that as increases,  the number  of function 

evaluations should not. Also included were the Wood and Weibull functions,  

documented  in Shanno and Phua  [14], Oren 's  power  function 

f ( x )  = ( x ' A x )  2, A = [ a J ,  aij = i6ii, (26) 

and the Mancino function documented  by Spedicato and defined by 

F ( x )  = 2 f i ,  (27) 
i=1 

and 

f~ = ~ [(x~ + ill)re(sin ~ log(x~ + i l l )m+ cos ~ log(x~ + ill)m)] 
j = l  

+/3nx~ + (i - nl2) ~, 

with o~ = 5,/3 = 14, y = 3, x0 =(afI(O) . . . . .  aft(O)), and 

-n{3 
a = / 3 2 F / 2  _ ( a  -I- 1)2(n --  1)  2. 

The functions defined by (26) and (27) are the two of general size where the 

number  of function evaluations increases with n. (26) is homogeneous ,  as 

mentioned in Section 3. The Mancino function is the sole general function tested 
for relatively large n that  gives some indication of the relative efficiencies of the 

two initial scalings. 
The Rosenbrock  function was run for n = 2 and n = 20. In fact ,  runs with large 

values of n (up to 80) were tried, with the scaled versions remaining invariant, 

and all others increasing, although the increase in OSS2 was minimal above  20. 

We here document  only n = 2 and n = 20. 

The Powell  function was run with n = 4 and n = 36, the power  function with 
n = 20, and the Mancino function with n = 10, 20 and 30. The Wood and Weibull 

functions have  n = 4 and n = 3, respectively.  The results, for  the initial est imate 

x0 in parentheses ,  are summiarized in Table 1. I T E R  denotes iterations, I F U N  
function and gradient evaluations.  

For all problems,  the step bound was limited to Izlx;J -< 3, with the exception of 
the Weibull function, where ZlXl = 300, ax2 = 3 and ax3 -- 30. The runs were done 
on a DEC 10 computer ,  using double precision, and convergence achieved when 
all gradient elements  were less than 10 -5 . 

As Table 1 clearly shows, with the except ion of the power  function, the OSS2 
algorithm is clearly not competi t ive with either OCON10 or BFGS18. Also, while 
there is little to choose between them, BFGS 18 outper forms OCON10 on all but 
the Powell  function. Also, as previously noted, BEGS18 and OCON 10 dominate  
BFGS and OCON as problem size increases.  

The compar isons  between the four  methods (excluding OSS2) on small 
problems,  however ,  may slightly favor  the unscaled OCON.  Exac t  reasons for  
the erratic behavior  of scaled and unscaled methods on small problems to date 
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elude us. The MINI02  a lgor i thm sets H0 = 100 .  S/G, where  S=JlAxiJ[, the Eucl i -  

dean  no rm of the vec tor  of step bounds ,  and  G = IIg011. Thus  a very  small  o~ is 

a lways  chosen ,  and a great  deal of noise  is in t roduced .  Our  exper ience  seems to 

indicate  that  super ior i ty  here is a lmos t  total ly due to round-off  cons ide ra t ions ,  

and  defies careful  analys is ,  bu t  fur ther  tes t ing ma y  u n c o v e r  here tofore  un-  

d i scovered  pa t te rns .  

In  all even t s ,  for  all p rob lems  of modera te  to large size, we r e c o m m e n d  

BFGS18,  and  let the user  draw his own  conc lus ions  conce rn ing  small  p roblems.  
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