
Digital Object Identifier (DOI) 10.1007/s101070100290

Math. Program., Ser. B 92: 555–582 (2002)

M.J.D. Powell

UOBYQA: unconstrained optimization by quadratic
approximation

Received: December 7, 2000 / Accepted: August 31, 2001
Published online April 12, 2002 – Springer-Verlag 2002

Abstract. UOBYQA is a new algorithm for general unconstrained optimization calculations, that takes
account of the curvature of the objective function, F say, by forming quadratic models by interpolation.
Therefore, because no first derivatives are required, each model is defined by 1

2 (n+1)(n+2) values of F, where
n is the number of variables, and the interpolation points must have the property that no nonzero quadratic
polynomial vanishes at all of them. A typical iteration of the algorithm generates a new vector of variables,
x̃t say, either by minimizing the quadratic model subject to a trust region bound, or by a procedure that should
improve the accuracy of the model. Then usually F(̃xt) is obtained, and one of the interpolation points is
replaced by x̃t . Therefore the paper addresses the initial positions of the interpolation points, the adjustment
of trust region radii, the calculation of x̃t in the two cases that have been mentioned, and the selection of the
point to be replaced. Further, UOBYQA works with the Lagrange functions of the interpolation equations
explicitly, so their coefficients are updated when an interpolation point is moved. The Lagrange functions
assist the procedure that improves the model, and also they provide an estimate of the error of the quadratic
approximation to F, which allows the algorithm to achieve a fast rate of convergence. These features are
discussed and a summary of the algorithm is given. Finally, a Fortran implementation of UOBYQA is applied
to several choices of F, in order to investigate accuracy, robustness in the presence of rounding errors, the
effects of first derivative discontinuities, and the amount of work. The numerical results are very promising
for n ≤ 20, but larger values are problematical, because the routine work of an iteration is of fourth order in
the number of variables.

1. Introduction

This paper describes the techniques that are used by the Fortran 77 software, namely
UOBYQA, that the author has developed recently for unconstrained optimization cal-
culations, when first derivatives of the objective function are not available. We use the
notation F(x), x ∈Rn , for the objective function. It is specified by a subroutine that
calculates F(x) for any vector of variables x in Rn . The user also has to provide an
initial vector of variables, xb say, and initial and final values, ρbeg and ρend say, of a trust
region radius ρ. Values of ρ are chosen automatically that satisfy ρbeg ≥ ρ ≥ ρend. For
each one, typical distances between successive points at which F is calculated are of
magnitude ρ, and ρ is not reduced until the objective function stops decreasing for such
changes to the variables. Thus a highly useful feature of the software is that it is suitable
for noisy objective functions. Indeed, the distances between the points provide some
control over the contributions from the noise to estimates of first and second derivatives
of F. On the other hand, noise is very harmful to algorithms that calculate derivative

M.J.D. Powell: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver
Street, Cambridge CB3 9EW, England, e-mail: mjdp@cam.ac.uk

Mathematics Subject Classification (2000): 65D05, 65K05, 90C30, 90C56

556 M.J.D. Powell

estimates from the differences between function values that occur when small changes
are made to the variables.

Our derivative estimates are contained in a quadratic model

Q(x) = cQ + gT
Q
(x−xb) + 1

2 (x−xb)
T GQ (x−xb), x ∈Rn , (1)

that is constructed by interpolation to values of the objective function. We let xb be the
initial vector that has been mentioned already in the case ρ = ρbeg, but, whenever ρ is
reduced, xb is changed to the vector of variables of the least calculated value of F so far.
Here we are trying to prevent damage from computer rounding errors in the computation
of Q(x), by picking xb so that ‖x−xb‖ becomes small for relevant vectors x. Thus xb
is available when Q is constructed, so the parameters of the quadratic model are the
real number cQ , the vector g

Q
∈Rn , and the n×n symmetric matrix GQ . Hence the

linear space of quadratic polynomials fromRn toR has dimension m = 1
2 (n+1)(n+2).

Therefore the parameters of Q are defined by a system of interpolation equations of the
form

Q(xi) = F(xi), i =1, 2, . . . , m, (2)

where the points xi , i = 1, 2, . . . , m, are generated automatically by the algorithm in
ways that will be specified. The UO part of the name UOBYQA denotes unconstrained
optimization, BY is just by, and QA denotes quadratic approximation, because of the
importance of the model (1).

For reasons given by Powell (2001), which will be obvious later, we require the
Lagrange functions of the interpolation problem (2). For j = 1, 2, . . . , m, the j-th
Lagrange function is the quadratic polynomial � j fromRn to R that has the properties

� j(xi) = δi j , i =1, 2, . . . , m, (3)

where δi j is the Kronecker delta. Our notation for its parameters is shown in the
expression

� j (x) = c j + gT
j
(x−xb) + 1

2 (x−xb)
T G j (x−xb), x ∈Rn, (4)

which is analogous to equation (1). Because conditions (2) and (3) imply the identity

Q(x) =
m∑

j=1

F(x j) � j(x), x ∈Rn, (5)

it follows from expression (4) that the parameters of Q have the values

cQ =
m∑

j=1

F(x j) c j , g
Q

=
m∑

j=1

F(x j) g
j

and GQ =
m∑

j=1

F(x j) G j . (6)

The Fortran software works explicitly with all the first and second derivative parameters
of all the Lagrange functions, and also g

Q
and GQ are constructed, but there is no need

to retain cQ and c j , j =1, 2, . . . , m.

UOBYQA: unconstrained optimization by quadratic approximation 557

The quadratic model is used in a trust region calculation. Specifically, d ∈Rn is set
to an estimate of the solution of the problem

minimize Q(xk+d) subject to ‖d‖ ≤ �, (7)

where k is the integer in [1, m] such that F(xk) is the least of the values F(xi), i =
1, 2, . . . , m, any ties being broken by preferring the F(xk) that was calculated first.
Further, the vector norm of the problem (7) is Euclidean, and � is another trust region
radius that satisfies � ≥ ρ. The advantage of introducing � is to allow the lengths of
the changes to the variables to exceed ρ, which helps to avoid some loss of efficiency
that may occur otherwise, because ρ is never increased by the algorithm. We will find
in Sect. 3 that � is adjusted in a way that is typical for trust region methods.

We do not allow ρ to increase, because increases would necessitate more decreases
later, and usually it is onerous to make decreases, due to some tests that have to be
satisfied. These tests respond to the question, raised in the opening paragraph, whether
the objective function has stopped decreasing for the current value of ρ. We introduce
the tests by considering the situation when d solves the problem (7) with �=ρ, but the
calculation of the objective function at xk+d reveals F(xk+d)> F(xk). Then ρ should
be reduced if Q is a good approximation to F in the region {x : ‖x−xk‖≤ρ}, but we
doubt the goodness of Q if one or more of the distances ‖xi −xk‖, i = 1, 2, . . . , m, is
greater than 2ρ. Therefore the tests may require the interpolation point x j , say, to be
moved into the neighbourhood {x : ‖x −xk‖ ≤ ρ} before ρ is reduced. We call such
a move a model step. It is usually followed by a step to xk+d, where d is defined by the
trust region calculation (7) for the current value of ρ.

The description of the details of the algorithm is divided into three sections. Two
trust region subproblems have to be solved, and they are the subject of Sect. 2. One of
them is the computation (7), and the other one is the problem

maximize |� j(xk+d)| subject to ‖d‖ ≤ ρ, (8)

where � j is the Lagrange function (4). The reason for this calculation is that the resultant
value of xk+d is a suitable new position for the interpolation point x j , when it is moved
by a model step. Indeed, this choice maintains and assists the nonsingularity of the
interpolation equations (2) (see Powell, 2001). After the initial quadratic model has
been formed, which requires m function evaluations, then each vector of variables for
a new value of F is generated by one of the two trust region subproblems. The ways
of choosing between these alternatives, and of deciding which interpolation point to
move in the case of a model step, are explained in Sect. 3. The adjustments of the trust
region radii are also specified there. Then Sect. 4 describes the initialization procedure
that provides the first m interpolation points, their Lagrange functions, and the first
quadratic model. Another topic of Sect. 4 is the updating of the coefficients of the
Lagrange functions and the quadratic model when an interpolation point is moved.
These moves include not only model steps, but also the replacement of an interpolation
point by xk+d after the calculation of F(xk+d), where d is the solution of the problem
(7). A summary of the complete algorithm is given in Sect. 5, with a few comments on
its implementation. Finally, the performance of the algorithm in practice is shown by
some numerical experiments that are presented and discussed in Sect. 6.

558 M.J.D. Powell

The idea of forming quadratic models by interpolation for optimization without
derivatives was proposed by Winfield (1973). The present work is a development of
a method that uses linear polynomial models for constrained calculations (Powell, 1994).
An early version of this development is addressed in a survey by the author (Powell,
1998) of direct search methods for unconstrained optimization. Some of our techniques
can also be found in the algorithm of Conn, Scheinberg and Toint (1997a, 1997b),
but that algorithm does not employ Lagrange functions. Furthermore, the UOBYQA
software includes a new way of achieving a fast rate of convergence, by making use of
the bound on the error of the quadratic model that is given by Powell (2001).

2. The two trust region subproblems

The present version of UOBYQA does not take advantage of any sparsity in second
derivatives of the objective function. Therefore we allow the solution of the subproblem
(7) to employ O(n3) computer operations, which is not excessive as the total number
of coefficients of the Lagrange functions is O(n4), and they are all updated when an
interpolation point is moved. Specifically, we apply the trust region method of Moré and
Sorensen (1983), because of its control of the accuracy that is achieved. Some details of
the implementation of that method by the UOBYQA software are given in the first half
of this section.

The vector h Q =g
Q

+GQ(xk−xb) is calculated, because expression (1) implies the
identity

Q(xk+d) = Q(xk) + hT
Q d + 1

2 d T GQ d, d ∈Rn . (9)

It follows from the KKT conditions of the subproblem (7) that d should satisfy the
equation

(GQ + θI) d = −hQ, (10)

where I is the n×n unit matrix, and where θ is a nonnegative number such that GQ+θI
is positive definite or semi-definite. Further, if θ is positive, then ‖d‖=� should hold.
Therefore the method of Moré and Sorensen may require the solution of the system (10)
for several trial values of θ .

This task demands very little effort if the matrix GQ is tridiagonal. Moreover, the
equations (10) are equivalent to the system(

� GQ � T + θI
)
(� d) = −� hQ, (11)

where � is any n×n orthogonal matrix. Therefore in the trust region calculation GQ and
hQ are overwritten by � GQ � T and � hQ , respectively, where � is chosen to make the
new GQ tridiagonal. Finally, after calculating an acceptable d from the new equations
(10), this d is � times the required d, so it is overwritten by � Td, which preserves the
constraint ‖d‖ ≤ � because � is orthogonal. The choice of �, the reduction of GQ

to tridiagonal form, and the multiplications by � and � T can all be done in O(n3)

computer operations (see Sect. 7-4 of Parlett, 1980, for instance).

UOBYQA: unconstrained optimization by quadratic approximation 559

After making the system (10) tridiagonal, the algorithm tries θ = 0. If a Cholesky
factorization shows that GQ is positive definite, and if the resultant d satisfies ‖d‖≤�,
then the required d has been found. In this case, however, an estimate of the least
eigenvalue of GQ , λQ say, may be needed later. ThereforeλQ is computed with a relative
error of at most 0.01, using the tridiagonal form of GQ .

Otherwise, the final d will have the property ‖d‖ = �. Let d = d(θ) denote the
solution of the system (10) for any θ such that GQ+θI is positive definite. Then ‖d(θ)‖
decreases monotonically as θ increases, and d = d(θ) is acceptable if θ satisfies the
equation

1 / ‖d(θ)‖ = 1 /�. (12)

Useful properties of this form are that, if we regard 1/‖d(θ)‖ as a function of θ for
θ >−λQ , then it increases monotonically, it is concave, and its first derivative is bounded
below by 1/‖hQ‖. The algorithm takes advantage of these properties in a version of
the rule of false position for adjusting θ , that tries to find a solution of the nonlinear
equation (12).

Now Lemma 3.4 of Moré and Sorensen (1983) shows that, if the optimal d is on the
trust region boundary, if θ has any value greater than −λQ , if z is any vector inRd such
that ‖d(θ)+z‖=�, and if η is the ratio

η = zT (GQ + θI) z
/[

d(θ)T (GQ + θI) d(θ) + θ �2]
, (13)

then d̂ =d(θ)+z achieves the condition

Q(xk+d̂) − Q(xk) ≤ (1−η) min{Q(xk+d) − Q(xk) : ‖d‖≤�}. (14)

In other words, if η is small, then the reduction in Q that occurs when the vector of
variables is changed from xk to xk +d̂ is close to the greatest reduction that is allowed
by the trust region constraint, the relative difference between these reductions being
bounded above by η. Therefore UOBYQA accepts d̂ as a suitable d if the ratio (13) is
at most 0.01.

Only two choices of z are considered when this technique is applied. Usually z is
a multiple of d(θ), so d̂ is the vector

d̂ = � d(θ) / ‖d(θ)‖, (15)

and the condition for ending the trust region calculation simplifies to the inequality(
�

‖d(θ)‖ − 1

)2

≤ 0.01

(
1 + θ �2

d(θ)T (GQ + θI) d(θ)

)
. (16)

A different z may be necessary for good efficiency, however, in the hard case when
GQ + θI has to be nearly (or exactly) singular. Then the Cholesky factorization of
GQ +θI may break down due to a negative pivot for some of the values of θ that are
used. When this happens, a vector v is constructed with the property vT (GQ+θI)v<0,
that tends to be an eigenvector of GQ with eigenvalue λQ as θ →−λQ . A multiple of
this vector is the alternative choice of z. Numerical experiments have confirmed that it

560 M.J.D. Powell

is very suitable for achieving the termination condition η≤0.01 in pathologically hard
cases.

The other trust region subproblem (8) can be solved by two applications of the
method that has just been considered, because we can put Q =� j and then Q =−� j in
the calculation (7) with �=ρ. The amount of work of this approach, however, may be
unacceptable. Indeed, x j is a candidate for a move by a model step when the subproblem
(8) occurs, but the move is taken only if the resultant value of |� j(xk+d)| is sufficiently
large. Thus several values of j may be tried before a move is made, and there are about
1
2 n2 possible choices of j . Fortunately, a crude solution of the subproblem is adequate.
Therefore UOBYQA applies a procedure that makes |� j(xk+d)| relatively large subject
to ‖d‖≤ρ in only O(n2) operations, as described in the remainder of this section.

The integer j in the subproblem (8) is always different from k, so the Lagrange
conditions (3) include � j(xk) = 0. Therefore, recalling the notation (4), and letting h j
be the vector g

j
+G j(xk−xb) which is calculated, the analogue of expression (9) is that

the subproblem can be written in the form

maximize
∣∣hT

j d + 1
2 d TG j d

∣∣ = |� j(xk+d)| subject to ‖d‖ ≤ ρ. (17)

Further, because the trust region constraint allows d to be replaced by −d, it is equivalent
to consider the calculation

maximize
∣∣hT

j d
∣∣ + 1

2

∣∣d TG j d
∣∣ subject to ‖d‖ ≤ ρ. (18)

Now, if d̂ and d̃ are values of d that maximize |hT
j d| and |d TG j d|, respectively,

subject to ‖d‖≤ρ, then d may be an adequate estimate of the solution of the problem
(17), if it is the choice between ±d̂ and ±d̃ that gives the largest value of the objective
function of the problem. Indeed, for every feasible d, including the exact solution of the
present calculation, we find the elementary bound∣∣hT

j d
∣∣ + 1

2

∣∣d TG j d
∣∣≤ ∣∣hT

j d̂
∣∣ + 1

2

∣∣̃d T
G j d̃

∣∣ + ∣∣hT
j d̃

∣∣ + 1
2

∣∣̂d T
G j d̂

∣∣
≤2 max

[∣∣hT
j d̂

∣∣ + 1
2

∣∣̂d T
G j d̂

∣∣, ∣∣hT
j d̃

∣∣ + 1
2

∣∣̃d T
G j d̃

∣∣] . (19)

It follows that the proposed choice of d gives a value of |� j(xk +d)| that is at least
half of the optimal value. Now d̂ is the vector ±ρ h j/‖h j‖, while d̃ is an eigenvector
of an eigenvalue of G j of largest modulus, which would be too expensive to calculate.
Therefore the UOBYQA software retains d̂, but generates a different d̃ by the method
of the next paragraph, which includes some features of the power method for obtaining
large eigenvalues.

Because |̃d T
G j d̃| is large only if ‖G j d̃‖ is substantial, the technique begins by

finding a column of G j , w say, that has the greatest Euclidean norm. Hence, letting
v1, v2, . . . , vn be the columns of the symmetric matrix G j , we deduce the bound

‖G j w‖≥‖w‖2 = max{‖vk‖ : k=1, 2, . . . , n} ‖w‖
≥n−1/2

[∑n
k=1 ‖vk‖2

]1/2 ‖w‖ ≥ n−1/2 σ(G j) ‖w‖, (20)

UOBYQA: unconstrained optimization by quadratic approximation 561

where σ(G j) is the spectral radius of G j . It may be disastrous, however, to set d̃ to
a multiple of w, because wTG j w is zero in the case

G j =

1 1 1 1
1 −1 −2/3 −2/3
1 −2/3 −1 −2/3
1 −2/3 −2/3 −1

 , (21)

for example. Therefore the algorithm picks d̃ from the two dimensional linear subspace
ofRn that is spanned by w and G j w. Specifically, d̃ has the form α w+β G j w, where
the ratio α/β is calculated to maximize the expression

|(α w + β G j w)T G j (α w + β G j w)| / ‖α w + β G j w‖2, (22)

which determines the direction of d̃. Then the length of d̃ is defined by ‖̃d‖=ρ, the sign
of d̃ being unimportant. This construction gives the optimal d̃ in the case (21), because
two eigenvectors of G j are in the span of w and G j w, and they include the eigenvector
of the eigenvalue that has modulus σ(G j).

This choice of d̃ is never very bad, because it achieves the property∣∣̃d T
G j d̃

∣∣ ≥ 1
2 n−1/2 σ(G j) ρ2. (23)

A proof of this assertion begins with the remark that, by construction, the maximum

over α and β of expression (22) is just |̃d T
G j d̃|/ρ2. Therefore condition (23) holds

if there exist values of α and β such that the ratio (22) is at least 1
2 n−1/2σ(G j). We

consider the case

α = ‖G j w‖ and β = ±‖w‖, (24)

where the ± sign is chosen so that the signs of (α2wTG j w+β2wTG 3
j w) and αβ wTG 2

j w

are the same. Thus the numerator of expression (22) is bounded below by |2αβ wTG 2
j w|

=|2α3β|. Moreover, the values (24) and Cauchy–Schwarz imply the upper bound

‖α w + β G j w‖2 ≤ α2 ‖w‖2 + |2αβ| ‖w‖ ‖G j w‖ + β2 ‖G j w‖2 = 4α2β2. (25)

Hence expression (22) is at least 1
2 |α/β| = 1

2‖G j w‖/‖w‖ in the case (24), which is
bounded below by 1

2 n−1/2σ(G j) because of condition (20). The proof of property (23)
is complete.

Having generated d̂ and d̃ in the ways that have been described, the algorithm sets
d to a linear combination of these vectors, but the choice is not restricted to ±d̂ or ±d̃
as suggested in the paragraph that includes inequality (19), unless d̂ and d̃ are nearly or
exactly parallel. Instead, vectors û and ũ of length ρ are found in the span of d̂ and d̃
that satisfy the conditions ûT ũ = 0 and ûTG j ũ = 0, which is a 2×2 matrix eigenvalue
problem. Then d has the form d = cos φ û + sin φ ũ. Further, φ is chosen to provide
a relatively large value of the function

|� j(xk+d)|= ∣∣hT
j d + 1

2 d TG j d
∣∣ = ∣∣hT

j û cos φ + hT
j ũ sin φ

+ 1
2 ûTG j û cos2φ + 1

2 ũTG j ũ sin2φ
∣∣, 0≤φ≤2π. (26)

562 M.J.D. Powell

The φ that maximizes this expression can be derived from a quartic polynomial equation,
but for convenience the choice of φ by the algorithm is restricted to integer multiples of
π/4. Thus the final value of |� j(xk+d)| is the quantity

max
[∣∣hT

j û
∣∣ + 1

2

∣∣̂uTG j û
∣∣, ∣∣hT

j ũ
∣∣ + 1

2

∣∣̃uTG j ũ
∣∣,

2−1/2 (∣∣hT
j û

∣∣ + ∣∣hT
j ũ

∣∣) + 1
4

∣∣̂uTG j û + ũTG j ũ
∣∣] . (27)

This quantity is never much less than the maximum value of the function (26). Specific-
ally, the author has found analytically that the ratio of expression (27) to the maximum
value is bounded below by (12+2

√
2)/17≈0.872.

During the numerical testing in the development of the UOBYQA software, compar-
isons were made between the true solution of the problem (8) and the given approximate
solution that requires onlyO(n2) computer operations. In these tests the ratio of expres-
sion (27) to the optimal value max{|� j(xk+d)| : ‖d‖≤ρ} was calculated whenever the
problem (8) was solved. For example, in five runs of the experiment of Sect. 6 that min-
imized the function (66) with n = 20, the problem (8) occurred 8466 times altogether.
The ratio was never less than 0.5, and the numbers of times it was less than 0.6, 0.7, 0.8
and 0.9 were 3, 65, 544 and 2519, respectively. The figures are better for smaller values
of n. For example, in the same experiment with n =5, the ratio was never less than 0.8,
and it was less than 0.9 on only 6 out of 194 occasions. Therefore our procedure for the
subproblem (8) seems to be suitable, there being no need for high precision in the new
position of an interpolation point that is moved by a model step.

3. The changes to the variables

Our algorithm is iterative, and we begin this description of the changes that are made
to the variables by defining an iteration in a convenient way. The definition is based on
the information that is required at the start of an iteration. That information includes
the current interpolation points xi , i =1, 2, . . . , m, the vector xb of expressions (1) and
(4), the gradient g

j
and the second derivative matrix G j of each of the current Lagrange

functions � j , j = 1, 2, . . . , m, and the gradient gQ and the second derivative matrix
GQ of the current quadratic model, which satisfies the interpolation equations (2). It
includes also the current values of the trust region radii � and ρ where �≥ρ, and the
integer k that is introduced in expression (7), so F(xk) is the least of the function values
F(xi), i = 1, 2, . . . , m. Furthermore, a key ingredient of the information is a decision
that has been taken already between two alternatives, namely whether the iteration will
calculate d ∈Rn by solving the problem (7), or whether an interpolation point will be
moved by a model step. In the latter case, the index j of the point that will be moved
and the new position of the point, namely xk+d, are available. A few other numbers are
required too, which will receive attention later.

We define an iteration to be the work of carrying out the given decision between the
alternatives, followed by all the operations that provide the information that has been
mentioned for the next iteration, except that the final iteration ends the computation
because a termination condition is satisfied. Therefore one new value of the objective

UOBYQA: unconstrained optimization by quadratic approximation 563

function is calculated on most iterations, and it is included in the quadratic model by
the updating methods that are given in Sect. 4. In this section we address not only
the changes that are made to the variables, but also the revision of xb, � and ρ, the
termination condition, the way of deciding between the alternatives for the next iteration,
and the selection of the index j of each interpolation point that will be moved by a model
step.

There is little to say about iterations that apply a model step, because they do not
alter xb, � and ρ, and always their decision between the alternatives is that the next
iteration will solve the problem (7). Of course the function value F(xk+d) is calculated
for the given vector d, and then the interpolation point x j is replaced by xk +d, which
requires the first and second derivative coefficients of the Lagrange functions and the
quadratic model to be updated. Further, k is not altered in the case F(xk +d) ≥ F(xk),
but otherwise it is changed to j , because the new F(x j) is the least calculated value of
the objective function so far. Another task of a model step iteration is explained in the
next paragraph. It occurs just before the updating, and is important to the fast rate of
convergence that is mentioned at the end of Sect. 1.

The task is concerned with the following theorem that is given in Powell (2001).
If the objective function has third derivatives that are bounded by a constant, M say,
then the difference between the quadratic model and the objective function satisfies the
condition

|Q(x) − F(x)| ≤ 1
6 M

m∑
i=1

|�i(x)| ‖x−xi‖3, x ∈Rn . (28)

One can take the view that this property of quadratic interpolation is of academic interest
only, because the third derivative assumption is too restrictive, because functions are
not differentiable in the presence of computer rounding errors, and because M is not
available. In practice, however, the algorithm employs inequality (28) in a way that can
be implemented for general objective functions, and that is highly successful at reducing
the number of iterations in comparison with earlier versions of UOBYQA. Therefore we
let 1

6 M be a nonnegative parameter of the software, that corresponds to 1
6 M in condition

(28), and that is included in the information at the beginning of each iteration. Then,
when F(xk +d) is obtained by a model step iteration, it is convenient to put x = xk +d
into the bound (28), in order to test whether 1

6 M seems to be large enough. Specifically,
the value of this parameter is overwritten by the number

max
[

1
6 M, |Q(xk+d) − F(xk+d)|

/ m∑
i=1

|�i(xk+d)| ‖xk+d−xi‖3
]
, (29)

where the functions and vectors in this expression are the ones that are given at the
beginning of the iteration. The description of the work that is done by a model step
iteration is complete.

Alternatively, an iteration of trust region type solves the problem (7) by the method
that is described in the first half of Sect. 2, which gives the trial step d. Further, that
method also provides an estimate of the least eigenvalue of the second derivative matrix

564 M.J.D. Powell

GQ if d is a Newton–Raphson step. We let λQ be this estimate in the case ‖d‖ < 1
2ρ,

but otherwise λQ is set to zero. The number

ε = 1
2 ρ2 λQ (30)

is stored, because, if the next iteration is going to move x j by a model step, then ε is
required in the selection of j .

We recall from the opening paragraph of Sect. 1 that typical distances between
successive points at which F is calculated are of magnitude ρ. Therefore the current
iteration computes F(xk+d) if and only if ‖d‖≥ 1

2ρ holds. Attention will be given later
to the case ‖d‖< 1

2ρ. When F(xk +d) is obtained, we take the opportunity of revising
the parameter 1

6 M again to the value (29). Then the value of � is updated in a way that
depends on the ratio

r = [F(xk) − F(xk+d)] / [Q(xk) − Q(xk+d)] . (31)

Specifically, the details of the updating are typical of trust region methods, because we
assume that the trust region is too conservative, adequate or overambitious in the cases
r ≥ 0.7, 0.1 < r < 0.7 or r ≤ 0.1, respectively. Therefore � is overwritten by the new
trust region radius

max
[
�, 5

4 ‖d‖, ρ + ‖d‖]
, r ≥0.7,

max
[1

2 �, ‖d‖]
, 0.1<r <0.7,

1
2 ‖d‖, r ≤0.1,

(32)

except that the new value is set to ρ if it would satisfy �≤ 3
2ρ otherwise, because �≥ρ

is mandatory, and we will find that not allowing � to be slightly larger than ρ is helpful
occasionally.

Next, because F(xk +d) is available, it is usual to replace one of the points xi ,
i =1, 2, . . . , m, by xk+d, a replacement being obligatory in the case

F(xk+d) < F(xk), (33)

in order to retain the least calculated value of F. The details of this part of the algorithm
are given in the next section. Let t be the index of the new interpolation point if
a replacement is made and let t be zero otherwise. Of course Q and �i , i =1, 2, . . . , m,
are updated if t �= 0. Further, the value of the index k of the best interpolation point is
altered to t when the reduction (33) is achieved.

When inequality (33) is satisfied for the old value of k, it seems that trust region steps
are helpful to the main calculation. In this case, therefore, the values of xb and ρ are
not changed, and the decision is taken that the next iteration will also solve the problem
(7), which completes the work of the current iteration. We expect this strategy to be
advantageous on average, but, if a long sequence of trust region steps lies in a linear
subspace of Rn that has dimension less than n, then some important features of the
objective function may be ignored for many iterations. The algorithm also perseveres
with trust region steps whenever t �=0 and ‖d‖>2ρ occur, because the model has been
revised, and, if inequality (33) failed, then the new value of � is at most 1

2 ‖d‖.

UOBYQA: unconstrained optimization by quadratic approximation 565

Now the quadratic model is assumed to be adequate for the current ρ if the interpo-
lation points satisfy the conditions

‖xi −xk‖ ≤ 2ρ, i =1, 2, . . . , m. (34)

This property is enjoyed by the new position of xt when t �= 0 and ‖d‖ ≤ 2ρ, so the
iteration has made some useful progress if the distance ‖xt −xk‖ was greater than 2ρ

before the updating altered xt . Therefore in this case too the current iteration is complete,
and the next iteration will try another trust region step without changing xb and ρ.

The other possibilities are considered in the remainder of this section, including the
situation ‖d‖< 1

2ρ when F(xk +d) is not calculated. The notation will refer to current
functions and points, which differ from those at the beginning of the iteration if some
updating has been done. We will find that the iteration prepares for a model step if the
quadratic model seems to be inadequate. Otherwise, if ‖d‖ > ρ holds, then again the
next iteration takes a trust region step with the new � for the current ρ. In the remaining
case, when the quadratic model seems to be suitable, and either condition (33) fails or
F(xk +d) is not calculated, then no further progress may be possible for the current ρ.
Therefore ρ is reduced, except that termination occurs if ρ has already reached the
prescribed lower bound ρend. The details of all these operations are as follows.

When the parameter (30) has the value ε = 0, and also in the earlier versions
of UOBYQA that did not take advantage of the bound (28), the quadratic model is
unacceptable if one or more of the conditions (34) fail. If unacceptability of the model
occurs, then the next iteration will move the point x j by a model step, where j is chosen
from the set

J = {i : ‖xi −xk‖ > 2ρ}. (35)

Usually the algorithm picks the least integer j ∈J that has the property

‖x j −xk‖ = max{‖xi −xk‖ : i ∈J }. (36)

Further, the move d for the model step is calculated by applying the method in the
second half of Sect. 2 to the problem (8).

Many calculations of the objective function can be saved, however, by using the
bound (28) to relax the tests for the acceptability of the quadratic model, in a way that
preserves the procedure of the previous paragraph in the case ε = 0. In order to be
specific, we construe the decision not to calculate F(xk +d) in the case ‖d‖ < 1

2ρ as
giving up an opportunity to reduce the objective function by an amount that is predicted
to be of magnitude ε. Further, if such possible changes to the objective function are being
neglected, then errors of ε in the quadratic model should be tolerable. These errors are
indicated in expression (28), which suggests that, if x is constrained by the trust region
bound ‖x−xk‖≤ρ, then the contribution to the error of the model from the position of
x j is approximately the quantity

1
6 M max

{|� j(x)| ‖x−x j‖3 : ‖x−xk‖ ≤ ρ
}

≈ 1
6 M ‖x j −xk‖3 max{|� j(xk+d)| : ‖d‖ ≤ ρ}. (37)

566 M.J.D. Powell

Therefore we prefer not to move x j if it satisfies the condition

1
6 M ‖x j −xk‖3 max{|� j(xk+d)| : ‖d‖ ≤ ρ} ≤ ε. (38)

We are ignoring the dependence of the other Lagrange functions on x j , however, in the
hope of finding a useful technique that can be implemented cheaply.

We are going to combine this idea with the operations of the paragraph that includes
equations (35) and (36). Moreover, we are concerned by the possibility that the parameter
1
6 M may be too small, because initially it is set to zero, so the value (30) is replaced
by ε = 0 if 1

6 M has been overwritten by the number (29) fewer than ten times. Then
the selection of an integer j for a model step iteration begins as before by forming the
set (35), and, if J is nonempty, by seeking a j that has the property (36). Further, we
retain the calculation of d from the problem (8), and now we also require the number
� j(xk +d), because the choice of d makes |� j(xk +d)| close to the maximum value in
expression (38). It follows that, if the inequality

1
6 M ‖x j −xk‖3 |� j(xk+d)| ≤ ε (39)

holds, then the position of x j seems to be adequate, so j is deleted fromJ , and another j
is found that satisfies equation (36) if the diminished set J is nonempty. This procedure
continues recursively until j ∈J fails the test (39), or untilJ is exhausted. In the former
case, the work of the present iteration is complete, and the next iteration has to move x j
to xk+d by a model step.

Otherwise, the tests for the acceptability of the quadratic model are achieved, so we
ask whether further calculations are required for the current value of ρ. The answer is
affirmative if and only if ‖d‖>ρ holds, where d is now the solution of the problem (7) at
the beginning of the present iteration. Then the decision is taken to solve the trust region
problem (7) on the next iteration. The resetting of � to ρ immediately after expression
(32) helps to provide ‖d‖≤ρ.

In the remaining situation, no more iterations are required for the present value of ρ,
because we have a good quadratic model, but it seems that steps of length ρ fail to
decrease the objective function. Therefore, if ρ > ρend, the algorithm reduces ρ from
ρold to ρnew, say, by applying the formula

ρnew =

ρend, ρend < ρold ≤ 16 ρend,√

ρold ρend, 16 ρend < ρold ≤ 250 ρend,

0.1 ρold, ρold > 250 ρend,

(40)

which is designed to provide reductions by about a factor of ten that achieve ρ = ρend

eventually. Further, xb is overwritten by xb + xk, which makes no difference to the
second derivative matrices GQ and G j , but the gradient vectors of the quadratic model
and Lagrange functions become g

Q
+GQ xk and g

j
+G j xk, j =1, 2, . . . , m, respectively.

Then � is set to max [1
2ρold, ρnew], which has the advantage of allowing a trust region

step that satisfied ‖d‖ < 1
2ρ for ρ = ρold. We are now ready to begin the iterations

with ρ=ρnew, and the decision between the alternatives for the first of them is that the
problem (7) will be solved.

UOBYQA: unconstrained optimization by quadratic approximation 567

Of course termination occurs when ρ=ρend and no more iterations are required, but
another value of the objective function may be calculated. Specifically, if the solution of
the problem (7) satisfied ‖d‖< 1

2ρ, then the value of F(xk+d) has not been computed, so
the algorithm does that computation now. Further, xk is overwritten by xk+d if inequality
(33) is achieved, in order that xk can be returned as the optimal vector of variables. This
device often provides a substantial improvement to the vector of variables, because,
when it is applied, the quadratic model is good and d is a Newton–Raphson step.

4. Initialization and updating

The initialization procedure depends on the data xb ∈ Rn and ρbeg > 0 that have to
be provided by the user of UOBYQA. It is usually helpful if the given xb is close to
the required vector of variables, while numbers of magnitude ρbeg are assumed to be
suitable as distances between any two of the interpolation points xi , i =1, 2, . . . , m, of
the initial quadratic model. The positions of these interpolation points, which are taken
from Powell (2001), are as follows.

They include x1 = xb and x2 j = xb +ρbeg e j , j = 1, 2, . . . , n, where e j is the j-th
coordinate vector in Rn . The choice of x2 j+1 depends on F(x2 j), however, in order to
provide a bias towards low function values. Specifically, defining σ j to be −1 or +1 in
the cases F(x2 j)≥ F(xb) or F(x2 j)< F(xb), respectively, UOBYQA applies the formula

x2 j+1 =
{

xb − ρbeg e j if σ j = −1,

xb + 2ρbeg e j if σ j = +1,
j =1, 2, . . . , n. (41)

Thus x2 j+1 is on the positive side of xb along the j-th coordinate direction if and only
if σ j is positive. Further, letting i(p, q) have the value

i(p, q) = 2n + 1 + p + 1
2 (q−1) (q−2), 1≤ p<q ≤n, (42)

the remaining initial interpolation points are assigned the positions

xi(p,q) = xb + ρbeg (σp ep + σq eq), 1≤ p<q ≤n. (43)

The notation (42) provides the property that the subscripts of the vectors (43) run through
the integers in the interval [2n+2, m].

These choices make it easy to derive the parameters of the first quadratic model (1)
from the conditions (2). Firstly, the coincidence x1 =xb gives cQ = F(x1), and then, for
j =1, 2, . . . , n, the fact that x2 j −xb and x2 j+1−xb are different nonzero multiples of
e j allows (g

Q
) j and (GQ) j j to be deduced from F(x2 j)−F(xb) and F(x2 j+1)−F(xb),

where (g
Q
) j and (GQ)pq denote the j-th component of g

Q
and the (p, q)-th element

of GQ , respectively. Finally, the off-diagonal elements of the symmetric matrix GQ are
obtained from the remark that equations (1), (2) and (43) imply the identity

cQ + ρbeg [σp (g
Q
)p + σq (g

Q
)q] + 1

2ρ 2
beg [(GQ)pp + 2σpσq (GQ)pq + (GQ)qq]

= F(xi(p,q)), 1 ≤ p < q ≤ n. (44)

568 M.J.D. Powell

Indeed, the required matrix element (GQ)pq is the only unknown quantity in this relation
for each p and q. Thus the positions of the interpolation points reduce the work of solving
the initial m×m system (2) to onlyO(n2) operations.

All the nonzero coefficients of all the initial Lagrange functions can also be computed
inO(n2) operations, because, for 1≤ p<q ≤n, the Lagrange function �i(p,q) has a very
simple form. It is derived from the remark that, if p �=q, then, because of the positions
of the interpolation points, only the i(p, q)-th of the products (xi − xb)p (xi − xb)q ,
i =1, 2, . . . , m, is nonzero, where the notation (x−xb) j denotes the j-th component of
x−xb. Hence we find the formula

�i(p,q)(x) = (
σpσq/ρ 2

beg

)
(x−xb)p (x−xb)q, x ∈Rn, 1≤ p<q ≤n, (45)

which shows that (Gi(p,q))pq =σpσq/ρ
2
beg is the only nonzero coefficient of �i(p,q).

Next we identify the nonzero coefficients of �k, k=2, 3, . . . , 2n+1, by making use
of the quadratic polynomials

�̂2 j(x) = (x−xb) j (x−x2 j+1) j

(x2 j −xb) j (x2 j −x2 j+1) j

�̂2 j+1(x)= (x−xb) j (x−x2 j) j

(x2 j+1−xb) j (x2 j+1−x2 j) j

 , x ∈Rn, j =1, 2, . . . , n. (46)

They satisfy the Lagrange conditions �̂k(xi)=δik , k=2, 3, . . . , 2n+1, for most integers
i in [1, m], the exceptions being i = i(p, j), 1≤ p< j , and i = i(j, q), j <q ≤n, where j
is the integer in [1, n] such that k is equal to 2 j or 2 j+1. It follows from the Lagrange
properties of formula (45) that the function

�k(x) = �̂k(x) −
j−1∑
p=1

�̂k(xi(p, j)) �i(p, j)(x) −
n∑

q= j+1

�̂k(xi(j,q)) �i(j,q)(x), x ∈Rn,

(47)

does achieve �k(xi) = δik , i = 1, 2, . . . , m, as required, where the first or second sum
is suppressed in the case j = 1 or j = n, respectively. Expressions (45), (46) and (47)
show that the nonzero off-diagonal elements of Gk =∇2�k are confined to the j-th row
and column of Gk. They also imply that (Gk) j j is the only nonzero diagonal element
of Gk. Similarly, only the j-th component of g

k
can be nonzero. Therefore it is easy to

calculate the parameters of the initial Lagrange functions �k, k =2, 3, . . . , 2n+1. The
parameters of �1, however, can all be nonzero. The algorithm extracts their values from
the elementary identity

�1(x) = 1 −
m∑

i=2

�i(x), x ∈Rn . (48)

Furthermore, the initialization procedure sets k for the first iteration to the least
integer in [1, m] such that F(xk) is the least of the function values F(xi), i =1, 2, . . . , m,
and it picks the initial values 1

6 M =0, ρ=ρbeg and �=ρbeg. The decision between the
alternatives for the first iteration of UOBYQA is that the problem (7) will be solved.

UOBYQA: unconstrained optimization by quadratic approximation 569

We now turn to the updating of the coefficients of the Lagrange functions when the
interpolation point xt is moved to the new position x̃t , say, but the positions of the other
interpolation points are preserved. We let the old and new Lagrange functions be �i ,
i = 1, 2, . . . , m, and �̃i , i = 1, 2, . . . , m, respectively. The point x̃t has to satisfy the
condition

�t (̃xt) �= 0, (49)

because otherwise the nonzero quadratic polynomial �t would vanish on the new set of
interpolation points, so the new system of equations (2) would be singular. Moreover,
for every integer i in [1, m], the difference �̃i −�i has to be a multiple of �̃t , in order
that �̃i agrees with �i at all the old interpolation points that are retained. Further, for
each i, the multiplying factor is defined by the equation �̃i (̃xt) = δit . Thus we deduce
the formulae

�̃t(x) = �t(x) / �t (̃xt), x ∈Rn, (50)

and

�̃i(x) = �i(x) − �i (̃xt) �̃t(x), x ∈Rn , i �= t. (51)

Therefore the algorithm updates the coefficients of the Lagrange functions in the fol-
lowing way. The coefficients of �̃t are set to the corresponding coefficients of �t divided
by �t (̃xt). Then, for every integer i in [1, m] that is different from t, the coefficients of
�̃i are set to the coefficients of �i minus the corresponding coefficients of �̃t multiplied
by �i (̃xt). The numbers �i (̃xt), i = 1, 2, . . . , m, are available, because x̃t is always the
vector xk +d that occurred in the most recent use of expression (29). These remarks
specify the updating method in a very convenient form.

Fortunately, as explained in Powell (2001), the formulae (50) and (51) have some
excellent stability properties. In particular, if �t is any quadratic polynomial, and if x̃t
is any point of Rn that obeys the constraint (49), then equation (50) gives the identity
�̃t (̃xt) = 1. Thus expression (51) provides �̃i (̃xt) = 0, i �= t, even if the old Lagrange
functions �i , i =1, 2, . . . , m, fail to satisfy any Lagrange conditions. Usually, however,
the old Lagrange functions were generated by the updating method on the previous
iteration. It follows from the present argument that, if x j is the interpolation point that
was moved, then the values

�i(x j) = δi j , i =1, 2, . . . , m, (52)

have been achieved already. Therefore we assume that the conditions (52) hold for an
integer j that is different from t. In this case, formula (50) shows that �̃t(x j) = 0 is

inherited from �t(x j)=0, so the function (51) satisfies �̃i(x j)= �i(x j)= δi j , i �= t. We
draw the following conclusions by applying these remarks recursively. Any failure in
the Lagrange conditions at an interpolation point is corrected by the updating method
when the interpolation point is moved to a new position. Then any further failures at that
point are caused only by computer rounding errors, even if there are large discrepancies
in the Lagrange conditions at the other interpolation points. We do not expect any large

570 M.J.D. Powell

discrepancies to occur, however, and this view is corroborated very well by numerical
experiments, as shown in Sect. 6.

The quadratic model has to be revised too, when xt is moved to the new position x̃t
and the other interpolation points are not disturbed. Then, letting Q and Q̃ be the old
and new models, the equations Q̃(xi) = Q(xi), i �= t, should hold. It follows that the
difference Q̃−Q is the multiple of the Lagrange function (50) that provides the value
Q̃(̃xt)= F(̃xt). Thus Q̃ is the quadratic polynomial

Q̃(x) = Q(x) + [
F(̃xt) − Q(̃xt)

]
�̃t(x), x ∈Rn . (53)

Therefore its coefficients are generated by adding to the coefficients of Q the corres-
ponding coefficients of �̃t multiplied by the factor

F(̃xt) − Q(̃xt) = F(xk+d) − Q(xk+d), (54)

which is also available from the most recent use of expression (29). Equation (53) implies
Q̃(̃xt)= F(̃xt) for any function Q(x), x ∈Rn , and it also implies Q̃(xi)= Q(xi), i �= t.
Therefore any failure in the condition Q(xt)= F(xt) is corrected when xt is moved, and
any further failures are due to computer rounding errors. Thus the stability properties of
the updating of Q are similar to those of the previous paragraph.

Finally, we address the selection of t, when F(xk+d) has been calculated for a trial
step d obtained from the problem (7). We recall from Sect. 3 that t may be positive
or zero, t = 0 being reserved for the case when no updating is done by the current
iteration, but otherwise the interpolation point xt is moved to the position x̃t = xk +d.
The algorithm picks a value of t from the set {1, 2, . . . , m} in the following way, and
then decides later whether to overwrite the choice by t =0.

Our remarks on condition (49) show that it is important for t to have the property

�t(xk + d) �= 0. (55)

Further, we wish to move an interpolation point that seems to be making a relatively
large contribution to the bound (28) on the error of the quadratic model. Both of
these objectives are observed by developing the idea of letting t be a value of i that
maximizes the product |�i(xk +d)| ‖xk +d − xi‖3, i = 1, 2, . . . , m. The first term of
the product is welcome in view of condition (55), and the second one is useful in the
case (33), because it promotes the replacement of an interpolation point that is far from
the current best vector of variables. We strengthen this aim by changing the product
to |�i(xk +d)| ‖xi − x̂k‖3, where x̂k is the value of xk for the next iteration, which is
xk instead of xk +d if F(xk +d) ≥ F(xk) occurs. Moreover, the position of xi is close
enough to x̂k if it satisfies ‖xi−x̂k‖≤ρ, so then we give priority to the term |�i(xk+d)|,
except that xk must not be moved if it is the best vector of variables so far. Specifically,
the algorithm combines these ingredients by setting t to a value of i that maximizes the
expression

|�i(xk+d)| max
[

1, ‖xi − x̂k‖3/ ρ3]
, i ∈{1, 2, . . . , m}\K, (56)

where K is empty or {k} if x̂k = xk +d or x̂k = xk, respectively. This value of t is
retained whenever condition (33) is achieved, and whenever the greatest of the products

UOBYQA: unconstrained optimization by quadratic approximation 571

(56) exceeds one, but otherwise t = 0 is preferred. Therefore a positive integer t that
satisfies |�t(xk +d)| > 1 is never rejected. Thus the updating tends to be beneficial to
the interpolation equations (2), because, if the equations are written in matrix form by
introducing any basis of the space of quadratic polynomials, then the replacement of
xt by x̃t = xk +d multiplies the determinant of the matrix by the factor �t(xk +d).
Furthermore, the details of this method for selecting t were influenced by numerical
results.

5. Summary of the algorithm

The following summary of the algorithm is divided into steps, where each step refers to
the relevant part of the material of the previous three sections. Every iteration begins at
Step 3. Here a zero value of the integer variable j indicates that the decision between
the alternatives is that d will be calculated by solving the problem (7). This use of j
complements the one that is mentioned in the first paragraph of Sect. 3, because j is
positive when a model step is required. Some further details of the implementation are
given after the summary.

Step 1. The user supplies the data that are specified in the opening paragraph of Sect. 1,
namely the initial vector of variables xb ∈Rn , the parametersρbeg and ρend that determine
the choices of ρ, and the subroutine that provides the value F(x) of the objective function
for any x inRn .

Step 2. The initialization procedure, explained in the first half of Sect. 4, generates the
initial set of interpolation points, with the coefficients of the initial quadratic model and
Lagrange functions. It also sets the values 1

6 M =0, ρ=ρbeg, �=ρbeg and j =0, and k
becomes the least integer in [1, m] that has the property

F(xk) = min {F(xi) : i =1, 2, . . . , m}. (57)

Step 3. If j = 0, then the problem (7) is solved by the method that is described in the
first half of Sect. 2, which provides the trial step d. Further, the number DNORM=‖d‖
is noted, and there is a branch to Step 8 if DNORM< 1

2ρ occurs.

Step 4. The new value of the objective function F(xk+d) is calculated, d being available
at the beginning of the iteration if j is positive. The numbers Q(xk+d) and �i(xk+d),
i = 1, 2, . . . , m, are computed too, using a technique that is given later in this section.
Then the parameter 1

6 M is overwritten by expression (29), and the value FOLD= F(xk)

is noted.

Step 5. If j = 0, then � is updated in the way that is the subject of the paragraph that
includes expression (32). Further, t is selected by the method in the last paragraph of
Sect. 4. Alternatively, if j >0, then t is set to j .

Step 6. If t > 0, then the interpolation point xt is moved to the position x̃t = xk +d,
using the updating formulae (50), (51) and (53) to revise the coefficients of the Lagrange
functions and the quadratic model. Moreover, the value of k is changed to t if F(̃xt)<

FOLD occurs, which preserves equation (57). Let DMOVE be the distance between the
old position of xt and xk for the new value of k.

572 M.J.D. Powell

Step 7. The tests that are stated in the two complete paragraphs after inequality (33)
are tried. Specifically, if t >0, and if at least one of the four conditions

j > 0, F(̃xt) < FOLD, DNORM > 2ρ and DMOVE > 2ρ (58)

holds, then j is set to zero and there is a branch to Step 3, in order to begin an iteration
that calculates a trust region step.

Step 8. The procedure in the paragraph that includes expression (39) is employed to
seek a positive integer j for a model step. If one is found, then the model step d will have
been calculated by applying the method in the second half of Sect. 2 to the problem (8).
Otherwise, either the conditions (34) are satisfied or the search for j >0 has exhausted
the set J , so j is set to zero.

Step 9. As mentioned soon after expression (39), there is a branch to Step 3 for a new
iteration either if j is positive or if both j =0 and DNORM>ρ occur.

Step 10. If ρ > ρend, then the algorithm performs the operations of the paragraph that
includes equation (40). They decrease ρ and � and revise xb before branching to Step 3
for the next iteration. Since j is already zero, the next iteration will generate a trust
region step by solving the problem (7).

Step 11. The iterations are now complete, but one more value of F may be required
before termination. Indeed, we recall from the last paragraph of Sect. 3 that F(xk +d)

is calculated if DNORM< 1
2ρ, and then xk is overwritten by xk+d if the reduction (33)

is achieved. Finally, the current xk is returned to the user as the best estimate of the
optimal vector of variables.

��

Unfortunately, the amount of work of both Step 4 and Step 6 isO(n4), because every
coefficient of every Lagrange function is relevant. Therefore these expensive parts of the
algorithm are simplified as much as possible. Specifically, the required coefficients of
the quadratic model are held in a vector vQ ∈Rn(n+3)/2, whose first n and last 1

2 n(n+1)

entries are the components of g
Q

and the elements of the lower triangular and diagonal
parts of GQ , respectively. Further, for each integer i in [1, m], the required coefficients
of the Lagrange function �i are stored similarly in a single vector vi ∈Rn(n+3)/2. Then
the updating formula (50) requires vt to be multiplied by [�t(xk +d)]−1, and, using
this new vt , formulae (51) and (53) require vi , i �= t, and vQ to be overwritten by the
vectors

vi − �i(xk+d) vt and vQ + [F(xk+d) − Q(xk+d)] vt , (59)

respectively. Moreover, in Step 4 we make use of the observation that equation (1), the
symmetry of GQ and the definition of vQ give the identity

Q(xk+d) − Q(xk) = g T
Q

d + d TGQ (xk−xb) + 1
2 d TGQ d = v T

Qw, (60)

UOBYQA: unconstrained optimization by quadratic approximation 573

where w ∈Rn(n+3)/2 does not depend on g
Q

and GQ . Its components are calculated

from the remark that, if j(p, q) is the integer in [n +1, 1
2 n(n +3)] that is defined by

(vQ) j(p,q)=(GQ)pq , 1≤ p≤q ≤n, then they have the values

w j =d j , j =1, 2, . . . , n,

w j(p,q) =dp (xk−xb)q + dq (xk−xb)p + dp dq, 1 ≤ p < q ≤ n,

w j(p,p) =dp (xk−xb)p + 1
2 d 2

p , p=1, 2, . . . , n.

 (61)

Thus w is formed in O(n2) operations, and then Q(xk +d)− Q(xk) is just the scalar
product v T

Qw. Now equation (60) remains true with no change to w if Q is replaced by
�i on the left hand side and if the subscript Q is replaced by i elsewhere. Hence we find
the formulae

�i(xk+d) − �i(xk) = v T
i w, i =1, 2, . . . , m. (62)

Therefore the O(n4) part of Step 4 is only the calculation of the scalar products (62),
where w has the components (61).

The method of the previous paragraph is the reason for the statement, made in
Sect. 1, that there is no need to retain the coefficients cQ and c j , j =1, 2, . . . , m, of the
functions (1) and (4). Indeed, the values of Q(xk +d) and �i(xk +d), i = 1, 2, . . . , m,
are obtained from the equations

Q(xk+d)= Q(xk) + v T
Q w= F(xk) + v T

Q w and

�i(xk+d) =�i(xk) + v T
i w = δik + v T

i w, i =1, 2, . . . , m.

}
(63)

Furthermore, we see that F(xk) is the only one of the function values F(xi), i =
1, 2, . . . , m, that has to be available at the start of an iteration of the algorithm, because
we do not work with the system (2) explicitly. Therefore F(xk) is one of the other
numbers that are mentioned at the end of the opening paragraph of Sect. 3. It is updated
occasionally. Specifically, Step 6 of the algorithm reduces F(xk) from FOLD to F(̃xt)

when the value of k is changed to t, because F(̃xt)<FOLD occurs.
Only one more quantity is present among the other numbers that are required at the

beginning of each iteration, namely NF, which is the number of values of F(x), x ∈Rn ,
that have been calculated so far. Of course it is set to m in Step 2 of the algorithm, and it
is increased by one in Step 4. One purpose of NF is that the choice of j for a model step,
given in the paragraph that includes inequality (39), depends on the number of updates
of 1

6 M that have been made. The algorithm employs the remark that this number has
the value NF−m. Furthermore, the user may prescribe an upper bound, NFMAX say, on
the number of calls of the subroutine that generates values of the objective function.
Then there is a return from Step 4 if NF=NFMAX holds at the beginning of the step, the
current xk being the final vector of variables.

One other situation may cause an early return. It is due to the fact that the method
for revising � in Step 5 is suitable only if the denominator Q(xk)−Q(xk+d) of the ratio
(31) is positive. This happens in theory, because d is a solution of the problem (7) that
has the property ‖d‖ ≥ 1

2ρ, but damage may be caused by computer rounding errors.
Therefore, if j is zero at the beginning of Step 5, there is a check on the computed value

574 M.J.D. Powell

of the scalar product (60). The calculations are terminated if v T
Qw≥0 occurs, and again

the current xk is the final vector of variables. An example of this early termination is
shown in the numerical results of the next section.

Finally, we mention a technique that reduces the work of Step 8. It depends on the
elementary bound

|� j(xk+d)|= ∣∣ δ jk + g T
k

d + d TG j (xk−xb) + 1
2 d TG j d

∣∣
≤‖d‖ ‖ g

k
+ G j (xk−xb) ‖ + 1

2 ‖d‖ 2 ‖G j‖F , j �=k, (64)

on the function (4), where ‖G j‖F is the Frobenius norm [∑n
p=1

∑n
q=1(G j)

2
pq]1/2. Thus,

for j �=k, the solution d of the problem (8) achieves the condition (39) if the coefficients
of � j have the property

1
6 M ‖x j −xk‖ 3

[
ρ ‖ g

k
+ G j (xk−xb) ‖ + 1

2 ρ2 ‖G j‖F

]
≤ ε. (65)

Now testing this inequality requires much less effort than the approximate solution of
the problem (8), although the complexity of both tasks isO(n2). Therefore, when ε>0,
and when the algorithm is asking whether j should be removed from J , inequality (65)
is tried first. Of course j is discarded from J if the inequality holds, but otherwise the
problem (8) is solved and condition (39) is tested as described already. We recall from
the end of Sect. 2 that in some numerical experiments the calculation (8) occurred 8466
and 194 times for n =20 and n =5, respectively. Those counts would increase to 16434
and 785, however, if the technique of this paragraph were not included in the algorithm.

6. Numerical results and discussion

The development of the UOBYQA software was guided by numerical experiments,
using objective functions of the form

F(x) =
n∑

i=1

[
ai −

n∑
j=1

(Si j sin x j + Ci j cos x j)
]2

, x ∈Rn . (66)

The way of generating the parameters of F is taken from Fletcher and Powell (1963),
and is as follows. The elements of the n ×n matrices S and C are random integers
from the interval [−100, 100], and a vector x∗ is chosen whose components are random
numbers from [−π, π]. Then the parameters ai , i = 1, 2, . . . , n, are defined by the
equation F(x∗)=0, and the starting vector xb is formed by adding random perturbations
from [−0.1π, 0.1π] to the components of x∗. All distributions of random numbers are
uniform. The remaining data for Step 1 in Sect. 5 are ρbeg = 0.1 and ρend = 10−8.
The number of variables is restricted severely by the O(n4) work of each iteration, the
calculations being done on a Sun Sparc 2 or Sparc 10 workstation. The values n = 3,
n =5, n =10 and n =20 were selected for most of the trials.

An advantage of the random numbers is that it is easy to generate many different
objective functions. We are going to consider 20 of them, 5 for each of the values of
n that have been mentioned. These test functions provide two other features that are

UOBYQA: unconstrained optimization by quadratic approximation 575

also helpful to learning by experiments. Firstly, because the number of terms in the sum
of squares (66) is equal to the number of variables, it happens often that the second
derivative matrix ∇2F is ill-conditioned at the required solution. Secondly, because F
is periodic, it has many saddle points and maxima. The UOBYQA software responds
to these challenges very well. Indeed, the greatest final value of F in the 20 trials is
2.48×10−14, and in that case the greatest modulus of a difference between a variable
and the corresponding component of x∗ is only 6.56×10−10, which is substantially less
than ρend. In two of the trials, however, the algorithm finds an optimal vector of variables
that is different from x∗.

Table 1. UOBYQA applied to functions of the form (66)

n Values of NFTOT
3 37 46 35 115∗ 45
5 75 74 110 69 63
10 229 455 222 398 645∗
20 1150 760 1502 1480 1074

The total number of calculations of F in each of the 20 trials, NFTOT say, is given in
Table 1. The asterisks indicate the two problems in which the final x is far from x∗. The
entries in the table suggest that those two problems are relatively hard and the variations
in the entries for each n show that the different random numbers provide several degrees
of difficulty. On the other hand, the table is not suitable for estimating the dependence
of NFTOT on n. Nevertheless, our results can be compared with those of Powell (1964)
for a conjugate direction method in the case (66). One finds that the UOBYQA software
requires fewer function evaluations, which is some compensation for the huge amount
of routine work that occurs in the construction of quadratic models by interpolation.

The usefulness of inequality (39) to the speed of convergence of UOBYQA was
investigated numerically. Those studies are reported in Powell (2001), but the main
conclusions are repeated now with some additional comments because of their impor-
tance. That work was also addressed by the author in his talk at the 17th Symposium
of the Mathematical Programming Society in Atlanta. We begin the present discussion
by recalling from Steps 8 and 9 of the summary of Sect. 5 that, if the computations of
UOBYQA with the current ρ are complete, then one or both of the conditions

‖x j −xk‖ ≤ 2ρ and 1
6 M ‖x j −xk‖ 3 |� j(xk+d)| ≤ ε (67)

must hold for every integer j in [1, m], where d is an approximation to the solution of
the problem (8). When ρ is reduced by formula (40), however, then it is usual for the
interpolation points to satisfy ‖x j −xk‖>2ρ, j �=k, for the new value of ρ, because of
the techniques that keep the interpolation points apart for the old ρ. Therefore, if the
bounds ‖x j −xk‖ ≤ 2ρ, j = 1, 2, . . . , m, have to be achieved eventually for the new
ρ, then the algorithm may have to move all but one of the interpolation points, which
would require m−1= 1

2 n(n+3) new values of the objective function. The purpose of the
alternative test for the acceptability of x j , namely inequality (39), which is the second
of the conditions (67), is to reduce the number of points that have to be moved for each

576 M.J.D. Powell

new ρ. It follows that the use of this inequality is successful if UOBYQA calculates
fewer than 1

2 n2 new values of F for most of its choices of ρ.
The UOBYQA software is highly successful in this way throughout the numerical

experiments of Table 1. For example, some details are given in Table 2 for the n = 5
and n = 20 calculations that require 110 and 1502 values of the objective function,
respectively. Each row of the table states the number of function values so far, namely
NF, and the least value of F so far, namely FBEST, when the iterations with ρ = ρold

are complete. We see that a substantial improvement in accuracy is achieved after each
reduction in ρ, and that the criterion for success, explained at the end of the previous
paragraph, is satisfied easily in the last five rows of the table. Therefore the algorithm
makes very good use of the bound (28) on the error of the quadratic model.

Table 2. The calculations so far when ρ is reduced

n = 5 n = 20
ρold

NF FBEST NF FBEST

46 6.6×10−1 10−1 488 1.0×100

68 4.5×10−4 10−2 984 9.5×10−4

90 7.1×10−6 10−3 1259 1.8×10−6

92 2.1×10−8 10−4 1352 1.5×10−8

98 1.4×10−9 10−5 1393 2.5×10−10

102 5.4×10−12 10−6 1424 1.9×10−12

105 1.2×10−16 10−7 1493 3.5×10−14

110 7.2×10−20 10−8 1502 2.9×10−18

If one ignores computer rounding errors, then it may be possible to show that the
excellent results in Table 2 as ρold decreases are due to superlinear convergence. In other
words, the average number of new values of the objective function for each ρ may tend
to zero as ρ → 0. We consider this conjecture briefly, assuming that the number of
reductions in ρ by a factor of ten is infinite, that F has bounded third derivatives, that the
relevant vectors of variables converge to a local minimum x∗ of the objective function,
that ∇2F(x∗) is positive definite, and that the techniques for adjusting the positions of
the interpolation points provide the property

max {|� j(xk+d)| : ‖d‖ ≤ ρ} ≤ c, j =1, 2, . . . , m, (68)

where xk satisfies equation (57) as usual, and where c is a positive constant. These
assumptions imply that � and ‖xk − x∗‖ are of magnitude ρ and bounded above by
a constant multiple of ρ, respectively. It follows from the second of the conditions (67)
that, if an iteration picks x j for a move by a model step, and if ε is at least a positive

multiple of ρ2, which is a likely consequence of the definition (30), then the magnitude
of ‖x j − x∗‖ is at least ρ2/3. Hence the new position x̃t of an interpolation point in
Step 6 of Sect. 5 is not going to be disturbed by a model step move, until ρ has
decreased from its present value, ρold say, to one of magnitude ρ

3/2
old , which implies that

the average number of model step moves for each ρ does tend to zero. This property is
also expected for the number of calculations of F(xk+d) when the trial step d solves the

UOBYQA: unconstrained optimization by quadratic approximation 577

problem (7). Indeed, because improvements to the quadratic model should cause any
Newton–Raphson steps to converge superlinearly, we have only to consider solutions
of the problem (7) that are prevented from being Newton–Raphson steps by the bound
‖d‖ ≤ �. Now the assumptions should imply that, after a finite number of iterations,
all the trust region steps give the decrease (33) in the objective function. Therefore the
reductions in ρ occur because a Newton–Raphson step satisfies ‖d‖ < 1

2ρ. Then the
first choice of � for the new ρ, namely max[1

2ρold, ρnew], ensures that the next solution
of problem (7) provides the same d. Further, because of the goodness of the quadratic
model, formula (32) should not reduce �. It follows that all the trust region steps may
become Newton–Raphson steps eventually, giving superlinear convergence. It would be
better, however, to establish this property without some of the assumptions that have
been made.

The calculation should terminate after a finite number of iterations if ρend is positive,
but the only analysis of this question so far depends on the limited precision of computer
arithmetic. Specifically, because the total number of different values of the objective
function is finite in practice, a least calculated value must occur, so the point xk that
satisfies equation (57) becomes fixed. Then, for each ρ, every trust region iteration
is followed by a model step iteration, and the trust region iterations reduce � until
�=ρ holds. Now, when xk is fixed, the trust region steps with �=ρ do not decrease
the number of integers j ∈ [1, m] that satisfy ‖x j −xk‖ ≤ 2ρ, while every model step
increases this number. Thus the number of iterations for each ρ is finite. Further, the
number of reductions in ρ is also finite, which completes the proof of termination.

Table 3. Examples of deterioration due to rounding errors

n Values of NFTOT
3 37 64 43 137∗ 54
5 92 93 155 87 83
10 290 590 285 560 728∗
20 1361 964 1939 2010 1365

We investigate the effects of computer rounding errors by repeating the calculations
of Table 1, after adding the constant 104 to the objective function (66), but ρbeg =0.1 and
ρend =10−8 are retained. The new values of NFTOT are given in Table 3. The additional
work in comparison with Table 1 can be attributed to the impossibility of constructing
good quadratic models by interpolation, when typical distances between interpolation
points are of magnitude ρ=10−7 or ρ=10−8. Indeed, when the new objective function
is tried in the Table 2 calculations, the new values of NF in the ρold = 10−6 row are
102 and 1430 for n = 5 and n = 20, respectively, and the corresponding computed
values of FBEST−104 are 3.6×10−12 and 1.8×10−11, so the damage to changes in the
variables from rounding errors occurs for ρ ≤ 10−7. Moreover, in all the test problems
of Table 3, a computed value of FBEST−104 is exactly zero before ρ reaches its final
value. Therefore all the work of UOBYQA with ρ = 10−8 makes no difference to the
final vector of variables. Further, the computer output shows that FBEST−104 is always
an integer multiple of 1.8189894×10−12 in practice. Such rounding errors cause 1

6 M to

578 M.J.D. Powell

become huge, due to the difficulties of estimating third derivatives from function values.
Thus the second of the conditions (67), which is important to superlinear convergence
in theory, is ineffective when ρ is too small. These remarks may be helpful to the choice
of ρend.

Table 4. Examples with first derivative discontinuities

n Values of NFTOT
3 115 112 122 127 117
5 396 245 330 393 270
10 978 1120 1266 1564 1074
20 5385 6022 5269 4517 4821

We tried applying UOBYQA to some functions with discontinuous first derivatives.
In the first of these experiments, the objective function is formed by replacing the sum
of squares of expression (66) by the sum of moduli of the terms in square brackets.
Then the 20 calculations of Table 1 are repeated, without changing the values of the
parameters. Unfortunately, the distance from the final xk to a local minimum is less than
ρend in only two cases with n = 3. For n = 5, these distances are 3×10−2, 1×10−3,
1×10−1, 7×10−4 and 6×10−6, while only one of the n =10 and one of the n =20 trials
yields ‖xk −x∗‖∞ < 0.1. It seems that the ill-conditioning, mentioned in the second
paragraph of this section, is too severe. Therefore UOBYQA was also applied to the
function

F(x) =
2n∑

i=1

∣∣∣ ai −
n∑

j=1

(Si j sin x j + Ci j cos x j)

∣∣∣ , x ∈Rn, (69)

S and C being matrices of size 2n×n. Their elements and x∗ ∈Rn are generated as before.
Then ai , i =1, 2, . . . , 2n, are defined by F(x∗)=0, and as usual the components of xb
differ from those of x∗ by random numbers from [−0.1π, 0.1π]. We retain ρbeg = 0.1
and ρend = 10−8, and again five test problems are generated for each of the choices
n = 3, n = 5, n = 10 and n = 20. The numbers of calculations of the objective function
that occurred are reported in Table 4. They are large because quadratic functions are
unsuitable for modelling first derivative discontinuities. On the other hand, the accuracy
that is achieved is excellent. Indeed, one of the final values of ‖xk−x∗‖∞ is 2.03×10−8,
and the final vectors of variables of all the other 19 cases are better because they satisfy
‖xk−x∗‖∞ <ρend.

Table 5. Some well-conditioned least squares calculations

n Values of NFTOT q(n)

3 36 36 35 31 35 34
5 64 54 59 67 64 63

10 161 159 161 185 157 164
20 509 473 488 486 467 486

UOBYQA: unconstrained optimization by quadratic approximation 579

We employ the smooth least squares form

F(x) =
2n∑

i=1

[
ai −

n∑
j=1

(Si j sin x j + Ci j cos x j)
]2

, x ∈Rn, (70)

of the function (69) to study the dependence of the amount of work of UOBYQA on n.
The numbers of calculations of the objective function in this case for the usual 20 test
problems are given in Table 5, where all the parameters are taken from the experiments
of Table 4, including ρbeg =0.1 and ρend =10−8. We see that the variations in the values
of NFTOT in each row are much less than before. Further, these entries can be fitted
quite well by the quadratic polynomial

q(n) = 0.8 n2 + 8.2 n + 2, n =3, 5, 10, 20, (71)

as shown by the rounded values in the last column of the table. Moreover, after every
Table 5 calculation, the vector of variables xk satisfies ‖xk−x∗‖∞ <ρend. Thus we find
that expression (70) provides some straightforward examples of successful applications
of UOBYQA. Therefore we use the Table 5 calculations to illustrate computation times,
which are measured in seconds by the Fortran function DTIME on a Sun Sparc 10
workstation. Special attention is given to the two trust region subproblems of Sect. 2,
and to the tasks of an iteration that require O(n4) operations, namely formula (63) for
generating �i(xk+d), i =1, 2, . . . , m, and the updating in Step 6 of Sect. 5. The times of
each task were obtained by comparing UOBYQA with a version that was programmed
to perform the particular task under consideration more than once. The results of these
investigations are reported in Table 6, the range of each entry in the body of the table
being as follows. The value of the stated quantity was found for each of the five trials in
the relevant row of Table 5, and then the range gives the least and greatest values that
occurred. The lengths of the ranges depend not only on the random parameters of the
objective functions, but also on some roughness in the method of DTIME. We see in
Table 6 that the work of solving the subproblems of Sect. 2 is not excessive, and that, if
n ≥10, then more than half of the time is taken by formula (63) and the updating. These
expensive operations are so simple that it would be easy to perform them efficiently on
a parallel machine.

Table 6. Some timings of the Table 5 examples

Total time Percentage of total time spent on
n

in seconds Prob. (7) Prob. (8) Eqn. (63) Updating
3 0.020–0.022 13%–16% 4%–6% 10%–13% 12%–16%
5 0.10–0.13 10%–12% 3%–5% 15%–17% 17%–20%

10 1.81–2.25 6%–7% 2%–4% 24%–25% 28%–30%
20 48.4–56.7 3%–4% 1%–3% 32%–35% 49%–50%

Finally, we consider a few well-known test problems that are without random num-
bers. Many researchers have employed Rosenbrock’s function

F(x) = 100
(
x2−x2

1

)2 + (1−x1)
2, x ∈R2, (72)

580 M.J.D. Powell

and the “singular” function

F(x) = (x1+10x2)
2 + 5(x3−x4)

2 + (x2−2x3)
4 + 10(x1−x4)

4, x ∈R4. (73)

We do so too, with the usual starting points (−1.2, 1.0) and (3.0,−1.0, 0.0, 1.0), re-
spectively, and we retain ρbeg =0.1 and ρend =10−8. Table 7 is the analogue of Table 2
for these trials. We see that the second part of expression (67) allows an excellent rate
of convergence in the case (72), but there are more than 30 new calculations of F
for each ρ in the other case, because of the singularity of ∇2F at the solution. The
early termination, mentioned in the penultimate paragraph of Sect. 5, occurred when
UOBYQA was applied to the function (73), so the tiny value of the objective function at
termination, namely F =4.5×10−34, shows that excellent accuracy is achieved before
further progress is prevented by computer rounding errors.

Table 7. UOBYQA applied to the functions (72) and (73)

Rosenbrock’s function (72) The singular function (73)
ρold

NF FBEST NF FBEST

39 3.5×10−1 10−1 75 4.0×10−4

82 1.3×10−6 10−2 123 7.1×10−9

87 5.2×10−8 10−3 160 9.3×10−12

93 3.3×10−13 10−4 214 2.9×10−16

94 3.3×10−13 10−5 262 9.0×10−21

96 6.5×10−15 10−6 295 3.1×10−23

98 2.7×10−21 10−7 348 9.0×10−29

100 7.1×10−23 10−8 386 4.5×10−34

The Chebyquad objective functions of Fletcher (1965) were also minimized by
UOBYQA. They are sums of squares, and their variables are n points of a quadrature
formula over the interval [0, 1], the starting values of the variables being xi = i/(n+1),
i = 1, 2, . . . , n. Therefore ρbeg = 0.2/(n +1) is suitable, and we try ρbeg = 0.1 and
ρbeg = 0.01 too. We persevere with the choice ρend = 10−8, and n takes the values
2, 4, 6 and 8. The middle three columns of Table 8 show the total number of function
calculations that UOBYQA requires in each of these cases. Good accuracy occurs, every
final value of F(xk) being within 2×10−17 of the least value of the objective function, F∗
say, which is zero for n =2, 4 and 6, and about 0.0035 for n =8. Fletcher (1965) uses the
Chebyquad examples to compare three old algorithms for unconstrained minimization
without derivatives, the best results being obtained by the conjugate direction method of
Powell (1964) that has been mentioned already. The entries in the last column of Table 8
are taken from Fletcher (1965). They are the number of function evaluations when the
method of Powell (1964) reduces the objective function to about F∗+10−13.

We see that the values of NFTOT in the middle three columns of Table 8 depend
quite strongly on ρbeg. In fact the differences between the columns are mainly due to
the calculations with ρ≥10−4. Hence one can take the view that much of the efficiency
has to be achieved from good strategies instead of from the fine details of quadratic
models. Moreover, Broyden, Dennis and Moré (1973) prove that close estimates of all

UOBYQA: unconstrained optimization by quadratic approximation 581

Table 8. Values of NFTOT for the Chebyquad examples

Choices of ρbegn Powell (1964)
0.1 0.2/(n+1) 0.01

2 24 25 29 41
4 59 73 82 91
6 186 135 155 288
8 394 244 263 537

second derivatives are not necessary for the superlinear convergence of quasi-Newton
methods for unconstrained optimization, although some aspects of ∇2F have to be quite
accurate. These remarks suggest that it may be possible to advance the techniques of
UOBYQA in a way that preserves good performance, and that avoids the need for all the
parameters of all the Lagrange functions to be available. Now, however, we infer from
Table 6 that UOBYQA becomes prohibitively expensive for more than 50 variables,
the cause of the ceiling being the 1

2 (n+1)(n+2) degrees of freedom in the quadratic
model Q. There are many applications of unconstrained optimization with no more
than 20 variables. Furthermore, any sparsity in ∇2F can be inherited by the quadratic
model and the Lagrange functions, which may provide huge reductions in the number
of degrees of freedom, but software for this straightforward extension to UOBYQA has
not been written yet. The three main advantages of the present version are that it is easy
to apply, it usually gives good accuracy, even in some cases when F has discontinuous
first derivatives, and, in the small range of comparisons that have been made, it seems
to require fewer function evaluations than other algorithms. The Fortran 77 code was
developed for general use, and is available free of charge from the author at the e-mail
address mjdp@cam.ac.uk.

Acknowledgement. The author is very grateful to three referees for their careful consideration of this paper.
They made several good suggestions that have improved the presentation.

References

1. Broyden, C.G., Dennis, J.E., Moré, J.J. (1973): On the local and superlinear convergence of quasi-Newton
methods. J. Inst. Math. Appl. 12, 223–245

2. Conn, A.R., Scheinberg, K., Toint, Ph.L. (1997a): On the convergence of derivative-free methods for un-
constrained optimization. In: Buhmann, M.D., Iserles, A., eds., Approximation Theory and Optimization,
pp. 83–108. Cambridge University Press, Cambridge

3. Conn, A.R., Scheinberg, K., Toint, Ph.L. (1997b): Recent progress in unconstrained nonlinear optimiza-
tion without derivatives. Math. Program. 79, 397–414

4. Fletcher, R. (1965): Function minimization without evaluating derivatives – a review. Comput. J. 8, 33–41
5. Fletcher, R., Powell, M.J.D. (1963): A rapidly convergent descent method for minimization. Comput. J.

6, 163–168
6. Moré, J.J., Sorensen, D.C. (1983): Computing a trust region step. SIAM J. Sci. Stat. Comput. 4, 553–572
7. Parlett, B.N. (1980): The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, N.J.
8. Powell, M.J.D. (1964): An efficient method for finding the minimum of a function of several variables

without calculating derivatives. Comput. J. 7, 155–162
9. Powell, M.J.D. (1994): A direct search optimization method that models the objective and constraint

functions by linear interpolation. In: Gomez, S., Hennart, J.-P., eds., Advances in Optimization and
Numerical Analysis. pp. 51–67. Kluwer Academic, Dordrecht

582 M.J.D. Powell: UOBYQA: unconstrained optimization by quadratic approximation

10. Powell, M.J.D. (1998): Direct search algorithms for optimization calculations. Acta Numerica 7, 287–336
11. Powell, M.J.D. (2001): On the Lagrange functions of quadratic models that are defined by interpolation.

Optim. Methods Softw. 16, 289–309
12. Winfield, D. (1973): Function minimization by interpolation in a data table. J. Inst. Math. Appl. 12,

339–347

