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Abstract

Variable metric or quasi-Newton methods are well known and commonly used in connection with unconstrained op-
timization, since they have good theoretical and practical convergence properties. Although these methods were origi-
nally developed for small- and moderate-size dense problems, their modi�cations based either on sparse, partitioned or
limited-memory updates are very e�cient on large-scale sparse problems. Very signi�cant applications of these methods
also appear in nonlinear least-squares approximation and nonsmooth optimization. In this contribution, we give an exten-
sive review of variable metric methods and their use in various optimization �elds. c© 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

This paper reviews the e�cient class of methods known as variable metric methods or quasi-Newton
methods for local unconstrained minimization, i.e., for �nding a point x∗ ∈ Rn such that F(x∗) =
minx∈Rn F(x) (we consider only local minima). Here F :Rn → R is a twice continuously di�erentiable
objective function and Rn is an n-dimensional vector space.
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Methods for unconstrained minimization are iterative. Starting with an initial point x1 ∈ Rn, they
generate a sequence xi ∈ Rn; i ∈ N, by the simple process

xi+1 = xi + �idi; (1.1)

where di ∈ Rn is a direction vector and �i¿0 is a scalar, the stepsize (N is the set of natural
numbers). The most e�cient optimization methods belong to three classes: the modi�ed Newton,
variable metric and conjugate gradient methods. We mention basic properties of these classes here
in order to clarify the application of variable metric methods in particular cases.
Modi�ed Newton methods are based on a local quadratic model

Qi(d) = 1
2d

TGid+ gTi d; (1.2)

where Gi=G(xi) and gi=g(xi) are, respectively, the Hessian matrix and the gradient of the objective
function F :RN → R at the point xi ∈ Rn. The direction vector di ∈ Rn; i ∈ N, is chosen to minimize
Qi(d) (approximately) on Rn or on some subset of Rn. Modi�ed Newton methods converge fast, if
they converge, but they have some disadvantages. Minimization of Qi(d) requires O(n3) operations
and computation of second-order derivatives can be di�cult and time consuming. Moreover, if the
Hessian matrices are not positive de�nite, then simple implementations of modi�ed Newton methods
need not be globally convergent. Nevertheless, modi�ed Newton methods can be very e�cient for
large-scale problems. If Qi(d) is minimized iteratively, then the matrix–vector products involving Gi

can be replaced by numerical di�erentiation. This leads to truncated Newton methods which do not
require computation of second-order derivatives. Moreover, if Gi is sparse, then we need substantially
less than O(n3) operations for minimization of Qi(d).
Variable metric methods are based on the local quadratic model

Qi(d) = 1
2d

TBid+ gTi d; (1.3)

where Bi is some positive-de�nite approximation of Gi. Matrices Bi, i ∈ N, are constructed iteratively
so that B1 is an arbitrary positive-de�nite matrix and Bi+1 is determined from Bi in such a way that
it is positive de�nite, is as close as possible to Bi and satis�es the quasi-Newton condition

Bi+1si = yi;

where si = xi+1 − xi and yi = gi+1 − gi. The BFGS formula

Bi+1 = Bi +
yiyTi
yTi si

− Bisi(Bisi)T

sTi Bisi
is widely used (cf. (2.13) and (2.17)). Variable metric methods have some advantages over modi�ed
Newton methods. The matrices Bi are positive de�nite and so variable metric methods can be
forced to be globally convergent. Moreover, we can update the inverse Hi = B−1

i or the Cholesky
decomposition LiDiLTi =Bi, instead of Bi itself, using only O(n2) operations per iteration. Even when
variable metric methods require more iterations than modi�ed Newton methods, they are usually
more e�cient for small- and moderate-size dense problems.
Conjugate gradient methods, see [51,37,73], use only n-dimensional vectors. Direction vectors

di ∈ Rn; i ∈ N are generated so that d1 =−g1 and

di+1 =−gi+1 + �idi; (1.4)

where gi+1 = g(xi+1) is the gradient of the objective function F : RN → R at the point xi+1 and �i is
a suitably de�ned scalar parameter. Conjugate gradient methods require only O(n) storage elements
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and O(n) operations per iteration, but they use more iterations than variable metric methods. Of
course, these iterations are less expensive. Conjugate gradient methods are intended for large-scale
problems.
In this paper, we review variable metric methods for basic unconstrained optimization problems.

Our approach is mainly devoted to the computational aspects, i.e., to the derivation of e�cient
methods and their implementation; therefore, while we quote a number of fundamental convergence
results in the �eld, the di�cult and partly still open �eld of analysis of convergence is not dealt with
at great length. Section 2 is devoted to variable metric methods for dense (small- and moderate-size)
problems. In Section 3, we describe various modi�cations of variable metric methods for large-scale
problems. Section 4 concerns the use of variable metric updates for improving the e�ciency of
methods for nonlinear least squares.
In this paper, properties of variable metric methods are sometimes demonstrated by computational

experiments. For this purpose, we used FORTRAN codes TEST14 (22 test problems for general
unconstrained optimization), TEST15 (22 test problems for nonlinear least squares) and TEST18
(30 test problems for systems of nonlinear equations) which are described in [62] and can be
downloaded from the web homepage http://www.uivt.cas.cz/~luksan#software. Computa-
tional experiments were realized by using the optimization system UFO [61] (see also the above
web homepage).
Optimization methods can be realized in various ways which di�er in direction determination

and stepsize selection. Line-search and trust-region realizations are the most popular, especially for
variable metric methods. A basic framework for these methods is given in the following subsection.
(Readers already familiar with this material may wish to skip it.)

1.1. Line-search methods

Line-search methods require the vectors di ∈ Rn; i ∈ N, to be descent directions, i.e.,

ci , −gTi di=‖gi‖‖di‖¿ 0: (1.5)

Then the stepsizes �i; i ∈ N, can be chosen in such a way that �i ¿ 0 and

Fi+1 − Fi6�1�igTi di; (1.6)

gTi+1di¿�2gTi di; (1.7)

where 0¡�1¡ 1
2 and �1¡�2¡ 1 (here Fi+1=F(xi+1), gi+1=g(xi+1), where xi+1 is de�ned by (1.1)).

The following theorem, see [32], characterizes the global convergence of line-search methods.

Theorem 1.1. Let the objective function F :RN → R be bounded from below and have bounded
second-order derivatives. Consider the line-search method (1:1) with di and �i satisfying (1:5)–(1:7).
If ∑

i∈N

c2i =∞; (1.8)

then lim inf i→∞ ‖gi‖= 0.
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If di is determined by minimizing (1.3), i.e., di = B−1
i gi with Bi positive de�nite, then (1.8) can

be replaced by∑
i∈N

1
�i
=∞; (1.9)

where �i = �(Bi) is the spectral condition number of the matrix Bi. Note that (1.8) (or (1.9)) is
satis�ed if a constant c¿ 0 (or �c¿ 0) and an in�nite set M⊂N exist so that ci¿c (or �i ¡ �c) ∀i ∈
M.
Variable metric methods in a line-search realization require the direction vectors to satisfy condition

(1.5) and ‖Bidi+gi‖6!i‖gi‖, where 06!i6 �!¡ 1 is a prescribed precision (the additional condition
!i → 0 is required for obtaining a superlinear rate of convergence). Such vectors can be obtained in
two basic ways. If the original problem is of small or moderate size or if it has a suitable sparsity
pattern, we can set

di =−Higi; (1.10)

where Hi = B−1
i , or use back substitution to solve

LiDiLTi di =−gi (1.11)

after Cholesky decomposition of Bi. Otherwise, an iterative method may be preferable. The precon-
ditioned conjugate gradient method is especially suitable. It starts with the vectors s1 = 0, r1 =−gi,
p1 = C−1

i r1 and uses the recurrence relations

qj = Bipj;

�j = rTj C
−1
i rj=pTj qj;

sj+1 = sj + �jpj;

rj+1 = rj − �jqj;

�j = rTj+1C
−1
i rj+1=rTj C

−1
i rj;

pj+1 = C−1
i rj+1 + �jpj

(1.12)

for j∈N. This process is terminated if either ‖rj‖6!i‖gi‖ (su�cient precision) or pTj qj60 (non-
positive curvature). In both cases we set di = sj. The matrix Ci is a preconditioner which should be
chosen to make BiCi as well conditioned as possible. Very e�cient preconditioners can be based on
incomplete Cholesky decomposition, see [5].

1.2. Trust-region methods

Trust-region methods use direction vectors di ∈ Rn, i ∈ N, which satisfy

‖di‖6�i; (1.13)

‖di‖¡�i ⇒ ‖Bidi + gi‖6!i‖gi‖; (1.14)

− Qi(di)¿�‖gi‖min(‖di‖; ‖gi‖=‖Bi‖); (1.15)
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where 06!i6 �!¡ 1 and 0¡�¡ 1 (we consider spectral norms here, but ‖di‖ can be an arbitrary
norm). Steplengths �i¿0; i ∈ N, in (1.1)) are chosen so that

�i(di)60 ⇒ �i = 0; (1.16)

�i(di)¿ 0 ⇒ �i = 1; (1.17)

where �i(di) = (F(xi + di)− F(xi))=Qi(di). Trust-region radii 0¡�i6 ��; i ∈ N, are chosen so that
0¡�16 �� is arbitrary and

�i(di)¡� ⇒ �‖di‖6�i+16 ��‖di‖; (1.18)

�i(di)¿� ⇒ �i6�i+16 ��; (1.19)

where 0¡�6 ��¡ 1 and 0¡�¡ 1. The following theorem, see [75], characterizes the global con-
vergence of trust-region methods.

Theorem 1.2. Let the objective function F :RN → R be bounded from below and have bounded
second-order derivatives. Consider the trust-region method (1:13)–(1:19) and denote Mi=max(‖B1‖;
: : : ; ‖Bi‖); i ∈ N. If

∑
i∈N

1
Mi
=∞; (1.20)

then lim inf i→∞‖gi‖= 0.

Note that (1.20) is satis�ed if a constant �B and an in�nite set M⊂N exist, so that ‖Bi‖6 �B,
∀i ∈ M.
Trust-region methods require the direction vectors to satisfy conditions (1.13)–(1.15). Such vectors

can be obtained in three basic ways. The most sophisticated way consists in solving the constrained
minimization subproblem

di = argmin
‖d‖6�i

Qi(d); (1.21)

where Qi(d) is given by (1.2) or (1.3). This approach, which leads to the repeated solution of the
equation (Bi+�I)di(�)+gi=0 for selected values of �, see [66], is time consuming since it requires,
on average, 2 or 3 Cholesky decompositions per iteration. Moreover, an additional matrix has to be
used. Therefore, easier approaches have been looked for.
One such approach consists in replacing (1.21) by the two-dimensional subproblem

di = argmin
‖d(�;�)‖6�i

Qi(d(�; �)); (1.22)

where d(�; �) = �gi + �B−1
i gi. Subproblem (1.22) is usually solved approximately by the so-called

dog-leg methods [25,74].
If the original problem is large then the inexact trust-region method, [90], can be used. This

method is based on the fact that the vectors sj, j ∈ N, determined by the preconditioned conjugate
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gradient method (1.12), satisfy the recurrence inequalities

sTj+1CsTj+1¿sTj Csj;

Q(sj+1)¡Q(sj);

where Q is the quadratic function (1.2) or (1.3). Thus a suitable path is generated in the trust
region. If ‖sj‖6�i and ‖rj‖6!i‖gi‖, then we set di = sj. If ‖sj‖6�i and pTj qj60, then we set
di = sj + �jpj, where �j is chosen in such a way that ‖di‖ = �. If ‖dj‖6� and ‖dj+1‖¿�, then
we set d= dj + �j(dj+1 − dj), where �j is chosen in such a way that d=�. Otherwise we continue
the conjugate gradient process.

2. Variable metric methods for dense problems

2.1. Derivation of variable metric methods

Variable metric methods were originally developed for general unconstrained minimization of ob-
jective functions with dense Hessian matrices. As mentioned above, these methods use positive-de�nite
matrices Bi; i ∈ N, which are generally constructed iteratively using a least-change update satisfying
the quasi-Newton condition Bisi=yi, where si=xi+1−xi and yi=gi+1−gi. This condition is ful�lled
by the matrix

G̃i =
∫ 1

0
G(xi + tsi) dt (2.1)

which can be considered as a good approximation of the matrix Gi+1 = G(xi+1). Roughly speaking,
the least-change principle guarantees that as much information from previous iterations as possible
is saved while the quasi-Newton condition brings new information because it is satis�ed by matrix
(2.1). Notice that there are many least-change principles based on various potential functions and
also that it is not necessary to satisfy the quasi-Newton equation accurately (see Theorem 3.1 and
[98]).
More sophisticated quasi-Newton conditions are sometimes exploited, based on the fact that the

matrix G(xi+1) satis�es the condition

G(xi+1)
dx(t)
dt

∣∣∣∣
t=1
=
dg(t)
dt

∣∣∣∣
t=1

; (2.2)

where x(t) is a smooth curve such that x(0)=xi and x(1)=xi+1, say, and g(t)=g(x(t)). Starting from
(2.2), Ford and Moghrabi [40] used a polynomial curve x(t) interpolating the most recent iterates
together with the gradient curve g(t) determined by using the same interpolation coe�cients. In the
quadratic case when x(ti−1) = xi−1, x(0) = xi and x(1) = xi+1, this approach gives the quasi-Newton
equation

Bi+1

(
si +

1
ti−1(ti−1 − 2)si−1

)
= yi +

1
ti−1(ti−1 − 2)yi−1;

where si−1 = xi − xi−1 and yi−1 = gi − gi−1. The e�ciency of this approach strongly depends on the
value ti−1¡ 0. Some ways of choosing this value are described in [39,41].
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Another approach based on (2.2) was used in [99]. In this case, x(t) = xi + tsi and g(t) is a
quadratic polynomial interpolating g(0) = gi, g(1) = gi+1 and satisfying the condition

Fi+1 − Fi =
∫ 1

0
sTi g(t) dt:

This approach leads to the quasi-Newton equation

Bi+1si = yi + i
si
‖si‖ ;

where i = 3(gi+1 + gi)Tsi − 6(Fi+1 − Fi).
The simplest way to incorporate function values into the quasi-Newton equation, known as the

nonquadratic correction, was introduced in [7]. Consider the function �(t) = F(xi + ts). Using the
backward Taylor expansion, we can write �(0)=�(1)−�′(1)+ (1=2)�′′( t̃), where 06t̃61. On the
other hand, if we write the quasi-Newton condition as

Bi+1si =
1
�i

yi; (2.3)

then sTi Bi+1si = sTi yi=�i. Approximating sTi Bi+1si by �′′( t̃) obtained from the backward Taylor expan-
sion, we get

�i =
sTi yi

2(Fi − Fi+1 + sTi gi+1)
: (2.4)

Formula (2.4) was derived in [84]. Similar formulas are also proposed in [7,8]. Alternatively instead
of matrices Bi, i ∈ N, we can construct matrices Hi=B−1

i , since the equation Bidi=−gi can easily
be solved in this case by setting

di =−Higi (2.5)

To simplify the notation, we now omit the index i and replace the index i + 1 by + so that (2.3)
can be rewritten in the form

H+y = �s: (2.6)

Moreover, we de�ne the scalars a; b; c by

a= yTHy; b= yTs; c = sTH−1s: (2.7)

In what follows, we will take the nonquadratic correction (2.6) into account, together with a suitable
scaling.
Scaling of the matrix H was �rst introduced in [69]. A simple heuristic idea for scaling is the

replacement of H by H before updating to make the di�erence H+− H as small as possible. One
possibility is to derive  from (2.6) after premultiplying it by a vector and replacing H+ by H .
Using the vector y, we obtain

=�= b=a: (2.8)

Similarly, using the vector H−1s, we obtain

=�= c=b: (2.9)
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Another useful value is the geometric mean

=�=
√

c=a: (2.10)

It is interesting that these simple values often considerably improve the e�ciency of variable metric
methods, while more sophisticated formulae, derived by minimization of certain potential functions,
usually give worse results, see [57]. Scaling applied in every iteration is ine�cient in general,
see [78], but can be very useful on very di�cult functions, see [81]. Therefore, some selective
scaling strategies have been developed. The simplest possibility, scaling only in the �rst iteration (or
preliminary scaling, PS), is proposed in [78]. In [18], it is recommended to use the scaling parameter
=max(1;min(̃; �)) in every iteration, where ̃ is a theoretically computed value (e.g. (2.8)–(2.10))
and � is a suitable upper bound. This choice follows from the fact that global convergence can be
proved in this case (cf. Theorem 2.2). A slightly modi�ed strategy, interval scaling IS, is proposed
in [58]. Here the value  = ̃ is used, if 6̃6�. Otherwise we set  = 1. Recommended values
0¡¡ 1¡ �, corresponding to individual formulae (2.8)–(2.10), are also given in [58].
Now, we are in a position to derive a class of scaled variable metric methods satisfying the

generalized quasi-Newton condition (2.6). Our problem can be formulated as �nding a symmetric
least-change update �H = H+ − H , satisfying the condition �Hy = �s − Hy. We can intuitively
suppose that the rank of this update should be as small as possible. Since two vectors s and Hy
appear in the generalized quasi-Newton condition (2.6), we restrict our attention to rank two updates
of the form �H = UMU T, where U =[s; Hy] and M is a symmetric 2× 2 matrix. Substituting this
expression into the quasi-Newton condition and comparing the coe�cients, we obtain, with � a free
parameter

1

H+ = H +

�

1
b
ssT − 1

a
Hy(Hy)T +

�
a

(
a
b
s− Hy

)(
a
b
s− Hy

)T
: (2.11)

Formula (2.11) de�nes a three-parameter class, the so-called Huang–Oren class of variable metric
updates, see [53,69,84]. If we assume � and  to be �xed or computed by (2.4) and (2.8)–(2.10), we
get a one-parameter class, the so-called scaled Broyden class (the original Broyden class corresponds
to the values � = 1 and  = 1). Three classic values of the parameter � are very popular. Setting
�= 0, we get the scaled DFP [19,36] update

1

H+ = H +

�

1
b
ssT − 1

a
Hy(Hy)T: (2.12)

Setting �= 1, we get the scaled BFGS [11,31,46,77] update

1

H+ = H +

(
�

+

a
b

)
1
b
ssT − 1

b
(HysT + s(Hy)T): (2.13)

Setting �= (�=)=(�=− a=b), we get the scaled symmetric rank-one (SR1) update

1

H+ = H +

(
�

− a

b

)−1 1
b

(
�

s− Hy

)(
�

s− Hy

)T
: (2.14)

Formula (2.11) gives another idea for scaling. It can be proved, see [69], that if 06�61 and
b=c6�=6a=b, then �(G̃H+)6�(G̃H), where G̃ is the matrix de�ned by (2.1) (� denotes the spectral
condition number). It is clear that for (2.8)–(2.10) the inequality b=c6�=6a=b holds (b=c6a=b
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follows from the Schwartz inequality). A more sophisticated reason for scaling, based on optimal
conditioning of the matrix H−1H+, will be mentioned later (see (2.24)).
Writing �B = B+ − (1=)B, we can write (2.6) in the form �Bs= (1=�)y − (1=)Bs. Proceeding

as above, we obtain

B+ = B+

�
1
b
yyT − 1

c
Bs(Bs)T +

�
c

(
c
b
y − Bs

)(
c
b
y − Bs

)T
; (2.15)

see (2.11), if we replace H , s, y, �, �,  by B, y, s, �, 1=�, 1=, respectively. Using the Woodbury
formula, we can prove that B = H−1 implies B+ = H−1

+ if and only if the parameters � and � are
related by the following duality relation:

��(ac − b2) + (� + �)b2 = b2: (2.16)

For example, setting � = 0, we get the scaled BFGS update

B+ = B+

�
1
b
yyT − 1

c
Bs(Bs)T: (2.17)

Variable metric methods for general unconstrained problems are usually realized in the form
(2.11), but form (2.15) is also possible. In the second case, the Cholesky decomposition LDLT of
the matrix B is updated using O(n2) operations by the numerically stable method described in [45].
This possibility is very attractive, since positive de�niteness can be controlled. However, numerical
experiments indicate that the form (2.11) is more e�cient, measured by computational time, since
cheaper operations are used and stability is not lost. Nevertheless, form (2.15) is the only possible
one for sparse problems and for improving the Gauss–Newton method for nonlinear least squares.

2.2. Theoretical properties of variable metric methods

From now on we shall assume that the vectors s and Hy are linearly independent. Otherwise, the
generalized quasi-Newton condition (2.6) can be ful�lled by simple scaling. Assuming  and � to
be �xed, we have one degree of freedom in the choice of the parameter � (or �). We introduce the
critical values

�c = �c =
b2

b2 − ac
¡ 0: (2.18)

We can then deduce from (2.16) that �¡�c, �c¡�¡ 0, 06�61, 1¡�, if and only if �¡�c,
1¡�, 06�61, �c¡�¡ 0, respectively. Moreover, one can prove, see [80], that the matrix H+

(or B+) is positive de�nite if and only if b¿ 0 and �¿�c (or �¿�c). Value (2.18) is negative
by the Schwartz inequality, since H is assumed to be positive de�nite and the vectors s and Hy
are assumed to be linearly independent. The interval given by 06�61 (or 06�61) de�nes the
so-called restricted Broyden subclass, whose updates can be written as convex combinations of the
DFP and the BFGS update.
First, we introduce some basic results concerning the scaled Broyden class of variable metric

methods. We begin with the quadratic termination property, see [11].

Theorem 2.1. Let the objective function F : RN → R be quadratic with positive-de�nite Hessian
matrix G. Consider the variable metric method (1:1) with stepsizes chosen so that gTi+1di=0
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(perfect line search) and direction vectors determined by (2:5) and (2:11). Then there exists an
index i; 16i6n; such that the direction vectors dj; 16j6i; are mutually G-conjugate (i.e. dTj Gdk=0
whenever j 6= k and 16j6i; 16k6i) and; moreover; gi+1 = 0 and xi+1 = x∗.

In general, the quadratic termination property requires perfect line searches. Since this property
seemed essential in the past, many authors proposed variable metric methods keeping this prop-
erty even without perfect line searches (see [20]). These methods are not used presently since they
require expensive computations while quadratic termination was shown to be unnecessary for ob-
taining a superlinear rate of convergence (cf. Theorem 2.3). Time-consuming perfect line searches
are also not used even if they have nice theoretical implications: Dixon [30] proved that all vari-
able metric methods from the Broyden class generate identical points when perfect line searches
are used.
Very general global-convergence results for imperfect line searches can be found in [16]. We

summarize and generalize them in the following theorem, see [60].

Theorem 2.2. Consider the variable metric method (1:1) with Bidi = −gi; (1:6); (1:7) and (2:15)
with 0¡6i6�; 0¡�6�i6 �� and (1− �)�ci6�i61− �; where 0¡�¡ 1. Let the initial point
x1 ∈ Rn be chosen so that the objective function F :Rn → R is uniformly convex and has bounded
second-order derivatives on the convex hull of the level set L1 = {x ∈ Rn: F(x)6F(x1)}. If there
exist k ∈ N such that i¿1 ∀i¿k; then lim inf i→∞‖gi‖= 0.

The above theorem has some important consequences. First, it cannot be proved when �¿1,
which may be related to the bad properties of the DFP method. Secondly, it con�rms that values
�c¡�¡ 0 (or 1¡�) are permissible (computational experiments have shown that some particular
methods from this subclass are very e�cient in practice). Third, the restriction ¿1 has also a
practical consequence and it was used in [18] as an e�cient strategy for scaling.
The above theorem has a weakness, namely the fact that it requires uniform convexity of the

objective function. Fortunately, global convergence of the line-search method can be controlled by
using restarts of the iterative process. If the value ci, de�ned by (1.5), is not su�ciently positive,
we can replace the unsuitable matrix Hi by an arbitrary well-conditioned positive-de�nite matrix
(Hi = I , say). Theorem 2.2 shows that restarting eventually does not occur if the objective function
is uniformly convex in a neighborhood of the minimizer.
Another way to guarantee global convergence of the line-search method consists in turning the

search direction towards the negative gradient when necessary, i.e., when (1.5) is not satis�ed. This
idea is realized, e.g., if (2.5) is replaced by the formula d=− �Hg with

�H = H + �‖Hg‖I or �H = H + �‖Hg‖gg
T

gTg
; (2.19)

where H is a matrix obtained by update (2.11) and �¿ 0 is a small number. Theoretical investigation
of such modi�cations of variable metric methods is given in [76].
An important property of variable metric methods belonging to the Broyden class is their super-

linear rate of convergence. Very general results concerning superlinear rate of convergence are given
in [14]. We summarize them in the following theorem.
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Theorem 2.3. Let the assumptions of Theorem 2:2 be satis�ed with �i = 1 and i = 1 and the line
search be implemented in such a way that it always tries the steplength �i=1 �rst. Let xi → x∗ and
G(x) be Lipschitz continuous at x∗ (i.e. ‖G(x)−G(x∗)‖6 �L‖x−x∗‖ for all x from some neighborhood
of x∗). Then a value �¡ 0 exists such that if �i¿� ∀i ∈ N; then limi→∞ ‖xi+1− x∗‖=‖xi − x∗‖=0.

This theorem generalizes results proposed in [49], where a superlinear rate of convergence was
proved for the restricted Broyden subclass corresponding to the values 06�61 in (2.15) (it also
generalizes results given in [26], where only DFP and BFGS symmetric updates are considered).
The fact that a superlinear rate of convergence can be obtained for suitable negative values of the
parameter � is very useful, since negative values positively inuence the global convergence of
variable metric methods, see [14].
The statement of Theorem 2.3 is true only if �i = 1 and i = 1. The inuence of nonunit values

of these parameters on the superlinear rate of convergence of the BFGS method was studied in
[68], where it was shown that scaling applied in every iteration eventually requires nonunit values
of the stepsize �i (unless �i and i tend to one). This e�ect again increases the number of function
evaluations.

2.3. Selected variable metric updates

Now we focus our attention to the choice of the value � (or �). Motivated by the above theoretical
results, we will assume that �c¡�61 (or 06�), de�ning the perfect Broyden subclass. Among all
classic updates (2.12)–(2.14), only the BFGS method can be used in the basic unscaled form. The
DFP method requires either accurate line search or scaling in every iteration, otherwise it need not
converge. The problem of the unscaled SR1 formula consists in the fact that it does not guarantee
positive de�niteness of the generated matrices, so that the line search can fail. Therefore, either
suitable scaling or a trust-region realization are necessary. Another simple choice

�=
�=

�=+ a=b
(2.20)

is proposed in [52]. This value is self-dual, lies in the restricted Broyden subclass and interpolates
properties of both the DFP and the BFGS methods.
Particular variable metric methods are usually obtained by minimizing some potential functions.

The most popular, used �rst in [82], see also [70], is a condition number

�(H−1H+) = ��(H−1H+)=�(H−1H+);

where H+ is given by (2.7) and �� and � are the maximum and the minimum eigenvalues, respectively.
Writing �̃=1−�=�c and !̃=(�=)(c=b), we can see that the matrix H−1H+ has n−2 unit eigenvalues
and the remaining two eigenvalues 0¡�16�2 are solutions of the quadratic equation �2−(�̃+!̃)�+
�̃!̃b2=(ac) = 0. This fact implies that the ratio �2=�1 reaches its minimum if �̃= !̃ or

�(ac − b2) = b2
(
�

c
b
− 1

)
: (2.21)
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Taking into account the unit eigenvalues, we can see that the optimal value of � is given by

�=
bc(�=− b=c)

ac − b2
if b6

2(�=)ac
a+ (�=)2c

; (2.22)

�=
�=

�=− a=b
if b¿

2(�=)ac
a+ (�=)2c

(2.23)

(notice that (2.23) corresponds to the SR1 update). This optimally conditioned update was introduced
in [20], although formula (2.22) was independently derived in [70].
Formula (2.21) can also be used for deriving the optimal ratio =� for a given value �, since we

can write

�
=

bc
�(ac − b2) + b2

: (2.24)

For � = 1 (BFGS) we obtain (2.8). For � = 0 (DFP) we obtain (2.9). For � given by (2.20)
(Hoshino) we obtain (2.10). Substituting (2.10) back into (2.20) (or into (2.22)) we get the Oren–
Spedicato update � = b=(b +

√
ac). Both the Hoshino and the Oren–Spedicato updates lie in the

restricted Broyden subclass and, therefore, they are usually less e�cient than the BFGS method in
the unscaled case. The last case shows us a simple way for obtaining new variable metric updates.
By �nding the optimal ratio =� for a given value of � and substituting it back into the expression
for �, we get a new update which di�ers from the original one if =� is not optimal.
This approach can also be used for the SR1 update. The analysis of update (2.14) shows that the

matrix H keeps positive de�niteness for b positive if and only if the ratio =� lies in the union of
two disjoint open intervals 0¡=�¡b=a and c=b¡=�¡∞, see [85]. Inside each of these two
intervals, exactly one value of the ratio =� exists which satis�es the Oren–Spedicato criterion. We
consider only the interval 0¡=�¡b=a, since ratios c=b¡=�¡∞ lead to unsuitable values �¡ 0.
The optimal ratio 0¡=�¡b=a for the SR1 update, derived from (2.23) to (2.24), can be expressed
in the form


�
=

c
b
(1−

√
1− b2=(ac)) =

b
a

/
(1 +

√
1− b2=(ac)); (2.25)

which is the value proposed in [71]. The important property of this optimally scaled SR1 update
is the fact that it generates positive-de�nite matrices. Unfortunately, this update leads to scaling
applied in every iteration, which has a negative inuence on the superlinear rate of convergence, as
mentioned above. Substituting (2.25) in (2.23) (or (2.22)) we get

�= 1 + 1=
√
1− b2=(ac): (2.26)

This choice lies outside the restricted Broyden subclass and usually gives better results than the
BFGS update in the unscaled case (see [56]). Another very e�cient modi�cation of the SR1 method
is proposed in [3,56]. This is a combination of the SR1 and the BFGS updates which can be written
in the form

�= 1 if �=6a=b; (2.27)

�=
�=

�=− a=b
if �=¿a=b; (2.28)
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i.e., �=max(1; (�=)=(�=− a=b)). In other words, the SR1 update is chosen if and only if it lies in
the perfect Broyden subclass.
Another potential function, which has frequently been used for deriving variable metric updates,

is the weighted Frobenius norm ‖W−1(B+ − B)‖ with W symmmetric and positive-de�nite. It was
proved, see [42], that this Frobenius norm reaches its minimum on the set of matrices satisfying the
generalized quasi-Newton condition (2.6), if and only if

B+ = B+
wvT + vwT

sTv
− wTs

sTv
vvT

sTv
; (2.29)

where w = (=�)y − Bs and v=Ws. If the matrix W is chosen so that v=Ws lies in the subspace
generated by the vectors y and Bs (i.e., if v = y + �Bs, say) we obtain a portion of the scaled
Broyden class (2.15). This portion contains variable metric methods for which p¿0, where p is
de�ned by (2.35) below. The relation between � and � is given by

� =
b(b− �2(=�)c)
(b− �c)2

: (2.30)

For �=0 (BFGS) we get �=
√
(�=)(b=c). For �=1 (DFP) we get �=0. For �=(=�)=(=�− c=b)

(SR1) we get �= �=.
If we set W = I in (2.29), we get the Powell symmetric Broyden (PSB) update

B+ = B+
swT + wsT

sTs
− wTs

sTs
ssT

sTs
: (2.31)

The PSB method does not guarantee positive de�niteness of the generated matrices, so that the line
search can fail. Therefore, a trust-region realization is necessary. Generally, this method is highly
ine�cient even if it is superlinearly convergent (and the proof of its superlinear rate of convergence,
cf. Theorem 3.1, is much easier than the proof of Theorem 2.3).
Other potential functions have been used for deriving variable metric methods. If X = H−1H+

then [34] shows that the DFP update minimizes the function

 (X ) = trace(X )− log(det(X )); (2.32)

on the set of positive-de�nite matrices H+ satisfying the quasi-Newton condition H+y=d. Similarly,
the BFGS method minimizes (2.32), where X = B−1B+, on the set of positive-de�nite matrices B+
satisfying the quasi-Newton condition B+d= y. The functions

�(X ) = ��(X )=
√
det(X );

�(X ) = trace(X )=(n�(X ))

are both minimized (either for X =H−1H+ or for X =B−1B+) by the optimally scaled SR1 updates,
see [95,96] ( �� and � are maximum and minimum eigenvalues).
Besides the above potential functions, other principles have been used for the derivation of free

parameters in the Broyden class of variable metric methods. Byrd et al. [14] recommend a theoretical
value � = �c + (1=c)(1=vTG−1v), where v = (1=b)y − (1=c)Bd and G is the exact Hessian matrix.
Unfortunately, the exact Hessian matrix is usually unknown and so must be approximated. In [57], a
simple approximation G ≈ (1=)B is used with  given by (2.10) (with �=1). Using the expression
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Table 1

� NS with �= 1 PS with �= 1 IS with �= 1

BFGS 7042–10 409 7182–8008 4162–5059
DFP 26 failures 36 failures 6301–7642
(2.20) 8288–10 701 9538–10 118 4316–4892
(2.22)–(2.23) 7038–9290 6821–7557 4522–5052
(2.26) 5940–9979 5358–6543 4065–5340
(2.27)–(2.28) 5888–9596 5022– 6085 4173–5095
(2.33) 6044–9047 5663–6538 4152–4913

� NS with (2.4) PS with (2.4) IS with (2.4)

BFGS 6800–10 120 6742–7430 4127–5049
DFP 24 failures 36 failures 5027–6102
(2.20) 8648–11 003 8720–9356 4218–4883
(2.22)–(2.23) 7444–9542 6130–6684 4324–4821
(2.26) 6112–10 203 5402–6559 3962–5230
(2.27)–(2.28) 5882–9645 4881–6075 4106–5066
(2.33) 5787–8538 5315–6042 3927–4589

for v, we can write vTG−1v ≈ vTHv=(=c)(ac=b2− 1), which together with (2.18) and (2.16) gives
�= (ac

√
c=a− b2)=(ac − b2). Keeping the numerator nonnegative, we obtain the formula

�=
max(0;

√
c=a− b2=(ac))

1− b2=(ac)
: (2.33)

Note that the denominator in (2.33) and the same expression in (2.26) are usually replaced by
max(�; 1− b2=(ac)) with � a small number (10−60, say). This is a safeguard against division by zero
caused by round-o� errors.
Finally, we notice that the rank-two update classes we have considered so far, namely updates

(2.11) and (2.29), are only special cases of the set of solutions of the quasi-Newton equation. Since
the quasi-Newton equation can be viewed as a set of n linear systems, each consisting of a single
equation and all di�ering only in the right hand side, the general solution can easily be obtained
using the techniques o�ered by the ABS class of algorithms for linear equations, see [1]. The general
formula obtained contains two parameter matrices, see [87], and is equivalent to a formula previously
obtained in [2], using the theory of generalized inverses. No new updates in this general class have
yet been developed.
Table 1 compares several variable metric methods of the form (2.11) with standard line-search.

They are either unscaled (NS) or use preliminary scaling (PS) or interval scaling (IS). Both the
value � = 1 and the nonquadratic correction (2.4) were used. Values of scaling parameter  have
been selected from (2.8) to (2.10) to give the best results for individual methods — i.e., (2.9) for
the DFP update and (2.10) for all other updates. Total numbers of iterations and function evaluations
for 74 problems (22 from TEST14, 22 from TEST15, 30 from TEST18, [62]) with 20 variables are
presented.
Table 1 implies recommendations for the choice of suitable variable metric methods. First, a

reasonable scaling strategy, e.g., IS, should be used since it improves e�ciency of all investigated
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updates. Furthermore, if interval scaling is used, then the easily implementable Hoshino method
(2.20) is very e�cient. Also, update (2.33) is excellent but more complicated (it must be safeguarded
against division by zero as shown above). The nonquadratic correction (2.4) improves this update
signi�cantly.
An interesting realization of variable metric methods is based on product-form updates. Suppose

that H = ZZT, where Z is a nonsingular square matrix. Then the direction vector d = −Hg can be
obtained using three substitutions

d= Zd̃; d̃=−g̃; g̃= ZTg: (2.34)

We write s̃= Z−1s= �d̃ and ỹ = ZTy so that a= ỹ Tỹ, b= ỹ Ts̃, c = s̃Ts̃. If

p=
1
ab

(
�
(
a
b
− �



)
+

�


)
¿0; (2.35)

q=
�

1
ab
(�(ac − b2) + b2)¿0; (2.36)

then the matrix H+ can be expressed in the form H+ = Z+ZT+, where Z+ is obtained from Z by a
rank one formula. The general update, derived in [20], is rather complicated, but it contains special
cases, which have acceptable complexity. Setting �=0 (DFP), we get p=�=(ab) and q=�b=(a),
so that

1√

Z+ = Z +

1
a
Z

(√
�a
b

s̃− ỹ

)
ỹ T: (2.37)

Setting �= 1 (BFGS), we get p= 1=b2 and q= �c=(b), so that

1√

Z+ = Z +

1
b
Zs̃

(√
�b
c

s̃− ỹ

)T
: (2.38)

Setting �= (�=)(�=− a=b) (SR1), we get p= 0 and q= ((�=)c − b)=(b− (=�)a), so that
1√

Z+ = Z +

√
q− 1

(�=)2c − 2(�=)b+ a
Z
(
�

s̃− ỹ

)(
�

s̃− ỹ

)T
: (2.39)

Theoretically, it would be possible to invert the above formulas to obtain similar expressions for
the matrix A+ = Z−1

+ . Unfortunately, the vector ỹ= ZTy= (AT)−1y, required in that case, cannot be
determined without inversion of the matrix A. The BFGS update, obtained by inversion of (2.38),
is the only one that allows us to overcome this di�culty by using the following transformation:

√
A+ = A+

1
c
s̃

(√
c
�b

ỹ − s̃

)T
A= A+

1
c
As

(√
c
�b

y − ATAs

)T
: (2.40)

Formulae (2.37)–(2.39) are very advantageous for seeking minima on linear manifolds, when the
matrix H is singular and the matrix Z is rectangular. Formula (2.40) is useful for nonlinear least
squares.
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3. Variable metric methods for large-scale problems

Basic variable metric methods cannot be used for large-scale optimization, since they utilize dense
matrices. Therefore, new principles have to be found, which take into account the sparsity pattern
of the Hessian matrix. There are three basic approaches: preserving the sparsity pattern by special
updates; using classic updates applied to submatrices of lower dimension; and reconstruction of
matrices from vectors by limited memory methods. The �rst approach was initiated in [91], the
second was proposed in [48] and the third was introduced in [67].

3.1. Sparse variable metric updates

Preserving a sparsity pattern is a strong restriction, which eliminates some important properties
of variable metric methods. In general, updates cannot have a low rank. For instance, a diagonal
update of a diagonal matrix, which changes it to satisfy the quasi-Newton condition, can have rank
n. Moreover, positive de�niteness of the updated matrix can be lost for an arbitrary sparse update,
which can again be demonstrated on a diagonal matrix. From this point of view, it is interesting that
a superlinear rate of convergence can be obtained even if the quadratic termination property does
not hold.
Sparse variable metric updates should satisfy the quasi-Newton condition, not violate symmetry

and preserve sparsity. Let us write

VQ = {B ∈ Rn×n: Bs= y};
VS = {B ∈ Rn×n: BT = B};
VG = {B ∈ Rn×n: Gij = 0⇒ Bij = 0}

(we assume, that Gii 6= 0 ∀16i6n). Clearly, VQ; VS ; VG are linear manifolds (VS and VG are
subspaces) in Rn×n. We can de�ne orthogonal projections PQ; PS ; PG into VQ; VS ; VG as matrices
B+ minimizing the Frobenius norm ‖B+−B‖F on VQ; VS ; VG, respectively. Similarly, we can de�ne
orthogonal projections PQS ; PQG; PSG and PQSG into VQ∩VS ; VQ∩VG; VS∩VG and VQ∩VS∩VG,
respectively. It is clear that the requirements laid down on a sparse update are satisfed by the matrix
B+ =PQSGB.
To eliminate the zero elements from the quasi-Newton condition, we de�ne vectors Pis ∈ Rn; 16i

6n, in such a way that

eTj Pis= eTj s; Gij 6= 0;
eTj Pis=0; Gij = 0

and we rewrite the quasi-Newton condition in the form

eTi (B+ − B)Pis= eTi (y − Bs); 16i6n:

It can be proved, [27], that the orthogonal projections considered can be expressed as

PQB= B+
(y − Bs)sT

sTs
;

PSB= 1
2(B+ BT);

(PGB)ij = Bij; Gij 6= 0;
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(PGB)ij = 0; Gij = 0;

PQSB= B+
(y − Bs)sT + s(y − Bs)T

sTs
− (y − Bs)Ts

sTs
ssT

sTs
;

PQGB= B+PG(usT);

PSGB=PSPGB=PGPSB;

PQSGB= B+PG(vsT + svT);

where u ∈ Rn solves the linear system Du= y − Bs with positive-semide�nite diagonal matrix

D =
n∑

i=1

‖Pis‖2eieTi

and v ∈ Rn solves the linear system Qv= y − Bs with positive-semide�nite matrix

Q =PG(ssT) +
n∑

i=1

‖Pis‖2eieTi ;

which has the same sparsity pattern as the matrix B.
The variable metric method which uses the update

B+ =PQSGB; (3.1)

was proposed in [91]. Realization of this method is time consuming, since an additional linear
system has to be solved. Moreover, its convergence properties are not very good, since its variational
derivation is similar to the derivation of the ine�cient PSB method. Therefore, easier methods with
better convergence properties have been looked for. Steihaug [89] has shown that the updates based
on the composite projections

B+ =PSPQGB; (3.2)

B+ =PGPQSB; (3.3)

B+ =PSGPQB (3.4)

and realized in the trust-region framework, lead to methods which are globally and superlinearly
convergent. We summarize his results in the following theorem.

Theorem 3.1. Consider the trust-region method (1:13)–(1:19); where Bi+1 = Bi; if (1:16) holds; or
updates of the form (3:1)–(3:4) are used; if (1:17) holds. Let the objective function F : RN → R
be bounded from below and have bounded and Lipschitz continuous second-order derivatives. Then
lim inf i→∞ ‖gi‖= 0. If; in addition; xi → x∗ and !i → 0; see (1:14); then limi→∞ ‖xi+1 − x∗‖=‖xi −
x∗‖= 0.

Unfortunately, a similar result cannot be obtained for a line-search realization, since the hereditary
positive de�niteness of generated matrices is not guaranteed. Nevertheless, our unpublished experi-
ments indicate that a line-search realization usually outperforms a trust-region implementation. These
experiments also imply that update (3.2) is the most e�cient one among all composite projections.
This fact is also mentioned in [29,94].
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Table 2

Method Iterations f. eval. g. eval. CG steps CPU time Failures

LVVM 26739 27 901 27 901 — 1 : 23 —
LMVM 27282 31 723 31 723 — 1 : 35 —
LRVM 28027 30 061 30 061 — 1 : 32 —
SCVM 13145 27 292 27 292 51 0773 4 : 10 1
SFVM 5308 16 543 41 732 — 1 : 54 1
SPVM 3769 5190 5190 — 0 : 30 —
SDNM 1958 2000 10 238 — 0 : 34 —
STNM 2203 2980 60 420 57 195 1 : 14 —
NCGM 19974 39 854 39 854 — 1 : 29 —

To eliminate di�culties arising in connection with update (3.1), T�uma has proposed sparse frac-
tioned updates [94]. Let G = (V; E); V = {v1; : : : ; vn}; E ∈ V × V , be the adjacency graph of the
matrix G so that (vi; vj) ∈ E if and only if Gij 6= 0 (structurally). Let c: V → {1; : : : ; r}; r6n be a
colouring of the graph G so that c(vi) 6= c(vj) if and only if (vi; vj) ∈ E (the minimum possible r
is the so-called chromatic number of the graph G). This colouring induces a partition V =

⋃r
i=1 Ci

where Ci = {v ∈ V : c(v) = i}. Assume now that s=∑r
i=1 s

i where si =
∑

j∈Ci
ejeTj s and set

B+ = Br; (3.5)

where

x0 = x; g0 = g; B0 = B

and

xi = xi−1 + si; gi = g(xi); yi = gi − gi−1;

Bi =PQiSGBi−1; VQi = {B ∈ Rn×n : Bsi = yi}
for 16i6r. As has been already shown, PQiSGBi−1 =Bi−1 +PG(vi(si)T + si(vi)T), where Qivi=yi −
Bi−1si and where

Qi =PG(si(si)T) +
n∑

j=1

‖Pjsi‖2ejeTj =
∑
j∈Ci

ejeTj ss
TejeTj +

n∑
j=1

‖Pjsi‖2ejeTj

is now a diagonal matrix. Since the matrices Qi; 16i6r are diagonal, the partial updates Bi =
PQiSGBi−1, are very simple and can be realized in an e�cient way. Notice that this simplicity is
compensated by evaluation of intermediate gradients g1; : : : ; gr−1. This is a common feature with the
method of approximating sparse Hessian matrices proposed by Coleman and Mor�e [17]. However,
the number of groups induced by colouring c given above can be much smaller than the number
of groups induced by the symmetric or lower triangular colouring used by Coleman and Mor�e.
Computational experiments con�rm that sparse fractioned updates are more e�cient than update
(3.1) and than composite projections (3.2)–(3.4) (see Table 2).
Another way of obtaining sparse quasi-Newton updates is described in [35]. This method is based

on the minimization of the potential function (2.32), where X=HB+, on the linear manifold VQ∩VS∩
VG. Function (2.32) has two advantages. First, its minimization leads to the e�cient BFGS formula
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in the dense case and, secondly, it serves as a barrier function against losing positive de�niteness.
Fletcher [35] proved that if the minimum of (2.32) on VQ ∩VS ∩VG exists, it is characterized by
the existence of � ∈ Rn such that

PGH+ =PG(H + �sT + s�T): (3.6)

The vector � cannot be obtained explicitly in the sparse case. Instead, the nonlinear system of equa-
tions B+(�)s−y=0 must be solved using the Newton method, where B+(�) is a matrix determined
from (3.6). This approach has two di�culties. Firstly, the determination of B+(�) from PGH+(�)
is rather complicated and it requires a sparsity pattern which is not changed during the Cholesky
decomposition. Secondly, the nonlinear equations have to be solved with the Jacobian matrix M ,
say, which has the same pattern as B in general. Therefore, the whole process is time consuming and
moreover three sparse matrices B; PGH and M are necessary. Nevertheless, numerical experiments
in [35] indicate robustness and good convergence properties of this method.
Finally, we observe that the approach based upon use of the ABS algorithm can also provide the

general solution of the quasi-Newton equation with sparsity and symmetry conditions, since they are
just additional linear equations, see [85,88]. The sparse symmetric update is given in explicit form,
while in the approach of, e.g., [91], a sparse linear system has to be solved. By requiring that the
diagonal element be su�ciently large, extra linear conditions are given which in general allow us to
obtain symmetric sparse quasi-positive-de�nite updates (i.e., updates where the (n − 1)th principal
submatrix is SPD) and quasi-diagonally dominant updates, see [88,86]. The last result can be used
to produce full SPD sparse updates by imbedding the minimization of the function F(x) in a suitable
equivalent (n+ 1)-dimensional problem. No particular algorithms or numerical experiments are yet
available based upon this approach.

3.2. Partitioned variable metric updates

A quite di�erent approach to large-scale optimization, leading to partitioned updating methods, is
proposed in [48]. It is based on properties of partially separable functions of the form

F(x) =
m∑

k=1

fk(x); (3.7)

where each of the element function fk(x) depends only on nk variables and nk is much less than n,
the size of the original problem. In this case, we can de�ne packed element-gradients ĝk(x) ∈ Rnk

and packed element-Hessian matrices Ĝk(x) ∈ Rnk×nk ; 16k6m, as dense but small-size vectors and
matrices. Such a formulation is highly practical since, e.g., sparse nonlinear least-square problems
(see (4.1) below) have this structure.
Partitioned updating methods consider each element function separately and update approxima-

tions B̂k ; 16k6m, of the packed element-Hessian matrices Ĝk(x) using the quasi-Newton conditions
B̂
+
k ŝk = ŷ k , where ŝk is a part of the vector s consisting of components corresponding to variables
of fk and ŷ k = ĝ+k − ĝk (we use + as the upper index in the partitioned case). Therefore, a variable
metric update of the form (2.15) can be used for each of the element functions. However, there are
some di�erences between the classic and the partitioned approach. First, the main reason for parti-
tioned update is an approximation of the element Hessian matrix, so that scaling and nonquadratic
corrections do not usually improve e�ciency. Secondly, denoting b̂k = ŷTk ŝk ; ĉk = ŝTk B̂k ŝk , we can
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observe that b̂k¿0 does not have to be guaranteed for all 16k6m. This di�culty is unavoidable
and an e�cient algorithm has to handle this situation. Therefore, the following partitioned BFGS
method is recommended:

B̂
+
k = B̂k +

1

b̂k

ŷ k ŷ
T
k −

1
ĉk

B̂k ŝk(B̂k ŝk)T; b̂k ¿ 0;

B̂
+
k = B̂k ; b̂k60:

(3.8)

Another possibility is the partitioned rank one method

B̂
+
k = B̂k +

1

b̂k − ĉk
(ŷ k − B̂k ŝk)(ŷ k − B̂k ŝk)T; |b̂k − ĉk | 6= 0;

B̂
+
k = B̂k ; |b̂k − ĉk |= 0:

(3.9)

which can be used for inde�nite matrices. Usually, the latter method works worse but can be useful
in some pathological cases. Therefore, combined methods are welcome. One such combination is
proposed in [50]. It starts with the partitioned BFGS update (3.8). When a negative curvature
b̂k ¡ 0 appears in some iteration then (3.8) is switched to (3.9) for B̂k and is kept in all subsequent
iterations. We suggest another strategy, which was used in our experiments reported in Table 2.
This is based on the observation that (3.8) usually fails in the case when too many elements have
inde�nite Hessian matrices. Therefore, we start with the partitioned BFGS update (3.8). If mneg¿�m,
where mneg is a number of elements with a negative curvature and � is a threshold value, then (3.9)
is used for all elements in all subsequent iterations (we recommend �= 1

2).
Partitioned variable metric methods are very e�cient for solving real-world problems, but their

convergence properties have not yet been satisfactorily investigated. Griewank and Toint [49] have
proved a superlinear rate of convergence of partitioned variable metric methods belonging to the
restricted Broyden class. Unfortunately, a general global-convergence theory, which would include
the most e�cient algorithms, e.g., the partitioned BFGS method given above, is not known. Some
partial results are given in [92], where global convergence is proved under complicated and re-
strictive conditions. Some globally convergent modi�cations of partitioned variable metric methods
are also given in [47]. Unfortunately, we have experimentally found that these modi�cations are
computationally less e�cient and cannot be competitive with the best strategies given above.
A disadvantage of partitioned variable metric methods is that approximations of packed element-

Hessian matrices have to be stored. Therefore, the number of stored elements can be much greater
than the number of nonzero elements in the standard sparse pattern. For this reason, it is suit-
able to construct the standard sparse Hessian approximation before solving a linear system, since a
multiplication by a sparse matrix is more e�cient than the use of the partitioned structure.

3.3. Variable metric methods with limited memory

Variable metric methods with limited memory are based on the application of a limited number
of BFGS updates, which are computed recursively using previous di�erences sj; yj; i− n6j6i− 1
(i is the iteration number). Their development started by the observation that an application of
the BFGS update is equivalent to a conjugate gradient step in the case of perfect line search, see
[72], and is more e�cient in other cases. In [12,13] a limited number of BFGS steps was used for
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construction of a suitable preconditioner to the conjugate gradient method; and a similar approach
has been used for the approximation of the Hessian matrix, see [67,55,43]. Such applications have
been made possible by a special form of the BFGS update

H+ = V THV +
�
b
ssT;

V = I − 1
b
ysT

We de�ne the m-step BFGS method with limited memory as the iterative process (1.1) and (2.5),
where Hi = Hi

i and the matrix Hi
i is generated by the recurrence formula

Hi
j+1 = ijV

T
j H

i
jVj +

�j

bj
sjsTj (3.10)

for i−m6j6i−1, where Hi
i−m=I . At the same time ii−m=bi−1=ai−1 and ij=1 for i−m¡j6i−1.

Using induction, we can rewrite (3.10) in the form

Hi
j+1 =

bi−1
ai−1

( j∏
k=i−m

Vk

)T( j∏
k=i−m

Vk

)
+

j∑
l=i−m

�l

bl

( j∏
k=l+1

Vk

)T
slsTl

( j∏
k=l+1

Vk

)
(3.11)

for i − m6j6i − 1. From (3.11), we can deduce that the matrix Hi
i can be determined using 2m

vectors sj; yj; i−m6j6i−1, without storing the matrices Hi
j ; i−m6j6i−1. This matrix need not

be constructed explicitly since we need only the vector si = −Hi
i gi, which can be computed using

two recurrences (the Strang formula [67]). First, the vectors

uj =−

 i−1∏

k=j

Vk


 gi;

where i − 1¿j¿i − m, are computed using the backward recurrence

�j = sTj uj+1=bj;

uj = uj+1 − �jyj

for i − 1¿j¿i − m, where ui =−gi. Then the vectors

vj+1 =
bi−1
ai−1

( j∏
k=i−m

Vk

)T
ui−m +

j∑
l=i−m

�l

bl

( j∏
k=l+1

Vk

)T
slsTl ul+1;

where i − m6j6i − 1, are computed using the forward recurrence
vi−m = (bi−1=ai−1)ui−m;

vj+1 = vj + (�j�j − yTj vj)sj

for i − m6j6i − 1, where vi−m = (bi−1=ai−1)ui−m. Finally we set si = vi.
Recently, a new approach to variable metric methods with limited memory, based on explicit

expression of the matrix Hi = Hi
i using low-order matrices, was proposed in [15]. Let Hi = Hi

i be
the matrix obtained after m steps of the form

Hi
j+1 = Hi

j + [sj; H
i
jyj]Mj[sj; H i

jyj]
T;
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i−m6j6i− 1, where Mj; i−m6j6i− 1, are symmetric 2× 2 matrices which realize a particular
variable metric method (2.11) with �j = j = 1. We need an expression

Hi = Hi
i−m − [Si; H i

i−mYi]N−1
i [Si; H i

i−mYi]
T; (3.12)

where Si = [si−m; : : : ; si−1]; Yi = [yi−m; : : : ; yi−1] and Ni is a symmetric matrix of order 2m. Formula
(3.12) was obtained for classical variable metric methods (DFP, BFGS, SR1), since the matrices
M−1

j ; i − m6j6i − 1, have a relatively simple form in these cases. Derivations, which can be
found in [15], are formally rather complicated. Therefore, we introduce only the �nal results. For
this purpose, we denote by Ri the upper triangular matrix of order m, such that (Ri)kl = sTk yl, for
k6l, and (Ri)kl = 0, otherwise. Furthermore, we denote by Ci the diagonal matrix of order m, such
that (Ci)kk = sTk yk . Taking

Ni =

[ −Ci Ri − Ci

(Ri − Ci)T Y Ti H
i
i−mYi

]
(3.13)

in (3.12), we get the m-step DFP update. Taking

Ni =

[
0 Ri

RTi Ci + Y Ti H
i
i−mYi

]
(3.14)

in (3.12), we get the m-step BFGS update. The m-step SR1 update can be written in the following
slightly simpler form:

Hi = Hi
i−m + (Si − Hi

i−mYi)(Ri + RTi − Ci − Y Ti H
i
i−mYi)−1(Si − Hi

i−mYi)T: (3.15)

In the sequel, we restrict our attention to the BFGS method. If we choose Hi
i−m = ii−mI , where

ii−m = bi−1=ai−1, and if we explicitly invert matrix (3.14), we can write

Hi = i−mI + [Si; i−mYi]
[
(R−1

i )
T(Ci + i−mY Ti Yi)R−1

i −(R−1
i )

T

−R−1
i 0

]
[Si; i−mYi]

T: (3.16)

This formula has the advantage that no inversion or matrix decomposition is used.
Similar explicit expressions can be obtained for the matrices Bi = H−1

i using duality relations.
Since we replace Si and Yi by Yi and Si, respectively, we have to replace the upper part of STi Yi by
the upper part of Y Ti Si (or by the transposed lower part of STi Yi). Therefore, we de�ne the lower
triangular matrix Li, such that (Li)kl = sTk yl; k¿l and (Li)kl = 0, otherwise. Then the m-step BFGS
update can be written in the form

Bi = Bi
i−m − [Yi; Bi

i−mSi]
[ −Ci (Li − Ci)T

Li − Ci STi B
i
i−mSi

]−1
[Yi; Bi

i−mSi]
T: (3.17)

The limited-memory variable metric methods described above require a double set of di�erence
vectors. Fletcher [33] has proposed a method that requires only a single set of these vectors. The same
property is possessed by the limited-memory reduced-Hessian variable metric methods introduced in
[44] and based on product form updates investigated in [79]. Consider variable metric methods of
the form (2.15) with B1 = I (the unit matrix). Let Gi and Di be linear subspaces spanned by the
columns of matrices Gi = [g1; : : : ; gi] and Di = [d1; : : : ; di], respectively. In [79] it is proved that
Di=Gi and that Biv ∈ Gi and Biw= �iw, whenever v ∈ Gi and w ∈ G⊥

i (a possible nonunit value �i

is a consequence of nonquadratic correction and scaling). Let Zi be a matrix whose columns form
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an orthonormal basis in Gi and let Qi=[Zi;Wi] be a square orthogonal matrix. Then the above result
implies

QT
i BiQi =

[
ZTi BiZi 0
0 �iI

]
; QT

i gi =
[
ZTi gi

0

]
; (3.18)

so that

di = Zid̃i; ZTi BiZid̃i =−g̃i; g̃i = ZTi gi: (3.19)

In other words, all information concerning variable metric updates is contained in the reduced Hessian
approximation ZTi BiZi so that the reduced system (3.19) is su�cient for obtaining the direction vector.
This idea can be used for developing limited-memory reduced Hessian variable metric methods.

These methods use limited-dimension subspaces Gi=span[gi−m+1; : : : ; gi] and Di=span[di−m+1; : : : ; di]
which change on every iteration. Now Di =Gi does not hold in the limited-dimension case, but the
quadratic termination property requires columns of Zi to form a basis in Di instead of Gi. Hence the
above process has to be slightly reformulated. Instead of Zi we use an upper triangular matrix Ti such
that Di = ZiTi and the reduced Hessian approximation is given in the factorized form ZTi BiZi = RTi Ri

with Ri again upper triangular. Using a scaling parameter 1, we can set

D1 = [g1]; T1 = [‖g1‖]; R1 = [
√
1=1]; g̃1 = [‖g1‖]:

On every iteration, we �rst solve two equations RTi Rid̃i = −g̃i, Tivi = d̃i and set di = Divi. After
determining the direction vector di, the line search is performed to obtain a new point xi+1 =
xi + �idi. Moreover, the matrices Di and Ti have to be changed to correspond to the subspace
Di. For this purpose, we replace the last column of Di by di and the last column of Ti by d̃i.
Now a representation of the subspace Di+1 has to be formed. First, we project the new gradient
gi+1 = g(xi+1) into the subspace Di by solving the equation T Ti ri+1 =DT

i gi+1. Then we determine the
quantity �i+1 = ‖gi+1‖ − ‖ri+1‖, set Di+1 = [Di; gi+1] and

Ti+1 =
[
Ti ri+1
0 �i+1

]
; g̃i+1 =

[
ri+1
�i+1

]
:

Using the scaling parameter i+1, we obtain a temporary representation of the reduced Hessian
approximation in the form ZTi+1BiZi+1 = RTi+1Ri+1, where

Ri+1 =

[
Ri 0

0
√
1=i+1

]
; g̃i+1 =

[
ri+1
�i+1

]
:

This factorization is updated to satisfy the quasi-Newton condition RTi+1Ri+1s̃i = ỹ i, where

s̃i = �i

[
d̃i

0

]
; ỹ i = g̃i+1 −

[
g̃i

0

]
:

Numerically stable methods described in [45] can be used for this purpose. If the subspace Di+1 has
dimension m + 1, then it must be reduced before the new iteration is started. Denote the matrices
after such reduction by �Di+1, �T i+1, �Ri+1. Then �Di+1 is obtained from Di+1 by deleting its �rst column
and matrices �T i+1, �Ri+1 are constructed using elementary Givens rotations (see [44]). Notice that
the scaling parameters used above have a similar meaning to those in (2.15). Values 1 = 1 and
i+1 = s̃Ti ỹ i=ỹ

T
i ỹ i are recommended.
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3.4. Computational experiments

Now, we can present computational experiments with various variable metric methods for large-
scale unconstrained optimization. Table 2 compares the sparse-composite update SCVM (3.2), the
sparse-fractioned update SFVM (3.5), the sparse-partitioned BFGS update SPVM (3.8), the limited-
memory BFGS update in vector form LVVM (3.11), the limited-memory BFGS update in matrix
form LMVM (3.16) and the limited memory BFGS update in reduced-Hessian form LRVM (3.19).
The limited-memory updates LVVM and LMVM were constructed from 5 previous steps (m = 5)
and LRVM was constructed from 10 previous steps (m=10) . For further comparison, we introduce
results for the sparse discrete Newton method SDNM [17], the truncated Newton method STNM [21]
and the nonlinear conjugate gradient method NCGM [37]. Most of the tested methods were imple-
mented in a line-search framework with direct computation of direction vectors (limited-memory
methods in the form (1.10), SFVM and SPVM using sparse Cholesky decomposition (1.11)).
The sparse composite method SCVM and the truncated Newton method STNM were implemented
by using the unpreconditioned inexact conjugate gradient method (1.12) (again with standard line
search). The sparse discrete Newton method SDNM was implemented in a trust-region framework
by using the optimal procedure (1.21). We have chosen the most suitable implementations for indi-
vidual methods. Computational experiments were performed on a DIGITAL UNIX workstation using
22 sparse test problems from TEST14 [62] with 1000 variables. The CPU times in Table 2 represent
total time for all 22 test problems and are measured in minutes.
From Table 2, it appears that only the SPVM and SDNM methods are worth considering and

other variable metric methods are unsuitable for large-scale problems. Indeed, SPVM and SDNM
are excellent for general partially separable problems or general problems with su�ciently sparse
Hessian matrices (they can be ine�cient for ill-conditioned sum of squares as shown in Table 4
below). On the other hand, variable metric methods with limited memory LVVM, LMVM, LRVM,
the truncated Newton method STNM and the nonlinear conjugate gradient method NCGM also work
well for problems with dense Hessian matrices. Such problems frequently appear in practice. For
instance, a product of functions or a squared sum of functions have the same complexity as a sum
of functions (3.7) but their Hessian matrices can be completely full. The sparse composite update
SCVM is not robust in general. It sometimes fails for di�cult problems and generates matrices
which are not suitable for sparse Cholesky decomposition (an iterative solution is then required).
We review SCVM here, since it gives an excellent tool for improving methods for large sparse sum
of squares as demonstrated in Section 4.

4. Variable metric methods for nonlinear least squares

4.1. Basic ideas for using variable metric updates

Suppose that the objective function F : RN → R has the form

F(x) = 1
2f

T(x)f(x) =
1
2

m∑
k=1

f2k (x); (4.1)
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where fk : Rn → R, 16k6m, are twice continuously di�erentiable functions. This objective function
is frequently used for nonlinear regression and for solving systems of nonlinear equations. We can
express the gradient and Hessian matrix of (4.1) in the form

g(x) = J T(x)f(x) =
m∑

k=1

fk(x)gk(x); (4.2)

G(x) = J T(x)J (x) + C(x) =
m∑

k=1

gk(x)gTk (x) +
m∑

k=1

fk(x)Gk(x); (4.3)

where gk(x) and Gk(x) are the gradients and the Hessian matrices of the functions fk : Rn → R,
16k6m and fT(x) = [f1(x); : : : fm(x)], J T(x) = [g1(x); : : : gm(x)]. J (x) is the Jacobian matrix of the
mapping f at the point x.
The most popular method for nonlinear least squares is the Gauss–Newton method, which uses

the �rst part of (4.3) as an approximation of the Hessian matrix, i.e., Bi = J Ti Ji, ∀i∈N. This
method is very e�cient for zero-residual problems with F(x∗) = 0. In this case, xi → x∗ implies
F(xi)→ F(x∗) = 0 and, therefore, fk(xi)→ 0 ∀k; 16k6m. If ‖Gk(x)‖6 �G, ∀k; 16k6m, then also

‖C(xi)‖=
∥∥∥∥∥

m∑
k=1

fk(xi)Gk(xi)

∥∥∥∥∥6 �G
m∑

k=1

|fk(xi)| → 0

and, therefore, ‖G(xi)−Bi‖=‖C(xi)‖ → 0, which implies a superlinear rate of convergence, see [26].
Since the Jacobian matrices Ji, i ∈ N, are usually ill-conditioned, even singular, the Gauss–Newton
method is most frequently implemented in a trust-region framework.
The Gauss–Newton method is very e�cient when applied to a zero-residual problem. It usually

outperforms variable metric methods in this case. On the other hand, the rapid convergence can be
lost if F(x∗) is large, since Bi= J Ti Ji can be a bad approximation of Gi. For these reasons, combina-
tions of the Gauss–Newton method with special variable metric updates may be advantageous. Such
combined methods exist and can be very e�cient, but three problems have to be carefully solved.
Firstly, suitable variable metric updates have to be found, together with corresponding quasi-Newton
conditions. Secondly, a way for combining these updates with the Gauss–Newton method has to
be chosen. Thirdly, a strategy for suppressing the inuence of variable metric updates, in case the
Gauss–Newton method converges rapidly, has to be proposed. We will investigate these problems
in reverse order.
The main idea for suppressing the inuence of variable metric updates consists in using the Gauss–

Newton method, if it converges rapidly, and variable metric corrections otherwise. The choice of a
suitable switching criterion is very important. The most general and, at the same time, most e�cient
strategy is proposed in [38]. It uses the condition

F − F+6 ��1F; (4.4)

where 0¡ ��1¡ 1. If (4.4) holds, then a variable metric correction is applied in the subsequent
iteration. Otherwise, the Gauss–Newton method is used. This strategy is based on the fact that
Fi+1=Fi → 0, if Fi → F∗ = 0 superlinearly, and Fi+1=Fi → 1, if Fi → F∗ ¿ 0.
Now, we describe techniques for combining variable metric updates with the Gauss–Newton

method. We consider the following techniques: simple correction, cumulative correction and suc-
cessive approximation of the second-order term in (4.3). We shall use A to denote a matrix such
that ATA approximates the Hessian matrix J TJ + C (see (2.40)).
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A simple correction is useful in the sparse case, when a cumulative correction cannot be realized.
On non-Gauss–Newton iterations we compute the matrix B+ (or A+) from J T+J+ (or J+) using a
variable metric update. Otherwise, we set B+ = J T+J+ (or A+ = J+).
A cumulative correction is proposed in [38]. On non-Gauss-Newton iterations we compute the

matrix B+ (or A+) from B (or A) using a variable metric update. Otherwise, we set B+ = J T+J+ (or
A+ = J+).
A successive approximation of the second-order term is based on the model B = J TJ + C. The

matrix C+ is computed from the matrix C using variable metric updates. If the Gauss–Newton
method should not be used, we set B+ = J T+J+ + C+. Otherwise, we set B+ = J T+J+. While simple
and cumulative corrections use the standard updates described in previous sections, the successive
approximation of the second-order term requires special updates (known as structured updates) which
we now describe. We will suppose that �= 1 and = 1 in (2.15). Later we will consider a special
scaling technique.

4.2. Structured variable metric updates

There are two possibilities for construction of structured variable metric updates. The �rst method
is based on the transformed quasi-Newton condition C+s= z = J T+f+ − J Tf − J T+J+s. Therefore, the
general update has the form (2.15) with B and y replaced by C and z, respectively. The SR1 update,
derived in this way, can be written in the form

C+ = C +
(z − Cs)(z − Cs)T

sT (z − Cs)
: (4.5)

This SR1 update is very e�cient and usually outperforms other structured variable metric updates.
Notice that the BFGS method cannot be realized in this approach since positivity of sTz is not
guaranteed.
The second possibility involves updating �B = J T+J+ + C to obtain B+ = J T+J+ + C+ satisfying the

quasi-Newton condition B+s = y = J T+f+ − J Tf. The resulting general update has the form (2.15)
with B replaced by �B. Since y − �Bs= z − Cs, it is advantageous to use formula (2.29). Then

C+ =C +
(y − �Bs)vT + v(y − �Bs)T

sTv
− (y − �Bs)Ts

sTv
vvT

sTv

=C +
(z − Cs)vT + v(z − Cs)T

sTv
− (z − Cs)Ts

sTv
vvT

sTv
(4.6)

with v=s for the structured PSB update, v=y for the structured DFP update and v=y+(yTs=sT �Bs)1=2 �Bs
for the structured BFGS update. Methods based on formula (4:6) have been investigated in [24],
where superlinear convergence of the structured BFGS method was proved.
The vectors y and z, used in formulae (4:5)–(4:6), can be de�ned in various ways, but always

based on z = y − J T+J+s. The standard choice

z = J T+f+ − J Tf − J T+J+s; (4.7)
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corresponding to the quasi-Newton condition (J T+J+ + C+)s= J T+f+ − J Tf, is introduced in [22]. In
[6], a similar choice

z = J T+f+ − J Tf − J TJs (4.8)

corresponding to the quasi-Newton condition (J TJ + C+)s = J T+f+ − J Tf, is given. Another choice
[4,83]) is based on the objective function F̃(x)= (1=2)(fT(x)f(x)− xTJ TJx), whose Hessian matrix
is just the matrix J TJ that we want to approximate. Applying the standard variable metric method
to the function F̃ , we obtain the quasi-Newton condition C+s= g̃+ − g̃= z, where

z = J T+f+ − J T+J+x+ − J Tf + J TJx: (4.9)

A popular choice, proposed in [9], is based on the explicit form of the second-order term in (4.3).
Suppose that the approximations B+k of the Hessian matrices Gk satisfy the quasi-Newton conditions
B+k s= g+k − gk , 16k6m. Then we can write

z = C+s,
m∑

k=1

f+k B+k s=
m∑

k=1

f+k (g
+
k − gk) = (J+ − J )Tf+: (4.10)

Interesting methods for nonlinear least squares have been obtained from the product-form BFGS
update (2.40) (other product-form updates are less suitable since they require the inversion of the
matrix ATA). A generalization of (2.40) (with �= 1 and = 1), related to structured update (4:6),
is described in [97]. Here A is replaced by the matrix J + L, where J is the Jacobian matrix and L
plays a similar role to C in (4:6). Thus B= (J + L)T(J + L), B+ = (J+ + L+)T(J+ + L+) and if we
set �B= (J+ + L)T(J+ + L), we can express (4:6) as

L+ = L+
(J+ + L)s

sT �Bs



√

sT �Bs
sTy

y − �Bs



T

; (4.11)

which is similar to (2.40).
Structured variable metric updates can be improved by a suitable scaling technique. The main

reason for scaling is controlling the size of the matrix C. Therefore, the quasi-Newton condition
C+s = z is preferred. The scaling parameter  is chosen in such a way that (1=)Cs is close to z
in some sense. In analogy with (2.9), we can choose  = sTCs=sTz or  = max(sTCs=sTz; 1), which
is the value proposed in [23]. Biggs [9] recommends the value = fTf=fT+f based on a quadratic
model. If we choose the scaling parameter , then we replace C by (1=)C in (4:5)–(4:6) to obtain
a scaled structured update. A more complicated process, described in [97], is used in connection
with product form update (4.11). All the above methods can be realized e�ciently using switching
strategy (4.4). Structured variable metric updates can also be used permanently (without switching),
as follows from the theory given in [24], but such a realization is usually less e�cient.
Interesting variable metric updates are based on an approximation of the term

T (x) =
m∑

k=1

fk(x)
‖f(x)‖Gk(x):
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Table 3

Line-search realization Iterations f. eval. g. eval. CPU time Failures

Scaled BFGS 4229 5301 5301 1.43 1
Standard GN 4809 8748 13 555 3.46 7
GN with (4.5) and (4.4) 1447 2546 3993 1.37 —
GN with (4.13) and (4.4) 1594 2807 4400 1.32 —
GN with (2.17) and (4.4) 1658 2805 4461 1.15 —

Trust-region realization Iterations f. eval. g. eval. CPU time Failures

Standard GN 2114 2512 2194 1.31 —
GN with (4.5) and (4.4) 1497 1777 1579 1.05 —
GN with (4.13) and (4.4) 1480 1753 1562 1.04 —
GN with (2.17) and (4.4) 1476 1846 1555 0.99 —

Thus we have the model B = J TJ + ‖f‖T . By analogy with structured variable metric methods,
Huschens [54] proposed totally structured variable metric methods which consist in updating the
matrix �B=J T+J++‖f‖T to get the matrix B̃+=J T+J++‖f‖T+, satisfying the quasi-Newton condition
B̃+s= y. Finally, the matrix B+ = J T+J+ + ‖f+‖T+ is chosen. Using expression (2.27), we can write

T+ = T +
1

‖f‖

(
(y − �Bs)vT + v(y − �Bs)T

sTv
− (y − �Bs)Ts

sTv
vvT

sTv

)

= T +
(z̃ − Ts)vT + v(z̃ − Ts)T

sTv
− (z̃ − Ts)Ts

sTv
vvT

sTv
; (4.12)

where z̃= z=‖f‖=(y− J T+J+s)=‖f‖. Setting v= s, we get the totally structured PSB method. Setting
v= y, we get the totally structured DFP method. Setting v= y+ (yTs=sT �Bs)1=2 �Bs, we get the totally
structured BFGS method. The totally structured SR1 method has the form

T+ = T +
(z̃ − Ts)(z̃ − Ts)T

sT(z̃ − Ts)
: (4.13)

The use of ‖f‖ instead of ‖f+‖ in the quasi-Newton condition (J T+J++‖f‖T+)s=y leads to methods
which have a quadratic rate of convergence in the case of zero-residual problems and a superlinear
rate of convergence otherwise, see [54]. This is the most signi�cant theoretical result concerning
permanent realization of structured variable metric updates.
We now present numerical experiments with various methods for nonlinear least squares.

Table 3 compares the BFGS method with interval scaling (2.10) and nonquadratic correction (2.4),
the standard Gauss–Newton method, the Gauss–Newton method with structured SR1 update (4.5)
and switching strategy (4.4), the Gauss–Newton method with totally structured SR1 update (4.13)
and switching strategy (4.4) and the Gauss–Newton method with the cumulative BFGS correction
(2.17) and switching strategy (4.4). The �rst part of Table 3 refers to the standard line-search im-
plementation and the second part refers to the trust-region implementation (1.22). Structured updates
(4.5) and (4.13) were scaled in each iteration as in [23]. The cumulative BFGS update was scaled
only on the �rst iteration. Computational experiments have been performed on a PENTIUM PC
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computer using 82 test problems (30 from [65], 22 from TEST15, 30 from TEST18, [62]) with 20
variables (62 of them have zero residual at the solution). The CPU times in Table 3 represent total
time for all 82 test problems and are measured in seconds.
Results in Table 3 suggest that trust region realizations are preferable whenever the matrix Bi=J Ti Ji

is used (this matrix is usually ill-conditioned). Furthermore, they show the e�ciency of switching
strategy (4.4). Structured updates were also tested without switching but results obtained were much
worse. The e�ciency of scaled BFGS method with line-search con�rms its robustness for nonlinear
least squares (CPU time is low since O(n2) operations per iteration are used).

4.3. Variable metric updates for sparse least squares

The Gauss–Newton method can also be combined with variable metric updates in the sparse case.
We will now describe some such possibilities. One is a combination of the Gauss–Newton method
with the composite update (3.2), so that

B+ =

{
PSPQG(J T+J+) if F − F+6 ��1F;

J T+J+ if F − F+¿ ��1F:
(4.14)

Computational e�ciency of this hybrid method was studied in [59].
An interesting approach, based on the partitioned SR1 update, was proposed in [93] and also

studied in [59]. The partitioned SR1 update is applied to the approximations T̂ k of the packed
element-Hessian matrices Ĝk(x) of the functions fk : Rn → R, 16k6m, contained in (4.1). These
matrices are updated in such a way that

T̂
+
k =




T̂ k +
(ŷ k − T̂ k ŝk)(ŷ k − T̂ k ŝk)T

ŝTk (ŷ k − T̂ k ŝk)
if |ŝTk (ŷ k − T̂ k ŝk)|¿ ��0;

T̂ k if |ŝTk (ŷ k − T̂ k ŝk)|6 ��0

(4.15)

and are used for construction of approximations B̂k of the packed element-Hessian matrices ĝk ĝ
T
k +

fkĜk . Using (4.4), we can write

B̂
+
k = ĝ+k (ĝ

+
k )
T + f+k T̂

+
k if F − F+6 ��1F; (4.16)

B̂
+
k = ĝ+k (ĝ

+
k )
T if F − F+¿ ��1F: (4.17)

In the �rst iteration we set T̂ k = I , 16k6m. Notice that the matrices T̂
+
k , 16k6m, have to be

stored simultaneously, which is a disadvantage of this method.
Another interesting way for improving the sparse Gauss–Newton method is based on the factorized

formula (4.11), which is used as a simple update so that L = 0. Taking L = 0 in (5:11), we can
express A+ = J+ + L+ in the form

A+ = J+ +
J+s

sTJ T+J+s

(√
sTJ T+J+s

sTy
y − J T+J+s

)T

= J+ +
J+s
‖J+s‖

(
y√
sTy

− J T+
J+s

‖J+s‖

)T
: (4.18)



90 L. Luk�san, E. Spedicato / Journal of Computational and Applied Mathematics 124 (2000) 61–95

Table 4

Method Iterations f. eval. g. eval. CPU time Failures

GN 11 350 11760 11 402 3 : 49 2
GNCVM 7264 7688 7316 2 : 36 —
GNPVM 8562 9588 8614 3 : 48 1
GNDNM 7012 7604 9286 2 : 35 —
SPVM 14009 29 161 29 161 4 : 59 3
SDNM 12588 84 484 84 337 8 : 38 4

Then we can use the matrix (4.18) if F − F+6 ��1F , and set A+ = J+, otherwise (see [59] for more
detail).
An interesting sparse hybrid method is based on the SR1 update. Consider the augmented linear

least-squares problem J̃+d+ ≈ −f̃+ where

J̃+ =
[
J+
w

]
; f̃+ =

[
f+
0

]
: (4.19)

The normal equations for this problem have the form B+d+ =−J T+f+, where

B+ = J̃
T
+J̃+ = J T+J+ + wwT: (4.20)

If we choose

w = (y − J T+J+s)=
√

sT(y − J T+J+s); (4.21)

then (4.20) gives exactly the SR1 update (with B replaced by J T+J+). Note that (4.21) can be
used only if sT(y − J T+J+s)¿ 0, which slightly restricts the use of update (4.19). We use the aug-
mented linear least-squares problem J̃+d+ ≈ −f̃+ (with w given by (4.21)), if F − F+6 ��1F and
sT(y − J T+J+s)¿ ��0 hold simultaneously, and the standard linear least-squares problem J+d ≈ −f+,
otherwise.
Table 4 compares the standard Gauss–Newton method GN, the Gauss–Newton method with

composite update GNCVM (4.14) and the Gauss–Newton method with partitioned update GNPVM
(4.15)–(4.16). For further comparison, we quote results for the combined Gauss–Newton and discrete
Newton method GNDNM, utilizing switching strategy (4.4) and also for the partitioned BFGS
method SPVM (3.8) and the sparse discrete Newton method SDNM. All these methods have been
implemented within a trust-region strategy (1.21), see [66]. Computational experiments were per-
formed on a DIGITAL UNIX workstation using 52 sparse test problems (22 from TEST15, 30
from TEST18, [62]) with 1000 variables (38 of them have zero residual at the solution). The CPU
times in Table 4 represent the total for all 52 test problems and are quoted in minutes. Sparse and
limited-memory variable metric methods have not been e�cient for solving these problems.
Table 4 implies that special methods for least-squares problems are usually more e�cient than

methods for general problems. This conclusion also holds for other classes of problems. For instance,
the last 30 problems used in Table 4 are solutions to systems of nonlinear equations, which can also
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be solved more e�ciently by special methods. Ine�ciency of SDNM was mainly caused by four
failures (3000 iterations or 5000 function evaluations did not su�ce). But SDNM did not outperform
combined methods even if di�cult problems were excluded.

5. Conclusion

In this paper, we have given a review of variable metric or quasi-Newton methods for uncon-
strained optimization, paying particular attention to the derivation of formulas and their e�cient
implementation (we have tried to quote all relevant literature). Quasi-Newton methods can be also
used for solving systems of nonlinear equations, see, e.g., [10,28,64], but theoretical investigation
and practical realization require a slightly di�erent point of view. Another �eld for application of
variable metric methods is general constrained optimization. Nevertheless, problems connected with
potential functions, constraint handling or interior point approach are dominant in this case and go
beyond the scope of this contribution.
Numerical experience, partially reported in this paper, gives implications for the choice of a suit-

able optimization method. We would like to give few recommendations for potential users. Standard
variable metric methods described in Section 2 are mostly suitable for dense small or moderate-size
general problems (up to 100–200 variables, say). Reasonable scaling and nonquadratic correction
can improve the e�ciency of these methods.
If we have a large-scale problem, then the choice of method depends on the problem structure.

General problems with sparse Hessian matrices are successfully solved by the discrete Newton
method. Partially separable problems can be e�ciently solved by partitioned variable metric updates.
If the Hessian matrix has no structure, then limited memory variable metric methods as well as the
truncated Newton method and the nonlinear conjugate gradient method are suitable.
If the objective function is a sum of squares, then special methods for least squares should be used.

Trust region realizations are most suitable in this case. We recommend the Gauss–Newton method
with variable metric corrections. The switching strategy (4.4) is very e�cient. If the problem is dense
then the cumulative BFGS update is of a primary interest. The simple composite update (4.14) is
suitable in the sparse case.
Variable metric methods can be successfully adapted to solve nondi�erentiable problems. An

e�cient variable metric method for nonsmooth optimization is proposed in [63].
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