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Abstract. In this paper we describe an automatic procedure for successively reducing the set of possible
nonzeros in a Jacobian matrix until eventually the exact sparsity pattern is obtained. The dependence in-
formation needed in this probing process consist of “Boolean” Jacobian-vector products and possibly also
vector-Jacobian products, which can be evaluated exactly by automatic differentiation or approximated by
divided differences. The latter approach yields correct sparsity patterns, provided there is no exact cancellation
at the current argument.

Starting from a user specified, or by default initialized, probability distribution the procedure suggests
a sequence of probing vectors. The resulting information is then used to update the probabilities that certain
elements are nonzero according to Bayes’ law. The proposed probing procedure is found to require only
O(log n) probing vectors on randomly generated matrices of dimension n, with a fixed number of nonzeros
per row or column. This result has been proven for (block-) banded matrices, and for general sparsity pattern
finite termination of the probing procedure can be guaranteed.
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1. Introduction and notation

Many numerical methods require the evaluation of Jacobians for vector functions given
as evaluation procedures. If known, the sparsity pattern of these first derivative matrices
can be used to evaluate [CM84], store, and manipulate them more efficiently. Especially
on discretizations of differential equations and other large scale problems, detecting
and specifying the pattern of potentially nonzero entries may be a laborious and error
prone task. Therefore we investigate in this paper ways of determining the pattern
automatically, without incurring the overhead of a dynamically sparse implementation
of the chain rule like SparsLinC [BCK95].

1.1. Algorithmic differentiation background

Apart from computer algebra systems, which can be expected to work only for rather
small problems, one may apply automatic, or algorithmic differentiation (AD) to con-
veniently and reliably determine sparsity pattern. AD is based on the simple observation
that in the computational practice all functions are computed via a sequence of scalar
assignments of the form

v = a(u, w) ≡ u ◦w or v = ϕ(u) . (1)
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Here ◦ ∈ {+,−, ∗, /} represents an arithmetic operation and ϕ a univariate intrinsic like
the exponential or trigonometric functions. The partial derivatives au, aw and ϕu of all
such elemental functions can be easily generated symbolically and then evaluated at the
current argument. The resulting floating point numbers can subsequently be combined
using some version of the chain rule to yield the partial derivatives of all dependent
variables, denoted here by yi for i = 1 . . . m, with respect to all independent variables,
denoted by x j for j = 1 . . .n (for details see [Gri00] and [CF+01]).

In the so-called forward mode of algorithmic differentiation one propagates inter-
mediate gradients v̇ ≡ ∇xv ≡ ∂v/∂x ∈ Rn according to the simple rules

v̇ = au ∗ u̇ + aw ∗ ẇ and v̇ = φu ∗ u̇ . (2)

The resulting computational effort for evaluating y = F(x) and its Jacobian F′(x) =
(∇ yT

i )i=1...m ∈ Rm×n with respect to x is bounded by a small multiple of n times the
effort of evaluating y by itself. Instead of propagating the full gradient vectors ∇xv

at once, one may restrict the chain rule application to the partials with respect to one
particular independent variable so that in the recursions above v̇ ≡ ∂v/∂x j ∈ R for some
fixed j . The resulting partials ẏi for i = 1 . . . m then form the jth column of the Jacobian
matrix. One may also propagate partials with respect to a subset of p independents and
then obtains the corresponding p columns of the Jacobian at a time.

Since ∇x x j ≡ e j ∈ Rn is by definition a Cartesian basis vector, the gradients
∇vx of intermediates v that occur early in the evaluation process tend to be rather
sparse. Moreover, excluding incidental cancellations, sparsity must occur throughout
the calculation if the Jacobian itself is sparse. The first AD tool that facilitates the
automatic detection and exploitation of Jacobian sparsity was the SparsLinC [BCK95]
module of ADIFOR. It keeps all ∇xv in a sparse vector format, an approach that is
very flexible but incurs a significant runtime overhead at each new evaluation point
(for specific runtimes see [BK+97]). Recently the packages ADOL-C [GJ+96] and
TAMC [GK00] have acquired the capability to propagate the sparsity pattern

v̂ ≡ (
sign

∣∣∂v/∂x j
∣∣)

j=1...n ∈ {0, 1}n

as bit-vectors. This approach avoids the manipulation of index sets and requires roughly
1+ n/64 times as much storage and run-time as the original function itself, if the whole
Jacobian sparsity pattern is to be evaluated at once. In this paper we aim to avoid the
proportional dependence on n altogether by successively collecting and incorporating
information about the sparsity pattern. The factor 64 occurs assuming that the original
function evaluation is carried out in double precision reals, each of which takes as much
space as two unsigned integers representing 32 bits. The bit patterns can be propagated
according to the rules

v̂ = û | ŵ or v̂ = û (3)

which follow from (2) for au �= 0 �= aw or ϕu �= 0 with | representing a bitwise or.
Again, the same recursions apply if the v̇ and thus the v̂ are restricted to a subset of
components. In particular, if v̂ is a pair of Boolean integers with 32 bits each, the bitwise
or (and of course mere copying) requires on modern computer chips only a couple of
machine cycles, just like floating point additions and multiplications.
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In the study [GK01] it was found on the five problems FDC, FIC, IER, SFO, and SFI
from the Minpack-2 test collection [AC+92] that propagating integers was never slower
and sometimes considerably faster than propagating doubles representing directional
derivatives. Therefore we assume throughout the paper, that at the cost of evaluating
one column of the Jacobian by forward automatic differentiation in double precision
arithmetic, one may determine the sparsity pattern of at least 64 columns by bit-pattern
propagation. In the reverse mode, one obtains analogous results for the transpose, so
that one row of the Jacobian is about as expensive to obtain as the sparsity pattern of
64 of them. Of course one can also propagate just one bit representing the dependence
on a single independent variable per intermediate value, either forward or backward.
However, that won’t be much cheaper than doing 32 of them simultaneously in either
mode. In any case one should keep in mind, that either one of these efforts is a small
multiple of the cost to evaluate the function y = F(x) by itself.

These basic observations regarding computational costs are the only results from
AD that are needed in the remainder of this paper. Moreover, our probing approach
is also applicable to differencing, a simple technique that might be unavoidable, for
example when source code for evaluating the function is not available.

1.2. Sparsity patterns and Boolean probes

Throughout the paper we assume that some vector function

F ≡ (Fi)i=1...m : Rn �→ Rm

is continuously differentiable on some neighbourhood D of a given vector argument
x ≡ (x j) j=1...n ∈ Rn . Then we may define the sparsity pattern of the Jacobian

F′(x) ≡ ∂

∂x
F(x) ∈ Rm×n

near x as the Boolean matrix S ≡ (si j )
i=1...m
j=1...n ∈ {0, 1}m×n with

si j = 0 ⇐⇒ ∂Fi(x)/∂x j ≡ 0 at all x ∈ D
The key assumption for the application of the techniques to be developed in this paper
is the following. Given any vector t ∈ {0, 1}n we must be able to evaluate the Boolean
vector r ≡ (ri)i=1...m ≡ S t ∈ {0, 1}m with

ri = 1 ⇐⇒ si j = 1 = t j for at least one j ≤ n . (4)

We will refer to the pair (t, r) or more generally to any other partial information that
we can gather about the unknown matrix S as a “probe”. A related but different concept
of probing is used in domain decomposition methods to precondition matrices with
a large number of very small entries (see [BSG96] and the original proposals [CP+74]
and [NR83]).

The “Boolean product” r might be evaluated directly by propagating suitable de-
pendence information through a given evaluation procedure for F, as sketched in the
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previous Subsect. 1.1. If no AD software with this capability is available, one may base
our probing method on the following consequence of the mean value theorem

Fi(x) �= Fi(x + ε t) �⇒ ri = 1 . (5)

Here ε is assumed nonzero but small and t is interpreted as a real 0−1 vector in this
context. Unfortunately, the converse implication is not strictly true as the inequality
on the left may happen to be violated, yet ri may still be equal to 1. However, for
generic x ∈ Rn and ε ∈ R such exact cancellations are extremely unlikely to occur, and
determining the m components of r on the basis of the difference F(x + εt) − F(x) is
probably as safe as any other calculation one performs in floating point arithmetic. In
either case, we will be able to detect sparsity exclusively on the basis of the qualitative
dependence information represented by r as a function of t and possibly corresponding
transpose probes as defined below.

Apart from its greater reliability the key advantage of automatic differentiation
for sparsity probing is that one may also evaluate Boolean products of the transpose
Jacobian. Using the reverse mode one may obtain for a given probing vector t̄ ∈ {0, 1}m
the result r̄ = ST t̄ ∈ {0, 1}n with

r̄ j = 1 ⇐⇒ si j = 1 = t̄i for at least one i ≤ m . (6)

This kind of transposed dependence information is extremely useful when the Jacobian
has dense rows, in which case one would need to let t range over all Cartesian basis
vectors e j ∈ {0, 1}n for j = 1 . . .n, in order to completely determine the sparsity
pattern S on the basis of direct products r = S t alone. Conversely, when the pattern has
a dense column, one would need transpose products with t̄ ranging over all Cartesian
basis vectors in {0, 1}m , if direct Boolean products were not available for some reason.
Of course, similar effects occur when a Jacobian has nearly dense rows or columns, so
that in general only a combination of direct and transpose Boolean products allows the
determination of the sparsity pattern S with a reasonable number of probes.

In [GR02] it is shown that minimizing the number of probes needed to find all
zeros and all nonzeros in a given sparsity pattern leads to NP-complete optimization
problems. These results justify the development and application of heuristic strategies
in the remainder of the paper. It is also proven in [GR02] that, provided all m rows
and n columns in a sparsity pattern are distinct, the minimal number of direct and
transpose probes required for its determination is bounded below by log2 [max(m, n)].
As it turns out, the heuristic procedure developed in this paper requires only a small
multiple of this lower bound whenever the number of nonzeros per row or column is
uniformly bounded. For banded matrices, such logarithmic probing complexities have
been established theoretically in [GM01]. These results can be extended to standard
discretization matrices and other Kronecker products of banded matrices.

1.3. Structure of the paper

The paper is organized as follows. In Sect. 2 we derive formulas for updating the
conditional probabilities that a certain entry si j equals 1, on the basis of the information
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gained from one or several Boolean products. We also develop an uncertainty function
U that represents the expected number of not yet identified zeros at the current stage
of the probing procedure. Finally, we compute the reduction of U that can be expected
for a certain test vector t or t̄ on the basis of the current probabilities. In Sect. 3 we
present a class of optimization procedure that is shown to always achieve U = 0 and
thus to determine all zeros and nonzeros in a finite number of probes. This analysis
does not rely on the stochastic derivations in Sect. 2, which may therefore be treated as
mere heuristics for designing the proposed scheme. At the end of Sect. 3, we discuss
various greedy strategies for computing suitable test vectors t and t̄, either one by one
or in bundles. In Sect. 4 we present experimental results obtained on some regular
and some random sparsity patterns, as well as six matrices from the Harwell-Boeing
collection [DGL]. The final Sect. 5 contains some tentative conclusions and ideas for
further improvements of the probing approach.

2. Derivation as Bayesian update

The problem at hand is related to dynamic searches for randomly distributed objects in
a given number of boxes (see e.g., [KS79] and [AZ85]). However, the results published
in the literature are not directly applicable because we cannot simply look into any
one of the boxes, i.e. matrix entries, but rather have to base our procedure on indirect
information in the form of Boolean products. With S = (

si j
) j=1...n

i=1...m now a matrix of
stochastic Boolean variables let

p0
i j ≡ P(si j = 1) ∈ [0, 1]

denote the probability that the i jth Jacobian element does not vanish identically. By
suitable initialisation and appropriate updating, we must ensure that all probabilities pk

i j
computed satisfy the following consistency condition

pk
i j = 0 �⇒ si j = 0 and pk

i j = 1 �⇒ si j = 1 . (7)

Provided we consider the individual elements si j as stochastically independent, any
initial matrix P0 ≡ (p0

i j ) ∈ [0, 1]m×n determines a probability distribution on the finite
set of 0−1 matrices with the given dimensions m and n. This set �0 has 2m n elements,
except when some elements si j are a priori known so that the corresponding p0

i j can be
initialized to zero or one.

2.1. Conditional probabilities

Every subsequent probe restricts the set of possible sparsity patterns so that we generate
in fact a descending chain of feasible sets

� ≡ {0, 1}m×n ⊃ �0 ⊃ �1 ⊃ · · · · · · ⊃ �k−1 ⊃ �k ⊃ · · · .

If there is enough time and interest, this process can be continued until �k has been
reduced to a singleton, at which point the sparsity pattern is completely determined.
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Associated with each restriction of the feasible set �k is a change in the conditional
probabilities

pk
i j ≡ P({si j = 1}∣∣S ∈ �k) ≡ P({si j = 1} ∩ S ∈ �k)/P(S ∈ �k) . (8)

Unfortunately, the restrictions of the Boolean random variables si j to the feasible sets
�k �= � for k > 0 are in general no longer stochastically independent.

2.2. Bounding patterns and expected discrepancies

Nevertheless, suppose for the moment we have some way of computing or approximating
the matrices Pk = (pk

i j ) ∈ [0, 1]m×n. Then we may define at each stage the bounding
sparsity pattern

Sk ≡ (
sk

i j

) = sign(Pk) = (
sign

(
pk

i j

)) ∈ {0, 1}m×n .

In other words, we take the zeros that have been definitely verified and consider all other
entries as nonzeros. This is a conservative estimate of the sparsity pattern and as more
and more zeros are found, we obtain in the componentwise partial ordering of matrices
the descending chain

{1}m×n ≥ S0 ≥ S1 ≥ · · · · · · ≥ Sk−1 ≥ Sk ≥ · · · ≥ S ≥ {0}m×n .

Moreover, denoting by #(Sk − S) the number of of nonzero entries in the nonnegative
discrepancy Sk − S, we can compute its expected value at each stage as follows.

Lemma 1. With pk
i j given by (8) we have the conditional expectation

U(Pk) ≡ E(#(Sk − S)
∣∣ S ∈ �k) =

∑
pk

i j >0

(
1 − pk

i j

)
(9)

=
∑
i, j

(
1 − pk

i j

)− ∣∣ { (i, j) : pk
i j = 0

} ∣∣ ≤ m n (10)

provided the consistency condition (7) is satisfied.
� 

Proof. The bound Sk is constant and S is restricted to the event set �k, where its
individual elements si j equal 1 with probability pk

i j . If this conditional probability is

positive, the bounding element sk
i j must be 1 by (7). Hence, the corresponding element

of the discrepancy Sk − S is only nonzero (namely equal to 1) when si j = 0, which
happens with probability (1 − pk

i j ). If on the other hand pk
i j = 0, it follows from the

consistency condition (7) that si j must also vanish so that there is no contribution to the
expected discrepancy. This completes the proof.

� 
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The function U(Pk) represents the expected number of zeros in the actual sparsity pattern
S that are still overlooked if we replace it with the current conservative bound Sk. We
may use this objective function to gauge the remaining indeterminacy in Pk without
knowing S itself. Of course, the value U(Pk) does strongly depend on the a priori
probability distribution P0, for which we will develop a very simple default setting in
Subsect. 2.7. As we will see, the measure of uncertainty U(Pk) can be monotonically
reduced by our probing procedure, even when the result vectors r or r̄ do not contain
a single zero. U(Pk) is a loss function in the sense of the survey [Lin95], where a much
more general framework for the design of sequential experiments is discussed.

2.3. Sequential updating

Strictly speaking, one should consider the totality of all probing results obtained up
to a certain stage k as one composite probe, and compute the conditional probabilities
pk

i j ≡ P({si j = 1 } ∣∣ S ∈ �k) accordingly. However, the memory requirement and
computational cost for keeping and updating a joint multivariate probability distribution
is rather high. In this paper we use a sequential simplification where the elements of Pk

are updated after each probe and then treated as the a priori probability distribution for
the next stage of the probing process. Hence we will drop the index k and write instead
pi j and p′i j for the a priori and a posteriori probabilities.

To illustrate the effects of this sequential approach, let us consider the case m = 1
with n = 3 and uniform initial probabilities p j ≡ p1 j = 1

2 for j = 1, 2, 3. Sup-
pose the probing directions t1 = (1, 1, 0) and t2 = (0, 1, 1) yield the results r1 = 1 and
r2 = 0, respectively. Updating the vector P = (1/2, 1/2, 1/2) according to Bayes’ for-
mula (see equation (15) below), we obtain first P′ = (2/3, 2/3, 1/2) and subsequently
P′′ = (2/3, 0, 0). If however, we incorporate the probing results in the opposite order
we obtain the results P′ = (1/2, 0, 0) and P′′ = (1, 0, 0). Thus we see that in the second
case the sparsity patter has already been completely determined, whereas in the first
case, one more probe is needed to identify the first element as a nonzero. If the result of
the probe in the direction t2 was also r2 = 1, the final probability distribution P′′ would
be either (2/3, 4/5, 3/5) or the reversal (3/5, 4/5, 2/3), again depending on the order
in which the results were incorporated. The correct conditional probabilities given the
two probes with results r1 = 1 = r2, form the symmetric distribution (3/5, 4/5, 3/5).

In general, one finds that updating the probabilities sequentially may perturb nonzero
probabilities, but all zeros are properly determined. Since the latter are the most import-
ant pieces of information, the sequential approach seems to be a sensible idea. However,
one must be aware that the sequential approach may still yield a positive value of the re-
maining uncertainty U(P) when a simultaneous analysis might already imply U(P) = 0,
in which case the process could finish even under this most stringent stopping criterion.

2.4. Expected reductions for general probes

Suppose we perform on S some arbitrary probe that has certain mutually exclusive result
events E(q) for q = 1 . . . Q. Let e(q) > 0 denote their a priori probabilities, which must
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sum to one. Then we have by Bayes’ formula for each si j the conditional probability

p(q)
i j ≡ P

({si j = 1} ∩ E(q)
)
/e(q) . (11)

Denoting the Q possible new probability matrices by P(q) and weighting them by the
a priori probability of event E(q), we obtain the following results.

Lemma 2. The expected reduction of U is given by

U(P)−
∑

q

e(q) U(P(q)) =
∑

q

e(q)
∣∣ {(i, j) : p(q)

i j = 0 �= pi j
} ∣∣ .

� 
Proof. The expected value of the uncertainty after the update is by Lemma 1∑

q

e(q)U(P(q)) =
∑
i, j

∑
q

e(q)
(
1 − p(q)

i j

) −
∑

q

e(q)
∣∣ (i, j) : p(q)

i j = 0
∣∣

=
∑
i, j

∑
q

[
e(q) − P

({si j = 1} ∩ E(q)
) ] −

∑
q

e(q)
∣∣ (i, j) : p(q)

i j = 0
∣∣

=
∑
i, j

(1 − pi j ) −
∑

q

e(q)
∣∣ (i, j) : p(q)

i j = 0
∣∣

= U(P) −
∑

q

e(q)
∣∣ (i, j) : p(q)

i j = 0 �= pi j
∣∣

where we have used in the last equation that the E(q) form a fundamental system of
events so that ∑

q

P
({si j = 1} ∩ E(q)

) = P({si j = 1}) = pi j .

Subtracting this new value from the previous uncertainty U(P) and using again∑
q e(q) = 1 we obtain the assertion.

� 
On the right hand side of the identity asserted by Lemma 1, we find the sum over the
number of new zeros revealed in the event E(q) multiplied by its probability e(q). Hence
we may draw the not very surprising conclusion that the more zeros a probe is likely to
reveal, the better it is for the reduction of our uncertainty measure U(P).

2.5. Expected reduction for Boolean probes

For a single probe with t ∈ {0, 1}n , there are Q = 2m events E(q) that correspond to all
possible outcomes r = S t ∈ {0, 1}m . Assuming that the Boolean entries in the sparsity
pattern S viewed as stochastic variables are mutually independent, we may break U
down into a sum of the row-wise contributions

Ui(P) =
∑

j

(1 − pi j )− |{ j : pi j = 0}| .
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Concerning the ith row, there is only one event that possibly introduces any new zeros,
namely the result ri = 0, whose prior probability is given by

wi(J ) ≡ P(ri = 0) ≡
∏
j∈J

(1 − pi j ) , (12)

where supp(t) = J . Since already known zeros can be left completely out of the picture,
only the index set

J i ≡ { j ∈ J : pi j > 0} of size li ≡ li(J ) ≡ |J i | (13)

is of interest in the ith row. Thus the expected reduction of Ui is wi li and we sum over
i to obtain by Lemma 2 the total expected reduction

�U(P,J ) ≡
∑

i

wi(J ) li(J ) . (14)

After the probe defined by J the probabilities are updated according to the Bayesian
formula (11), which takes the specific form

p′i j =



pi j if j �∈ J
0 if j ∈ J and ri = 0
pi j/(1− wi) if j ∈ J and ri = 1

. (15)

In other words, the probabilities in columns that do not belong to J stay unchanged.
Where ri = 0, all si j with j ∈ J are determined as zeros, and we have naturally
p′i j = 0. Where ri = 1, all nonzero probabilities pi j with j ∈ J move some way
toward 1, which is reached exactly only in the rather special situation li(J ) = 1, where
a single si j is identified as 1. In Subsect. 2.8 and Subsect. 3 we will discuss greedy
methods for finding index sets J with a large expected reduction �U(P,J ). In any
case, our probing method will be of the following form

0) Initialize P in agreement with (7).
1) Select a J ⊆ [1 . . .n] maximizing �U(P,J ).
2) Perform the probe r = S t with supp(t) = J .
3) Update P according to (15).
4) Continue with 1) until U(P) = 0.

For notational simplicity, the boxed procedure is formulated exclusively in terms of
direct probes. For a transpose probe t̄ with J̄ ≡ supp(t̄), we obtain the expected
reduction corresponding to (14)

�U(P, J̄ ) =
∑

j

w̄ j (J̄ ) l̄ j (J̄ ) ,

where naturally

w̄ j (J̄ ) =
∏
i∈J̄

(
1 − pi j

)
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and
l̄ j(J̄ ) ≡ ∣∣J̄ j

∣∣ with J̄ j ≡ {
i ∈ J̄ : pi j > 0

}
.

In the methods labeled combined later on, we perform Step 1) in each iteration twice,
once to find anJ and once to find an J̄ . Depending on which index set promises a larger
reduction, we perform either a direct or a transpose probe in Step 2). As we will see
in Sect. 4, this combination may or may not significantly reduce the total number of
probes.

2.6. How things might go wrong

The only contingency that may arise in the update equation (15) for the pi j , is that ri = 1
but wi = 1 and thus pi j = 0 for all j ∈ J . This would mean that our a priori information,
that all si j = 0 with j ∈ J vanish, is contradicted by the current probe. This could
happen either because the pi j were initialised so that the first part of the consistency
condition (7) is violated or possibly because a previous probe based on divided difference
approximations generated a faulty ri = 0 due to incidental cancellations. In view of
the second, remote possibility one might reinitialise all the pi j with j ∈ J to some
positive probability less than 1, as replacement for the indeterminate ratio 0/0 in the
update formula (15) above. A related but a little more rational approach is to initialise
the probabilities pi j of all elements that one expects to be zero without being absolutely
certain, to some rather small value ε. Then the contingency discussed above turns into
a regular update, where all the ε probabilities grow to a common value 1/li(J )+ O(ε),
which seems sensible under the circumstances. If the second part of the consistency
condition (7) is violated, no contingency in the Baysian update formulas can arise but
some sparsity may go undetected forever.

2.7. The neutral initialisation

Normally, nothing specific is a priori known about the sparsity pattern, but we may still
assume that the pattern is quite sparse and initialize all p0

i j to a rather small ε > 0. Then

U(P0) = n m(1 − ε) and the trivial choice J0 ≡ {1, . . . , n} or J̄0 ≡ {1, . . . , m} yield
according to (14), the expected reductions

�U(P0,J0) =
(
1 − ε

)n
n m = (

1 − n ε + O(ε2)
)

U(P0)

�U(P0, J̄0) =
(
1 − ε

)m
n m = (

1 − m ε + O(ε2)
)

U(P0) .

When ε is sufficiently small one can easily see that all proper subsetsJ ⊂ J0 or J̄ ⊂ J̄0
yield a smaller expected reduction. Hence one should then take the direct probe J0 if
n ≤ m and otherwise the transpose probe J̄0. More generally one may see that whenever
pi j is uniform, direct probing is more promising than transpose probing if m > n and
vise versa. This relative performance reflects the fact that a forward probe yields m
pieces of information ri , whereas a transpose probe yields n pieces of information r̄ j .
It also nicely conforms to the usual rule of thumb in automatic differentiation, namely,
that the forward mode is preferable to the reverse mode if the number of independent
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variables is smaller than the number of dependents and vise versa. In reality, a transpose
probe is somewhat more expensive, at least in terms of memory requirement, so that
one may wish to bias the decision whether to take a direct or transpose probe a little in
favour of the former.

Unless the sparsity pattern restricts some rows or columns to vanish identically, we
must obtain for J0 or J̄0 the results r = 1 ∈ {0, 1}m or r̄ = 1 ∈ {0, 1}n and the first
Bayesian update yields correspondingly

pi j = 1/ min(m, n)+ O(ε) for all i, j . (16)

Hence we will refer to pi j = 1/ min(m, n) as the neutral initialization and use it as
default throughout.

2.8. Maximizing expected reductions

To obtain a probe that promises a significant reduction in our uncertainty function U(P)

we wish to find a subsetJ ⊂ [1..n] of column indices such that the reduction �U(P,J )

defined by (14) is as large as possible. This seems to be a hard combinatorial problem
even though we have the simple algebraic relations

wi(J̃ ∪ J ) = wi(J̃ ) · wi(J ) (17)

and

li(J̃ ∪ J ) = li(J̃ )+ li(J ) (18)

provided the two column index sets J̃ and J are disjoint.
Also it follows for the singletonsJ = { j} for j = 1 . . .n by comparison of Lemma 1

and (14) with wi = (1 − pi j) that

U(P) =
n∑

j=1

�U(P, { j}) . (19)

Thus we conclude that by using a suitable singleton J = { j} one can always achieve
an expected reduction no smaller than U(P) divided by n or m for direct and transpose
probing, respectively. This observation allows us to ensure finite termination of our
probing scheme as shown below.

3. A finite optimization procedure

Whatever the merit of the stochastic modelling effort in the previous section, we may
directly attack the successive reduction of the uncertainty functional U(P) defined in
Lemma 1 as a finite dimensional optimization problem. The choice of the index sets
J then resembles the problem of finding a descent direction, but though the actual
reduction is not exactly predictable, there is no need for a line-search. Moreover, for
the practical reason discussed in Subsect. 1.1, we will wish to select a whole bundle
of at least 32 index sets and by making them disjoint we can easily ensure that the
resulting reductions are additive. It is not yet clear whether this simple strategy can be
significantly improved by allowing overlaps between the index sets.



12 Andreas Griewank, Christo Mitev

3.1. Guaranteed reduction

The following lower bound on the actual reduction immediately implies that even
relatively simple choices of the J force the uncertainty measure U to converge towards
zero.

Lemma 3. For any possible outcome r = S t ∈ {0, 1}m with supp(t) = J the matrix
P′ obtained from P according to (15) satisfies

U(P)−U(P′) ≥
∑

i

wi(J ) sign(li(J )) ≥ �U(P,J )/|J | ,

where |J | ≤ n denotes the cardinality of J and wi(J ), li(J ) as in (12, 13).
� 

Proof. In the ith row we have the reduction∑
j∈J i

(1 − pi j ) if ri = 0 or
∑
j∈J i

wi pi j/(1 −wi) if ri = 1 ,

where we have used that in the second case according to (15) for each j ∈ J
(1 − pi j )− (1 − p′i j ) = p′i j − pi j = pi j/(1 − wi)− pi j = wi pi j/(1 −wi) .

Dividing by the expected reduction �Ui = li wi we obtain in the first case by (12) and
the inequality of the means

1

li

∑
j∈J i

(1 − pi j )

/ ∏
j∈J i

(1− pi j ) ≥
[ ∏

j∈J i

(1 − pi j )

] 1
2−1

≥ 1 .

Hence, we have shown that in the first case ri = 0 the actual reduction is bounded below
by liwi under the tacit assumption that J i is nonempty so that li > 0. If li = 0, there is
no reduction in the ith row possible at all. This situation cannot arise in the second case
ri = 1 where the actual reduction divided by the expected reduction liwi is given by

1

li

∑
j∈J i

pi j

/[
1 −

∏
j∈J i

(1 − pi j )

]
≥ 1

li

since for pi j ≤ 1 always ∑
j∈J i

pi j ≥ 1 −
∏
j∈J i

(1 − pi j ) ,

as one can easily check by induction on the number of factors 1 − pi j . Finally, by
summing over i and using again �Ui = li wi , we obtain the assertion, which completes
the proof.

� 



Detecting Jacobian sparsity patterns by Bayesian probing 13

3.2. Significant descent implies finite termination

Now suppose that starting from some initial probability distribution P0 we successively
select a sequence of index sets Jk and obtain the updated probabilities Pk . Then it
follows from the Lemma 3 that

1

n

∑
k

�U(Pk,Jk) ≤
∑

k

�U(Pk,Jk)/|Jk| ≤ U(P0) ≤ n m .

Consequently, the expected reductions �U(Pk,Jk) must tend to zero if k grows un-
bounded. A natural significant descent condition on the Jk is that their expected reduc-
tion is no smaller than the maximal one achievable by a singleton J = { j} so that by
(19)

�U(Pk,Jk) ≥ max
1≤ j≤n

�U(Pk, { j}) ≥ U(Pk)/n . (20)

Then it follows immediately from �U(Pk,Jk) → 0 that the uncertainty measures
U(Pk) must also converge to zero. This means that all element probabilities pi j are set
to 0 or 1 at some particular update or they gradually converge toward 1. In fact the last
possibility cannot occur as established in the following result.

Proposition 1. Provided the initial P0 satisfies the consistency condition (7) and the
index sets Jk are chosen such that the condition (20) is satisfied the process stops at
some finite k with U(Pk) = 0 and thus Pk = Sk = S.

� 
Proof. Suppose the assertion was wrong. Then the number of pi j ∈ {0, 1}must be stable
after a while with all other pi j converging to but never reaching 1 exactly. Let δk denote
the maximum over all such remaining discrepancies 1 − pk

i j > 0 at some late probing
iteration. Because U(Pk) → 0 we must have δk → 0. The singleton probe J = { j}
would yield an expected reduction �U(Pk, { j}) ≥ δk. However, by our assumption it
may not be taken since it would settle the issue of whether si j is 0 or 1 and thus reduce
the number of remaining undetermined entries further. The probe actually taken must
therefore satisfy �U(Pk,Jk) ≥ δk by (20). Moreover we must have li(Jk) > 1 for all i
with wi(Jk) > 0 since otherwise the elements with j ∈ J i

k would also be determined
by the next probe. Hence we must have in fact wi(Jk) ≤ δ2

k for all i = 1 . . .m, which
clearly contradicts the lower bound on �U(Pk, { j}) for all large k as δk tends to zero.
This completes the proof by contradiction.

� 
Clearly, the proposition also applies to combined schemes, since direct or transpose
probing would have to be performed infinitely often if the result was not true. As
shown in the proof, the condition (20) on Jk eventually forces the probing scheme
to determine the sparsity column by column using singletons J = { j}. This happens
once the current probability that the remaining undetermined elements si j equal 1
is high enough. Obviously this reverting to the simple-minded column by column
approach is highly undesirable because it means that some min(m, n) probes need to be
taken, whereas we want to get away with much less. Fortunately, in our computational
experience this happens only rarely, for example, in the complementary diagonal case.



14 Andreas Griewank, Christo Mitev

3.3. Single probe selection

At each stage we may selectJ as one of 2n possible subsets with the aim of maximising
�U(P,J ) at least approximately. This task appears to be quite difficult since there may
be several local minima. Here we consider two sets as immediate neighbours if they can
be transformed into each other by including or excluding just one index j ∈ {1 . . .n}.
This effect can already be seen in the following tiny example.

In Fig. 1 the nodes of the diamond represent the four possible choices for subsets
J ⊂ {1, 2}. To reach the globally maximal value �U(P, {2}) from the locally maximal
value �U(P, {1}) one has to go through either one of the local minimizer J = ∅ or
J = {1, 2}. The inequality

−�U(P, {1})−�U(P, {2}) = −0.7 < −0.24 = �U(P, {1, 2, 3})
also shows that −�U(P, ·) is not a submodular function [Fle00], whose minimization
would be a comparatively simple task.

In our current implementation we have adopted the following ascent strategy in
two variants. In order to compute at least a local maximum of �U(P,J ), we start
with the empty set J = ∅ and then successively include and exclude column indices
while monotonically increasing our objective until no more gain can be achieved in
this way. To this end we cycle through all n column indices j = 1 . . . n and compare
�U(P,J ∪ { j}) or �U(P,J \ { j}) with the current value �U(P,J ). Depending on
whether we accept any increases right away or modify J only after finding the largest
variation over a full cycle j = 1 . . . n, we will refer to our method as first ascent or
steepest ascent, respectively. The second strategy appears a lot more thorough than the
first.

�U(P;f1g) = 1� p1 = 0:3 �U(P;f2g) = 1� p2 = 0:4

�U(P; f1;2g) = 2(1� p1)(1� p2) = 0:24

�U(P; ;) = 0

f1g f2g

f1;2g

;

Fig. 1. Multimodiality of �U on subsets of {1, 2} with P = (p1, p2) = (0.7, 0.6)

Whereas first ascent depends on variable and equation numbering, steepest ascent
applied column- and/or row-wise is invariant with respect to renumberings except when
the maximal increase of �U is attained for several incoming or outgoing rows or
columns during the computation of J or J̄ . However, in our empirical experience
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the much larger expense for computing the sets Jk according to the steepest ascent
strategy was not justified by a significant reduction in the overall number of probing
steps k compared to the numbers achieved by the first ascent strategy. To ensure that
the significant descent condition (20) is satisfied the very first column j entering the
initially empty set J is always chosen in the steepest ascent fashion as a maximizer
of �U(P, { j}) for j = 1 . . . n. Note that due to the special form (14) of the objective
function �U(P,J ) the inclusion or exclusion of a single element inJ can be accounted
for quite economically.

3.4. Bundle probe selection

As we noted in the introductions it is usually barely more expensive to conduct 32 probes
simultaneously than to conduct just one. Hence it is natural to look for a family of sets
Jk with k = 1 . . . K that maximises the expected reduction of U(P). While the formula
given in Lemma 2 is then still valid for one such bundle probe, its actual evaluation
seems quite complicated except when we make the assumption that the Jk are mutually
disjoint. Then the k corresponding result events are stochastically independent and we
have the total expected reduction

�U(P,J1, . . . ,Jk) ≡
K∑

k=1

�U(P,Jk) . (21)

Even after imposing disjointness we still have (K + 1)n possible families of K index
sets Jk ⊂ [0 . . .n]. To find one with a reasonable effort, we have tried two strategies,
so far. In the first bottom up approach we simply pick one Jk at a time by the single
probe optimisation specified above but limited to the column indices that have not been
included in any one of the predecessorsJk̃ with k̃ < k. Here we may find that all indices
are assigned before k has reached its upper bound K , meaning that probing capacity
would be wasted. To fix this problem we have limited the number of elements in any Jk
to n/K , arriving at what we will refer to as the bottom up method based on either first
or steepest ascent in each single set selection.

3.5. Top down bundling

Clearly the simple-minded bottom up approach described above is somewhat unsatisfac-
tory, as the various sets Jk are chosen without any real consideration of their structural
interdependence. Therefore we have also implemented the following top down approach,
which worked better for sizable K even though the overhead is significantly larger.

Our point of departure is the family of singletonsJk = {k} for k = 1 . . . n for which
the maximal expected reduction

�U(P,J1, . . . ,Jn) ≡ U(P)

would actually be achieved in one bundle probe. Except when the problem is so small
that n ≤ K , we cannot perform n probes simultaneously and therefore have to reduce
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the test family, which we chose to do by repeatedly merging them in pairs. In merging
two disjoint sets J and J̃ , the objective function contribution

�U(P,J , J̃ ) = �U(P,J )+�U(P, J̃ )

=
m∑

i=1

wi(J )li(J )+
m∑

i=1

wi(J̃ )li(J̃ )

is because of (17) and (18) reduced to

�U(P,J ∪ J̃ ) =
m∑

i=1

wi(J )wi(J̃ ) [li(J )+ li(J̃ )] .

Taking the differences we obtain after some elementary manipulation the objective
function variation

σ(J , J̃ ) =
m∑

i=1

[
wi(J )li(J )[1 −wi(J̃ )] +wi(J̃ )li(J̃ )[1 −wi(J )]

]
. (22)

This function σ(J , J̃ ) is always nonnegative and may be interpreted as a similarity
measure between the index sets J and J̃ . The more similar two sets J and J̃ are in
this sense, the more information is lost when they are merged.

Following again a greedy philosophy we always merge a pair of sets Jk and Jk̃ for
which σ(Jk,Jk̃) is currently minimal. If this minimal loss is still bigger than one of
the individual reductions �U(P,Jk), we decide that it is better to reduce the number of
index sets by removing that particular Jk completely from the family. We may interpret
this action as merging Jk with a fictitious set J0 for which all wi(J0) vanish. Rather
than maintaining a full table of similarity coefficients σ(Jk,Jk̃), which would require
O(n2) storage initially, we keep for each of the remaining sets Jk only the minimal
value σ(Jk,Jk̃) and the corresponding index k̃. This information can be updated with
little effort after each set merger or removal. The top down strategy just described has
been applied with various values of K between 1 and 32. In the special case K = 1 we
obtain an unbundled probing scheme that works acceptably well but seems a little less
efficient than the bottom up approach described earlier.

3.6. Combination with transpose

Identifying all nonzeros by direct probing always requires n test vectors if the Jaco-
bian has a dense row. As already discussed at the end of Subsect. 2.5, for the single
probe case we have therefore also included a row-wise implementation of our methods
for selecting [bundle] probes. In all methods labeled as combined in Sect. 4, we have
then compared the expected reduction for direct [bundle] probing with that for trans-
pose [bundle] probing and selected the more promising mode in each step. In case
of ties, which occur especially in the beginning for square matrices, direct probing
is applied. The total number of test vectors is then the sum of the column and row
probes.
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3.7. Compressed storage scheme

In all schemes for finding a suitable probe one needs to access the current probabilities
pi j in order to evaluate U(P) and �U(P,J ) for prospective index sets J . Storing and
manipulating P as a dense array of m n entries seems rather inappropriate on truly
large problems, where the actual number of nonzeros in S can expected to be a small
multiple of m + n. Instead one may store for each direct probe only the column indices
Jk = supp(t(k)), the row indices J̄k ≡ supp(S t(k)) and the corresponding nonzero
values ŵk

i ≡ 1/(1 −wi) with wi computed as in (12) at the kth probe. Setting formally
ŵk

i = 0 for all i �∈ J̄k, we obtain the product representation

pk
i j = p0

i j

∏
k̃ : j ∈Jk̃

ŵk̃
i . (23)

We may assume that the initial probability p0
i j is a simple function of its indices. For

example it may be constant or depend only on the index distance |i − j| from the
diagonal. Then the total storage and the effort for computing one current probability
component pk

i j grow linearly as functions of the number k of probes so far performed.
In case of disjoint bundle probes the effort grows only with the number of probes since
the condition j ∈ Jk̃ in (23) can only be met for one set Jk̃ in each bundle. In case of
combined probing, the right hand side of (23) must be multiplied by the corresponding
product over all transposed probes that effect the ith row.

4. Experimental results

Throughout this section we display along the vertical axis the total number k of Boolean
products needed to completely detect the sparsity pattern. When probes are taken in
bundles of size K the total number k is always a multiple of K . In the histograms
Figs. 6 and 8 the height of the shaded parts represents the number of bundles k/K ,
with the total height still equalling k. Usually k grows when K is increased as less
information is available in choosing the probing vectors. All results were obtained from
the neutral initialization pi j = 1/ max(m, n) motivated in Subsect. 2.7. All calculation
were stopped only when U(P) had been reduced exactly to zero so that P = S, the
actual sparsity pattern.

4.1. Specially structured matrices

As we have mentioned in the introduction, diagonal matrices of dimension n can be
detected using 2 log2 n probes. This theoretical result assumes that this very special
sparsity pattern is given and merely needs to be verified.

The dotted line in Fig. 2 displays the number of probes needed by our bottom up first
ascent scheme starting from the uniform distribution pi j = 1/n and thus without any
specific information. Only direct products were allowed and exactly the same results
would have been obtained on any row or column permutation of the identity matrix.
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As one can see the method detects the diagonal structure in roughly 2 log2 n probes,
which is only twice the lower bound for any sparsity pattern with n distinct columns.
The dashed line above gives a similar result for a tridiagonal matrix and the solid one
on top was computed for the sparsity structure obtained from the 5-Point stencil on the
unit square with

√
n grid points in each direction. As one can see the dependence of

the number of probes required on the matrix dimension appears to be logarithmic in
all cases. However, the number of probes in the tridiagonal case is more than twice as
many as the estimate 2 log2 n established in [GM01] for that problem.

Fig. 2. Forward bottom-up first ascent on diagonal, tridiagonal and 5-point

Apparently due to the symmetry of the three matrix structures examined above, the
use of transpose Boolean products was found not to reduce the number of probes needed
for complete determination. The situation is different for matrices with dense rows and
columns, like the simple arrowhead structure obtained by adding a dense last row
and column to a diagonal matrix. Then complete determination based on either direct or
transpose products alone requires k = n probing steps. In contrast, the number of probes
taken by our combined bottom-up first ascent scheme again grows only logarithmically
with the number of transpose products being roughly 20 seemingly irrespective of n.
This result is displayed in Fig. 3, where the solid line represents the bottom up first
ascent and the dashed one the steepest ascent variant. As one can see the differences are
not consistent and certainly not very large.

The results obtained by our probing scheme on the four special sparsity structures
considered in this subsection are very satisfactory, but they certainly do not demonstrate
its suitability for general sparse problems. For this purpose we consider in the remainder
randomly sparse matrices and a subset from the Harwell-Boeing test collection. We also
examine the effects of bundling, which makes the individual Boolean product much
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Fig. 3. Combined bottom-up first ascent and steepest ascend on arrowhead

cheaper. The dependence on the initialization is in general quite weak as shown in the
following section.

4.2. Randomly sparse matrices

Figure 4 displays the results for square matrices of dimension n = 500 and 1000 with
10n randomly distributed nonzeros and various constant initializations of the pi j . As
one can see the results are the same for all sufficiently small initial probabilities, which
agrees with our derivation of the neutral initialization in Subsect. 2.7.

Figure 5 displays the results for square matrices of dimension n with n2/100 or 10n
randomly distributed nonzero entries, respectively. In the first case represented by the
solid line, the number of probes appears to be growing only slightly faster than linear as
a function of n. The number of probes required is roughly 17 times the average number
of nonzero elements per row, irrespective of whether n equals 200, 500, 1000, or 2000.
In the second case represented by the dashed line the average number of nonzeros per
row was kept constant at 10 and the resulting number of probes appears to grow again
logarithmically.

Hence we might formulate the daring conjecture that for randomly generated square
matrices

#probes ∼ length ∗ log(min(m, n)) . (24)

Here length is the average number of nonzeros in any row or column of the matrix.
Irrespective of whether or not this conjecture is true, our results indicate that the probing
scheme can reveal even random sparsity patterns at a fraction of the cost that would be
incurred by the basic column by column approach.
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Fig. 4. Dependence of probes on initial probability pi j = 10k for k = −5 . . .− 1

Fig. 5. Number of probes on random matrices with linear row or constant length

Things look even better when we utilize the bundling procedure described in Sub-
sects. 3.4, 3.5 and 3.6. Contrary to what one might have expected, bundling into groups
of 2, 4, 8, 16, and 32 probes at a time does not increase the total number of direct
or transpose probes very much at all. Unfortunately, the overhead of computing the
test vector bundles by our top-down approach is still quite significant, which explains
why we show the results only up to n = 500 in Fig. 6. As one can see, a random
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Fig. 6. Combined top-down with bundle-size K = 2, 4, 8, 16, 32 on random matrices with 10 nonzeros per
row on average

sparsity structure of size n = 500 can be detected using just 5 bundles of size 32, which
corresponds to a cost of about 5 directional derivatives and thus roughly 15 function
evaluations.

4.3. Harwell-Boeing matrices

Finally we consider six rectangular matrices from the Harwell Boeing collection [DGL].
Table 1 lists the problem acronyms, the dimensions m and n, the minimal and maximal
number of nonzeros per row mnr and mxr, the corresponding values mnc and mxc per
column, and finally the percentage of nonzero elements overall.

Table 1. Characteristics of Harwell-Boeing selection

Matrix m n mnr mxr mnc mxc nz(%)
ABB313 313 176 1 6 2 26 2.83
ASH219 219 85 2 2 2 9 2.35
ASH331 331 104 2 2 3 12 1.92
ASH608 608 188 2 2 2 12 1.06
ASH958 958 292 2 2 3 12 0.68
WIL199 199 199 1 6 2 9 1.77

None of these matrices has more than 6 nonzeros per row, which explains why the
combined first ascent scheme was not dramatically faster than the corresponding direct
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only versions, as displayed in Fig. 7. The black partitions of the columns represent the
number of transpose probes. The probe counts for the two corresponding steepest ascent
variants are not shown as they were, just slightly lower, when they differed all.

Fig. 7. First ascent schemes on Harwell-Boeing selection

Compared to the row and column dimensions of the problems, the number of probes
required seems acceptable, though computing some 30-60 Boolean products in sequence
is certainly not a negligible effort. As we noted in the introduction this is in practice at
least 30 times as expensive as propagating one or two integer vectors that correspond to
bundles of 32 test vectors.

Fortunately, bundling by our top-down scheme does not increase the overall number
of probing vectors very much, as was already observed on the random matrices and can
now be seen in Fig. 8. The entries in Fig. 8 are slightly reminiscent of speed-up tables in
parallel computing, where the wall-clock times scale almost inversely with the number
of processes. Here the number of bundle probes k/K represented by the shaded column
parts are almost reciprocal to the size K of each bundle. For the natural choice K = 32,
we never need more than 3 bundle probes, of which the first one is computed almost
completely blind, since all entries of the initial P are again chosen equal to the neutral
value 1/ min(m, n).

As one can see in Fig. 9 the sparsity patterns of the Harwell-Boeing matrix ASH219
has a certain degree of regularity, but it is by no means trivial. To be able to figure out that
pattern in just two bundle probes must be considered a very satisfactory achievement of
the proposed approach.

5. Summary and discussion

In this paper we have developed a sequential probing scheme for determining the
sparsity pattern of Jacobian matrices for vector functions defined by computer pro-
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Fig. 8. Combined top-down with bundle sizes 2, 4, 8, 16, 32
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Fig. 9. Sparsity pattern of ASH219 with m=219 and n=85
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grams. The problem specific input for this Bayesian estimation procedure consists of
Boolean Jacobian-vector products, which can be generated either by differencing or
suitably adapted automatic differentiation software. In the former case there is a re-
mote possibility that false zeros are detected due to exact cancellations at the current
argument.

The dependence information generated by automatic or algorithmic differentiation
is more reliable, and in its reverse mode one can also evaluate Boolean products of
the transpose Jacobian at a similar cost. As demonstrated on the arrowhead example in
Fig. 3, this capability is very useful if the Jacobian in question happens to have some
(nearly) dense rows. For this and other highly structured square matrices, we found that
the total number of probing vectors required grew only logarithmically as a function
of the dimension n. The same observation applies to randomly generated matrices with
a uniformly bounded number of nonzeros per row. Moreover, if test vectors were bundled
in groups of up to 32 the total number of test vectors grew only by a factor less than
two in all cases. Especially gratifying and still a little surprising is that the sparsity
patterns of several sizable matrices from the Boeing test collection could be identified in
just two or three bundle probes, with the first one being selected without any structural
information.

There are several aspects that warrant further examination and improvement. First,
it seems likely that the number of probes can be bounded on certain classes of matrices.
Possibly a probabilistic analysis could also verify that the expected number of probes
on randomly sparse matrices satisfies a relation similar to our conjecture (24). The
sequential updating approach may lead to some probabilities pi j ’s remaining below 1
even though a simultaneous analysis of all probing results would reveals them already
as being 1. While this information may be a little hard to come by, it implies that all
probes involving column j or row i provide no information regarding other elements
in row i or column j , respectively. Therfore, an implementation of the simultaneous
approach with careful attention to the data structures used to store the probing results
already gathered may well be worthwhile.

Even when the updated probabilities can be (re)computed very efficiently, it would
appear that at least our top-down procedure is much too costly. Some closer analysis
of the similarity measure (22) and other optimization heuristics should lead to a faster
bundle calculation. Possibly, one might even be more general and allow overlapping
index sets Jk within each bundle probe.

Also, some more thought should be given to the initialization of the probability
distribution, which was simply uniform equal to 1/ min(n, m) in all our test calculations.
In many applications it would make sense to initialize pi j as a function of some “distance
measure” between the jth independent and the ith dependent variable. The closer they
are the more likely they are to interact, as is certainly the case in discretizations of
differential equations with possibly irregular grids. Then using the Euclidean distance
between the associated grid points would seem rather natural.
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