
An Adaptive Nonlinear 
Algorithm 
JOHN E. DENNIS, JR. 
Rice University 
and 
DAVID M. GAY and ROY E. WELSCH 
Massachusetts Institute of Technology 

Least-Squares 

NL2SOL is a modular program for solving nonhnear least-squares problems that incorporates a 
number of novel features. It maintains a secant approximation S to the second-order part of the least- 
squares Hessian and adaptively decides when to use this approximation. S is "sized" before updating, 
something that is similar to Oren-Luenberger scaling. The step choice algorithm is based on 
minimizing a local quadratic model of the sum of squares ftmctmn constrained to an elhptmal trust 
regmn centered at the current approximate minimizer This is accomphshed using ideas chscussed by 
Mor6, together with a special module for assessing the quahty of the step thus computed. These and 
other ideas behind NL2SOL are discussed, and its evolution and current implementation are also 
described briefly. 

Key Words and Phrases" unconstrained optimization, nonlinear least squares, nonlinear regression, 
quasi-Newton methods, secant methods 
CR Categories: 5 14, 5.5 
The A.lgonthm: NL2SOL: An Adaptive Nonlinear Least-Squares Algorithm. A C M  Trans. Math. 
Softw. 7, 3(Sept 1981), 348-368 

1. INTRODUCTION 

T h i s  p r o j e c t  b e g a n  in o rde r  to  m e e t  a n e e d  for  a n o n l i n e a r  l e a s t - s q u a r e s  a l g o r i t h m  

which ,  in t he  la rge  r e s idua l  case,  wou ld  be  m o r e  r e l i ab le  t h a n  the  G a u s s - N e w t o n  

or  L e v e n b e r g - M a r q u a r d t  m e t h o d  [15] and  m o r e  ef f ic ien t  t h a n  the  s e c a n t  or  

v a r i a b l e  m e t r i c  a l g o r i t h m s  [17], such  as t h e  D a v i d o n - F l e t c h e r - P o w e l l  m e t h o d ,  

w h i c h  are  i n t e n d e d  for gene ra l  f unc t i on  m i n i m i z a t i o n .  

W e  h a v e  d e v e l o p e d  a s a t i s f ac to ry  c o m p u t e r  p r o g r a m  ca l led  N L 2 S O L  based  on  

ideas  in [18], and  ou r  p r i m a r y  p u r p o s e  h e r e  is to  r e p o r t  t h e  de ta i l s  and  to  give 
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some test results. On the other hand, we learned so much during the development 
that seems likely to be applicable in the development of other algorithms that  we 
have chosen to expand our exposition to include some of this experience. 

In Section 2 we set out the problem and the notation we intend to use. Section 
3 deals with our way of supplementing the classical Gauss-Newton approximation 
to the least-squares Hessian by various analogs of the Davidon-Fletcher-Powell 
method. Section 4 briefly describes our interpretation of the Oren-Luenburger 
[33] sizing strategy for this augmentation. In Section 5 we describe our adaptive 
quadratic modeling of the objective function. Section 6 contains a discussion of 
the stopping criteria and covariance matrices. Section 7 contains test results, and 
Section 8 discusses the size of NL2SOL and the time it takes for housekeeping. 
The NL2SOL Usage Summary is included in the accompanying algorithm. 

2 .  THE NONLINEAR LEAST-SQUARES PROBLEM 

There are good reasons for numerical analysts to study least-squares problems. 
In the first place, they are a computation of primary importance in statistical 
data analysis and hence in the social sciences, as well as in the more traditional 
areas within the physical sciences. Thus a computer algorithm able to deal 
efficiently with both sorts of data is widely applicable. 

Although applicability should always constitute sufficient justification to tackle 
a problem, in this case there is also an opportunity for more far-reaching progress 
in numerical optimization. In order to be more specific, it will be useful to have 
a formal statement of the nonlinear least-squares problem. 

We adopt notation consistent with fitting a model to n pieces of data using p 
parameters: Given R: ~P --~ ~n, we wish to solve the unconstrained minimization 
problem 

1 1 n 
min f (x)  = ~ R(x )TR(x )  = -~ ~ r,(x) 2. (2.1) 

Notice that  if J (x )  = R ' (x)  --- (O~r~ (x)), then the gradient of f i s  

Vf(x) = J (x )TR(x )  (2.2) 

and the Hessian of f is 

n 

V2f (x ) - - J (x )TJ (x )  + ~ r,(x)V2r,(x).  (2.3) 
tB1 

Since we are seeking a minimum of f, we wish to have f(x* ) = O, an obviously 
global minimum; in the more realistic case where f i s  not anywhere near zero, we 
will be forced to terminate on small parameter changes or to use some other 
convergence criteria (see Section 6). It is clear from (2.2) that Vf(x*) = 0 and 
R (x*) ~ 0 corresponds to R (x*) ± C(J(x*) ) ,  the column space of J (x* ) .  Thus it 
is essential as the iteration proceeds that C (J(xk) )  be approximated very well in 
the usual case where p < n and R (x*) ~ 0. 

In addition to making a precise convergence test possible, having an accurate 
Jacobian matrix means that  a good approximation to a portion of the Hessian is 
available as a by-product of the gradient computation. In fact, it is often possible 

ACM Transactions on Mathematma] Software, Vol 7, No 3, September 1981 



350 J. E Dennis, Jr ,  D. M Gay, and R E. Welsch 

to ignore the second-order  t e rm E r, (x)V~r, (x) of  the Hessian al together  on the 
grounds tha t  if the nonzero residuals are not  of the sort tha t  reinforce their  
nonlineari ty  [41-43, 15], then  J ( x ) W j ( x )  is a sufficiently good Hessian approxi- 
mation.  In the resulting Gauss -Newton  method,  the "Newton  step" from xk is 
defined by the linear system of equat ions 

J ( x k  )WJ(xk  )8k = - J ( x k  ) T R  (Xk). (2 .4)  

{2.4) is the system of normal  equat ions for the l inear least-squares Since 
problem 

m i n ( J ( x k ) s  + R ( x k ) ) w ( J ( x D s  + R(xk ) ) ,  (2.5) 
s 

it is be t te r  to obtain Sk f rom a QR decomposit ion of J ( x k )  (see [27]). 
We can view {2.5) as defining a quadrat ic  model  in x = xk + s of the least- 

squares cri terion function (2.1): 

qG(x)  = ½ R ( x D T R ( x D  + ( x -  x k ) T J ( x D T R ( x D  (2.6) 

+ ½(X -- X k ) T J ( x k ) T J ( x k ) ( X  -- Xk). 

From (2.1)-(2.3) we see tha t  the difference between this Gauss -Newton  model  
and the usual Newton model  obtained from a quadrat ic  Tay lor  expansion around 
xk is just  the te rm ½(x - xk)T[Er, (Xk)V2r , (Xk)](X -- Xk). 

T h e  conceptual  difference between these two models is interesting in tha t  it 
exposes some reasons for the deficiencies of the Gauss -Newton  algorithm. Th e  
Newton  model  is based on the assumption tha t  f can be adequate ly  modeled by 
a quadratic,  while the Gauss -Newton  model  {2.6) is shown by (2.5) to result  f rom 
the stronger assumption tha t  R can be adequate ly  modeled  by an affine function. 

3. AN AUGMENTATION OF THE GAUSS-NEWTON HESSIAN 

Our purpose in this section is to suggest a way to augment  the Gauss -Newton  
model  (2.6) by adding an approximation to the difference between it and the 
quadrat ic  Tay lor  expansion to obtain 

qS(x )  = ½ R ( x k ) T R ( x k )  + (X -- x k ) T J ( x k ) T R ( X k )  (3.1) 

+ ½(X -- xk )w[J (xk )WJ(xk )  + Sk](X -- Xk). 

We suggest an approximation rule for Sk tha t  is simple, general, and geometric. 
T he  approach is to decide on a set of desirable characterist ics for the approximant  
and then  to select Sk+l to be the nearest  such feasible point  to Sk. Th e  rat ionale 
is tha t  every  point  in the feasible set incorporates  equally well the new information 
gained at  xk+t and tha t  taking the nearest  point  (in a sense to be explained later) 
corresponds to destroying as little of the  information stored in Sk as possible. 

Current ly  we begin with So = 0, since this is bo th  cheap and reasonable in the 
sense tha t  q0 s = qG. Suppose Sk is available. First  let  us decide on the propert ies  
Sk+l should have. R e m e m b e r  tha t  it is to approximate  Er ,  (xk+l)~72r, (xk+l) and so 
it should obviously be symmetric.  I t  is easy to find examples where the te rm to 
be approximated is indefinite, so we reject  any  restrict ion on the eigenvalues of 
Sk+~. Finally, we want  to incorporate  the new information about  the problem, 
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Jk+l and R~+I, into Sk+l. The  s tandard way to do this is to ask the second-order  
approximant  to t ransform the current  x-change into the observed first-order 
change, tha t  is, 

Sk+lhxk  = Er,(xk+l)V~r, (Xk+1)hXk 

- E r ,  ( x k +  1 ) ( V r ,  (xk+ 1 ) - Vr, (xh)) ( 3 . 2 )  

T - -  JWRk+l Yk. = Jk+aRk+~ =: 

I t  is perhaps  worth  noting in passing tha t  we tes ted several choices for yk, 
including the Broyden-Dennis  [14] choice JT+1R~+a j W R k  _ T -- Jk+aJk+lA xk and 
the Bet ts  [7] choice JW+~Rh+~ -- J T R k  - J W J k A x k .  Happily, (3.2), which makes 
more use of the s t ructure  of the problem, was the slight bu t  clear winner. In 
summary,  we choose So = O, Sk+l E Q := { S : S  = S T and S A x k  = yk ) .  

Our choice of Sk+l from Q is made  in analogy with the D F P  me thod  for 
unconstra ined minimization [17]. Before giving the formula and its properties,  we 
review some useful notation. 

I f A  is any real matrix, then  the Frobenius norm of A is II A [Ir := (~]A2]) 1/2. If  
B is any symmetr ic  positive definite matrix, then it has a symmetric ,  positive 
definite square root, B m .  Define [1 A [I v.R := 11 B-1/2AB-~/2  ][ ~. This  weighted 
Frobenius norm is a natural  analog of the Frobenius norm for a matr ix  when the 
s tandard inner product  norm on the domain is replaced by H x l[ B = (xTBx)2/2, 

because II A II 2F,B = Z II Av~ I] ~ for any set of vectors Vl ,  V2 . . . . .  Vp or thonormal  in 
the inner product  on ~ "  defined by (x, y)  := xTBy .  The  following theorem gives 
the update  formulas as well as their  defining properties.  I t  is just  a res ta tement  
of [17, T h e o r e m  7.3]. 

THEOREM 3.1. L e t  vT A xk > 0. T h e n  f o r  a n y  p o s i t i v e  de f in i t e  s y m m e t r i c  m a t r i x  

H fo r  w h i c h  H A x k  = v, 

~s s o l v e d  by 

rain II 8 - s k  II ~,.  for  S ~ Q 

( y k  -- S k A  Xk)V  T "1" v ( yk  - SkAxk )  T 
Sk+l = Sk + Ax[v 

h x T ( y k  -- S k A X k ) U V  T 

(Axrv )  2 

In NL2SOL we compute  Sk+l corresponding to v = hgk  = JT+IRk+I -- J W R k .  
This  corresponds to weighting the change by any positive definite symmetr ic  
matr ix  tha t  sends Axh to Agk. Thus  we hope the metric being used is not  too 
different from tha t  induced by the natural  scaling of the problem. 

4. SIZING THE HESSIAN AUGMENTATION 

I t  is well known by now tha t  the update  methods  do not  generate approximations 
tha t  become arbitrari ly accurate as the i terat ion proceeds. On the other  hand, we 
know tha t  for zero residual problems, Sk should ideally converge to zero and tha t  
if it does not  at  least become small in those cases, then  the augmented  model  
{3.1) cannot  hope to compete  with (2.6), the Gauss-Newton  model. 
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The crux of the problem can be seen by observing that  even if Rk+l happened 
to be zero and even if yk defined by (3.2) were used to make the update to Sk, 
then Sk÷IAxk = yk = O, but Sk+l would be the same as Sk on the orthogonal 
complement of {A xk, V}. 

We use a straightforward modification of the 0ren-Luonburger self-scaling 
technique [33]. The idea is to update rkSk rather than Sk to get Sk+l. The scalar 
vk is chosen to try to shift the spectrum of Sk in hopes that  the spectrum of vkSk 
will overlap that  of the second-order term we are approximating. We could take 
the scalar to be 

_ [ A x k S k h x k l  AxTy  k - 1  

'a'x~Skaxk L ax~axa ][ ~ ] 
We prefer to call this sizing, and since we are primarily concerned with Sa being 
too large, we actually take 

• a = min{[ ZhxTya [/[ hxTSaAxa [, 1}. (4.1) 

Whatever this strategy is called, notice that  when Ra+~ = 0, our ya = 0, and so 
ra = 0 and Sa+l = 0. The use of sizing factor (4.1) made a significant difference in 
the performance of the algorithm. (See Table IV.) 

5. ADAPTIVE QUADRATIC MODELINO 

In Section 3 we noted that  So = 0, which means that  the augmented model (3.1) 
is initially equal to the Gauss-Newton model {2.6). Tests have shown that  often 

G x qa (k+l) predicts f(xa+~) better than s qa (xa÷~) for small k; so it seems useful to 
have some way to decide which model to use to determine the step. 

Betts [7] also starts with So = 0 and takes Gauss-Newton steps for at least p 
iterations and until Axa is small enough to make it likely that  xa+~ is near x*. It 
seems therefore as though his aim is to make a last few refining iterations based 
on the augmented Hessian. The heuristic we use in NL2SOL usually uses the 
augmented Hessian much sooner. This heuristic is intimately connected with our 
choice of hxa. 

NL2SOL uses a model/trust-region strategy to pick hxa. The step is of the form 

Axa - -  -(Ha + ~kD~)-lVf(xa), (5.i) 

where Ha is the current Hessian approxitnation, Da is a diagonal scaling matrix 
discussed more in Section 7, and ha -> 0 is chosen by the safeguarded Reinsch [39] 
iteration as in [31], with the case of near singularity in Ha + haD~ handled as 
in [24]. The important thing is the idea of having at xa a local quadratic model qa 
of f and an estimate of a region in which qk is trusted to represent f. The next 
point, xa+~, is chosen to approximately minimize qa in this region or to minimize 
qa in an approximation to this region. In either case, the information gained about 
f at xa+~ is then used to update the model and also to update the size or shape of 
the trust region. 

We begin with the assumption that  qo G holds globally. Since the trust region 
revision is always based on the length of the step just taken, this causes the radius 
to be set automatically by the initial Gauss-Newton step, This scheme often 
works well, but it can have problems. If the Gauss-Newton step is too long, the 
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Figure  1. 

trust region may have to be shrunk repeatedly with attendant evaluations of the 
residual function R to obtain an acceptable x~. Much more serious is the possibility 
of overflow. The initial step bound b0, that is, the maximum length allowed for 
the very first step attempted, is a parameter in NL2SOL; so the initial assumption 
of global linearity can be overruled by making b0 small. 

Figure 1 will perhaps be helpful at this point. The ellipses represent the 
contours of qk and the circle is the trust region--our picture assumes the diagonal 
scaling matrix Dk to be the identity and the Hessian approximation to be positive 
definite. The point Nk is the "Newton point" or global minimizer of the convex 
quadratic model qk, and the curve s(r) represents the locus of minimizers of qk(xk 
+ S) constrained by II s II 2 -< r, 0 < r < oo. Complete details, based largely on [31], 
can be found in [24], including the case where/ark is not positive definite, but we 
choose hxk = s(r) so that II Dkhxk II 2 lies between 0.9 and 1.1 of the current trust 
radius. 

Since we were using this adaptive approach, it is not surprising that  we also 
thought of using the new information at xk+~ to choose between qS+l and q~+~ for 
use in determining xk+2. We begin by default with S -- 0 and hence with the 
Gauss-Newton model. Before giving our decision rules for step choice anal model 
switching, we give some informal remarks that  will probably be sufficient e:~pla- 
nation for everyone except the specialist reader. 
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I t  would certainly be simpler to completely separate  model  selection from trust  
radius selection, and we do so except  in one instance tha t  we feel calls for their  
interaction. If  the current ly  preferred model  and t rust  region propose an unac- 
ceptable step, then  we may  decrease the t rus t  radius; bu t  the difficulty might  
equally well lie in our model  preference. T h e  easy route  would be always to blame 
an excessive t rus t  radius for a bad step, bu t  our  experience (see Table  IV in 
Sect ion 7) indicates tha t  we obtain a more  reliable algori thm if we t ry  changing 
models in the reasonable manner  tha t  we now describe. 

When  the first trial step of an i terat ion fails, we test  the a l ternate  model  to see, 
roughly speaking, if it would have predicted the observed failure at tha t  point. If  
so, the al ternate  model  gets a chance to make  a trial step with the same t rust  
radius. If  we do not  decide to t ry  changing models, or if the a l ternate  model  fails 
to suggest a more successful step with the same t rust  radius, then  we assume for 
the durat ion of the present  i terat ion tha t  our  current  model  preference is correct.  
We then  decrease the t rus t  radius until  xk+l is de termined  or the algori thm fails. 

In order  to pin down the above comments  about  "successful steps" and 
"reasonable ways to change models," etc., we give a more  formal description of 
our model  switching strategy. We use qk to denote  the current ly  preferred model  
and q~ for the al ternate  model. Our tests depend on comparing predicted and 
observed function differences at certain points, and so it will be useful to have 
Ark(x) := f (x )  -- f (xD,  hqk(x) := qk(x) -- qk(xD = qk(x) -- f(xk), and 5q~(x) := q~(x) 

a x a x - q k ( k )  = qk( ) - f (xk) .  The  Aqk and hq~ are our  predictors  for Ark. 
We begin the (k + 1)st i terat ion by computing a prospective Xk+l, say x p k + l '  

based on qk and the current  t rust  radius. We compute  f(xP+~), but  we do not  yet  
compute  Vf(x~+l); our  only gradient calculation in this i terat ion is Vf(xk+l). If  

Afk(x~+l) > 10-', (5.2) 
Aqk(x~+l) 

then  the step is a good one; so if (see (5.1)) 

)~k > 0 (5.3a) 

and 

Ah(xk+,)  <_ 0.75 • Vf(x~)T(x~+, - xk), (5.3b) 

tha t  is, if the  step constraint  is binding and the direction appears  worth  pursuing, 
then  we save x~+l and f(x~+~) and t ry  increasing the t rus t  radius by a factor 
(between 2 and 4) chosen as in [21] and analogous to the decrease factor described 
in [31, p. 109]. We compute  x~'+~ on the basis of qk and the increased t rust  radius. 
If  f(x~'+~) >_ f ( x  $+1), then  we accept x~+ 1 as xk+~ and s tar t  getting ready for the 
next  i teration. Iff(x$~l) < f(x~+l), then  we replace x~+ 1 byx$+l and re turn  to test  
(5.2). If ever (5.2) is t rue bu t  (5.3) is false, then  x~+ 1 is accepted as xk+~ and we get 
ready for the next  iteration. 

Now let us trace the branch tha t  originates when (5.2) is false. In this case, we 
do not  regard x~+ 1 very highly as a candidate  for xk+l, but  its fate will be decided 
by fur ther  tests. We first test  whether  it might  be useful to t ry  changing models, 
but  only if this is the first t ime through (5.2) in the current  iteration. If  

I qk(XPk+l ) -- f(xPk+l) I > 1.5lq~ (X~+~) -- f(x~+,) l, (5.4) 

ACM Transac tmns  on Mathemat ica l  Software, Vol 7, No 3, September  1981 



An Adaptive Nonlinear Least-Squares Algorithm • 355 

then  we t ry  the  o ther  model  in the  sense tha t  we compute  x~+l with the  same  
x a f(x~+l), then  we change our model  preference,  so x]+~ t rus t  radius. I f  f ( k + l )  < 

becomes  x p and  we re turn  to tes t  (5.2); otherwise, we re ta in  our  cur rent  model  
preference.  Note  t ha t  we test  (5.4) only if the very first p roposed  s tep of an 
i terat ion is bad. 

I f  we reach  this point  wi thout  having decided on xk+l, t hen  we have  a 
poor  proposed new i terate  x~+~ and we have  rejected the  notion of switching 
models.  I f  

ah(x~+') < 10 -4, (5.5) 
Aqk(x~+l) 

then  we reject  x~+~, shrink the t rus t  region as suggested by  Fle tcher  [21] and 
Mor~ [31], r eeompute  x~+ v and re turn  to tes t  (5.2). I f  (5.5) is false, then  we accept  
x~+~ as Xk+l, bu t  we shrink the t rus t  region in gett ing ready  for the next  i teration. 

Once xk+l has  been  found, we decide what  t rus t  region radius  to use first when  
seeking xh+2. T h e  radius chosen has  the  form # • [t Dk+x hxk [ 2, where  hxk = xk+~ 
-- xk. I f  (5.2) with x~+ 1 := xh+~ is false, then  # is Fle teher ' s  [21] decrease factor; 
otherwise, if e i ther  (5.3b) holds with x~+~ := Xk+l or 

II Dk+11 {V2qhhXk -- [Vf(Xk+l) -- Vf(xD])  II 2 < I[ Dkl+l f(xk+l) II 2, (5.6a) 

o r  

ax[ Vf(xk+,) < 0.75 Ax T Vf(xD, (5.6b) 

then  2 _< # _< 4 as above; otherwise # = 1. This  rule for updat ing  the  radius is a 
modificat ion of one described by  PoweU [36]. 

After  we have  found an acceptable  xk+~, we decide whe ther  to change model  
preferences  for comput ing  xk+2. We have  found tha t  it is bes t  to re ta in  the 
current ly  preferred model  if (5.4) holds with x~+~ := xk+a, tha t  is, unless the  o ther  
model  does a significantly be t te r  job of predict ing the  new function value. Th is  
decision is independent  of our choice of the new t rus t  radius. 

6. CONVERGENCE CRITERIA AND COVARIANCE 

An impor tant ,  somet imes  difficult issue in pract ical  comput ing  is the m a t t e r  of 
deciding when to s top an i terat ive process. We have  chosen to include five 
convergence tests  in NL2SOL: tests  for "X-convergence,"  "relat ive function- 
convergence,"  "absolute  funct ion-convergence,"  "singular  convergence,"  and 
"false convergence."  

Absolute  funct ion-convergence occurs if an i terate  xk is found with 

f ( xD < EA (6.1) 

for a prescr ibed tolerance ~A. This  tes t  is included to cover  the rare  ease where  x* 
is the  zero vector  and f ( x*)  = 0, since the X-convergence and  relat ive function- 
convergence tests  do not  work in this case. 

T h e  o ther  convergence tests  are only per formed if the  current  s tep Axk yields 
no more  than  twice the predicted function decrease, tha t  is, if 

f (xk) -- f (xk  + AXD <__ 2[f(xk) -- qk(xk + hXk)]. (6.2) 
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These other tests rely heavily on qk, the current quadratic model, which seems 
very untrustworthy if (6.2) fails to hold. We do not worry if the latest step ~xk 
actually increases the computed function value, since this may happen becaus~ 
of roundoff error. But we do return whichever of xk and xk + hxk  gives the 
smallest computed fuhction value. 

Both the X-convergence and false-convergence tests employ the scale matrix 
Dk - diag(d~ . . . .  , d~) mentioned in Section 5 to compute a scaled relative 
difference, RELDX(x, y, D), between two vectors x, y ~ ~P. This could be defined 
in any of several ways. For simplicity, we have chosen the definition 

max,( [ d,(x, - y,)]) 
RELDX(x, y, D ) : =  m a x j ( d j ( [ x j [ +  [y~[))' {6.3) 

where i and j range between 1 and p. 
X-convergence means it appears likely that  the current iterate xk is within a 

prescribed tolerance ex of a strong local minimizer x* (a minimizer at which the 
Hessian V2f(x *) is positive definite) in the sense that  RELDX (Xk, X*, Dk ) --< Ex. 
We judge this to be the case if the current step is a Newton step (i.e., kk -- 0 in 
{5.1)) for which (6.2) holds and 

RELDX (xk, xk + hxk, DD <- Ek. (6.4} 

Relative function-convergence means it appears likely that  the current function 
value f (xk)  is close to its value f ( x * )  at a strong local minimizer x* in the sense 
that  f (xk)  - f ( x * )  <_ ~Rf(xD for a prescribed tolerance eR. We judge this to be the 
case if, simultaneously, (6.2) holds, the Hessian Hk = V2qk of the current quadratic 
model is positive definite, and the function reduction predicted for a Newton step 
is no more than eRf(Xk), that is, 

f ( x D  - qk(xk -- H Z l V f ( x D )  
-< ER. (6.5) 

f(x,) 
It sometimes happens that  (6.4) and (6.5) both hold, and NL2SOL has a special 
return code for this case. 

Singular convergence is similar to relative function-convergence, except that  
the least-squares Hessian V2f(xk)  appears to be singular or nearly so. In cases 
where R arises from a data-fitting problem, this means that  the model for the 
data is overspecified, that  is, x has too many components, at least for x near xk. 
We declare singular convergence to have occurred if, simultaneously, none of the 
stopping tests already described is satisfied and the current model predicts that  
a change of no more than ERf(xD can be made in the objective function value by 
any step from xk bounded by the initial step bound bo, that is, 

max(f(xk) - qk(x) : [[ Dk(x  - xD[h -< bo} - ERf(Xk). (6.6) 

If necessary, the left-hand side of (6.6) is evaluated by computing (but not trying) 
another step of the form (5.1). 

False convergence means that  the iterates appear to be converging to a 
noncritical point. We declare it to occur if, simultaneously, none of the previously 
described tests is satisfied, (6.2) does not hold for the current step Axk, and 

RELDX(xk, xk + Axk, DD < ~F (6.7) 

ACM Transac tmns  on Mathematmal  Software, Vol 7, No. 3, September  1981 



An Adaptive Nonhnear Least-Squares Algorithm • 357 

A 

C = current  res idual '  C 2 = 2f(xD. 
B = opt imal  res idual  accorchng to the  Gauss -Newton  model ,  for 

whmh Hk -- J(x~)Wj(xk)" B 2 = 2qk(xk -- H ~  ~ ~7f(xD). 
A = projectmn of the  current  res idual  onto the co lumn space of 

J (xD,  the cur rent  Jacobian.  A 2 = C -~ - B ~. 

ck = c o s  v~ = A/C"  c~ = lef t -hand side of (6.5) 

Fag. 2. ck for the  Gaus s -Newton  model  

for a specified tolerance ev that should generally be less than cx. This may mean 
that the convergence tolerances in {6.1) and {6.4)-{6.6) are too small for the 
accuracy to which fand  J are being computed, that there is an error in computing 
J, or that f or Vf is discontinuous near xk. 

Earlier versions of NL2SOL included a stopping test called the COSMAX test 
that measured the cosines of the angles between the columns of the current 
Jacobian matrix and the corresponding residual vector. We would have preferred 
to examine Ck, the cosine of the angle between the residual vector and its 
orthogonal projection onto the column space of the Jacobian matrix, but this 
cosine would be expensive to compute for the augmented model. By contrast, Ck 
is readily available for the Gauss-Newton model, since it is then the square root 
of the left-hand side of (6.5); see Figure 2. For the Gauss-Newton model, (6.5) 
thus amounts to a test that  we would have preferred to the COSMAX test, and 
for the augmented model it is a natural generalization of this preferred test. 
Several people have suggested tests based on ck, including Allen [1] and Bates 
and Watts [4]. (See also Belsley's weighted gradient stopping test [6].) 

Test (6.5) can also be motivated by statistical considerations. Since there is 
inherent variability in the data, it is generally not useful to continue iterating 
when a candidate step Axk = (Ax~ . . . .  , Axe) is generated for which 

max([ hx~ I/s.e.(x~): 1 _< i<_p}  (6.8) 

is sufficiently small. Here s.e.(x~) denotes some estimate of the standard error 
(square root of the variance) of the i th component of the current parameter 
vector estimate xk and so is a function of the statistical variability in the data. 

An alternative to {6.8) suggested by Pratt  [37] is to consider general linear 
combinations l W A x k  of the components of hxk, that is, 

max([ 1WAxk [ / ( 1 W V k l ) :  1 ~ 0 )  = X w -1 -1/2 (A k V~ AXD , (6.9) 

where Vk is a current estimate of the covariance matrix. For s.e.(xf) = 
(eWVke,) 1/2, where e, is the i th standard unit vector, (6.9) clearly dominates (6.8), 
so it seems reasonable to base a test on {6.9}. If we choose Vk = &HE 1, where 
is the current residual sum of squares divided by max(l ,  n - p ) ,  that is, 

~k = 2 f ( xD/max{1 ,  n - p ) ,  (6.10) 

and if Axk is a full Newton step, that is, hxk = - H [ 1 V f ( x D ,  then (6.9) equals 
max(l ,  n - p }  times the square root of the left-hand side of (6.5). 

Many statistical inference procedures require an estimate of the covariance 
matrix at the solution x*. NL2SOL provides three possibilities: 

5 2 H - 1 j T j H - 1  (6.11) 
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$2H-1 (6.12) 

5 2 ( j T j )  - '  (6.13) 

where ~2 is given by (6.10) with xk :-- x*. When (6.11) or (6.12) is specified, a 
symmetr ic  finite difference Hessian approximation H is obtained at the solution 
x*. If H is positive definite (or J has full rank at  x* for (6.13)), the specified 
covariance matr ix is computed.  

A detailed discussion of all three  covariance forms is contained in [3]. Th e  
second form (6.12) is based on asymptot ic  maximum likelihood theory  and is 
perhaps  the most  common form of es t imated covariance matrix. We feel tha t  
(6.11), the default, is more useful for smaller sample sizes and in o ther  cases where 
the conditions necessary for the asymptot ic  theory  [38] may  be violated. Th e  
third form assumes tha t  the residuals at  the solution are small and is therefore  
often highly suspect. 

7. TEST RESULTS 

We have run NL2SOL on a number  of the tes t  problems repor ted  in the l i terature.  
In particular,  we have run it on the tes t  problems listed in [26] and on one 
described in [30]. The  original sources for these problems, together  with the 
abbreviated problem names used in Tables  I I - IV and some notes, are given in 
Table  I. 

The  behavior  of NL2SOL is de termined in par t  by  an integer ar ray IV and a 
floating-point a r ray  V, which contain i terat ion and function evaluation limits, 
convergence tolerances, and o ther  switches and constants.  In the runs summarized 
in Tables  II-IV, most  of the IV and V input  components  (other  than  the i terat ion 
and function evaluat ion limits) had the default  values given them by subrout ine 
D F A U L T .  In particular,  the  initial step bound (trust  radius), b0 = V(LMAX0),  
had the value 100, and the convergence tolerances CA, ex, eR, eF tha t  appear  in 
{6.1) and {6.4)-(6.7) had the following values: ~A = V(AFCTOL) = 10-2°; ex = 
V(XCTOL) - 1.49 × 10-s; eR = V(RFCTOL)  = 10-1°; and er = V(XFTOL)  - 2.22 
× 10 -14. The  values just  ment ioned are the defaults for the double-precision 
version of NL2SOL on IBM 360 and 370 computers:  we obta ined Tables  I I - IV on 
the IBM 370/168 at  the Massachuset ts  Inst i tute  of  Technology;  the double- 
precision ar i thmetic  on this machine has a unit  roundoff  of 16 -13 = 2.22 × 10 -16. 

{Except as noted below and except  for the runs s topped by the i terat ion or 
function evaluation limits, all runs repor ted  in Tables  III  and IV found essentially 
the same function value listed in Table  II.) 

Table  II summarizes the performance of NL2SOL on the test  problem set when 
all IV and V input  components  (except the i terat ion and function evaluation 
limits) have their  default  values. Following a suggestion of J. J. Mor6 [private 
communicat ion] ,  we obtained new starting guesses for many  of the test  problems 
by multiplying the s tandard starting guess by 10 and 100. Th e  column labeled LS 
gives the base 10 logari thm of the factor by  which the s tandard  start ing guess 
was multiplied. The  problem dimensions appear  in the columns headed N and P, 
while the number  of function (i.e., R(x) )  and gradient  (i.e., J ( x ) )  evaluations 
performed,  respectively, appear  under  NF  and NG. Located  under  C is a code 
telling why NL2SOL stopped: X means  X-convergence, R means  relative func- 
t ion-convergence, B means  both  X and R, A means  absolute function-conver-  
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Table I Original Sources of Test  Problems 

Problem Note Source 

ROSNBROK [40] 
HELIX 1 [22] 
S INGULAR [35] 
WOODS [11] 
ZANGWILL 2 [44] 
ENGVALL [19] 
BRANIN [ 9] 
BEALE [ 5] 
CRAGG 3 [26] 
BOX [ 8] 
DAVIDON1 4 [13] 
F R D S T E I N  5 [23] 
WATSON6,9,12,20 6 [29] 
CHEBQD8 [20] 
BROWN 7 [10] 
BARD [ 2] 
J E N N R I C H  [28] 
KOWALIK [29] 
OSBORNE1,2 [34] 
MEYER [30] 

Notes 
1. The residual vector R(x) for this problem is a discontinuous 

function of x On those runs  where NL2SOL halts with false con- 
vergence, the iterates have converged to a point of discontinuity 

2. This is a linear least-squares problem that  NL2SOL solves in 
one step when the initial step bound, that  is, V(LMAX0), is inn 
creased somewhat  from its default value of 100 (to at least 174). 

3. The olagmal Mlele problem described in [12], which Gill and 
Murray [26] cite as the source for this problem, does not have the 
residual component  r~(x) = x4 - 1 This new component  forces x4 to 
move more rapidly toward 1, but  otherwise causes no noteworthy 
change in the performance of NL2SOL. 

4 This is a very ill-conditioned linear least-squares problem If  
V{LMAX0) is set large (to at least 1 9 × 107), then NL2SOL halts 
with X-convergence after two steps when using double-precision 
arithmetic on an IBM 370 computer  With a double precision of a 
few bits more accuracy, such as that  of the Honeywell 6180 or the 
Univac 1110, NL2SOL attains absolute function convergence after 
a single step 

5 In all our test runs, NL2SOL found a local solution to this 
problem. The residual vector vanishes at the global solution 

6. WATSON20 lies near the boundary between zero-residual and 
nonzero-residual problems. After the first dozen or so iterations, 
NL2SOL can neither make further substantial reductions in the 
sum of squares nor satisfy any of its default convergence criteria 
To reduce the computer  time spent on this problem, we used a 
function evaluation limit of 20 and an iteration limit of 15 on all 
runs of WATSON20 reported here. 

7 Gill and Murray [26] call this problem "Davldon 2" 
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Table II Defaul t  NL2SOL 

PROBLEM LS N P N~ NG C F PRELDF RELDX 

ROSNBRO~ 0 2 2 26 19 A 0.9~3E-32 0.I00E+01 0.818E-03 
ROSNBROM I 2 2 57 39 A 0.973E-32 0.I00E+01 0.594E-Oa 
ROSNBROK 2 2 2 141 121 A O.Q73E-32 0.IOOE+O1 0.440E-03 
HELIX O 3 ~ 13 11 A 0.276E-20 0.I00E+01 0.145E-05 
HELIX I 3 3 19 16 A 0.120E-20 0.IOOE+O1 0.244E-05 
HELIX 2 3 3 103 a5 F 0.120E+05 O.984E~O0 O.181E-13 
SINGULAR 0 a 4 20 20 A 0.I07E-20 0.I00E+01 0.333E+00 
SINGULAR I 4 4 26 25 A 0.751E-21 0.I00E+01 O.Z33E+OO 
SINGULAR 2 4 4 54 27 A 0.224E-20 0,I00E+01 0.333E+00 
WOODS 0 7 4 ~0 47 A 0.232E-23 0.I00E+01 0.197E-06 
WOODS I 7 4 5q 46 A 0.487E-26 0oI00E+01 0.426E-07 
WOODS 2 7 4 77 53 X 0.0 0.I00E+01 0.359E-I0 
ZANGWILL 0 3 z ~ z A 0.426E-27 0.I00E+O1 0.IOOE+01 
ENGVALL 0 5 ~ 17 15 X 0.27QE-32 0.IOOE+O1 0.357E-IO 
ENGVALL I 5 z 21 lq X O.6ZIE-29 0.I00E+01 O.268E-08 
BNGVALL 2 5 Z 31 26 A O.164E-22 O.IOOB+O1 0.I07E-O6 
BRANIN O 2 2 2 2 A O.1~2E-2R 0.I00E+01 0.I00E+01 
~RANIN I 2 2 lq 15 A 0.662E-2q 0.I00E+01 0.IOOE+01 
BRANIN 2 2 2 20 10 A 0.13RE-20 0.IOOE+01 0.I00E+01 
BEALE 0 3 2 10 q A O.RQ3E-26 0.I00E+01 O.116E-06 
BEALE I 3 2 6 6 A 0.148E-21 0.I00E+01 0.115E-05 
CRAGG O 5 4 2a 23 A 0.217E-20 0.I00E+01 0.253E-07 
CRAGG I 5 4 80 47 R 0.617E+05 0.919E-11 O.Q79E-07 
BOX 0 10 3 7 7 X 0.174E-ZI 0.IOOB+01 O.lq6E-09 
BOX I I0 ~ 16 10 S O.Z78E-01 0.537E-I0 0.177E-13 
DAVIDONI 0 15 15 20 15 X 0.400E-18 0.IOOE+O1 O.I05E-08 
FRDSTEIN 0 2 2 q 8 R 0.245E+02 0.35QE-11 0.769B-06 
FRDSTEIN I 2 2 18 13 R 0.245E+02 O.532E-15 o.q54B-07 
FRDSTEIN 2 2 2 28 19 R 0.245E+02 O.782E-13 O.418E-O7 
WATSON6 0 31 6 12 10 B 0.114E-02 0.422E-19 0.142E-IO 
WATSON9 O 31 q 10 9 R O.70OE-06 0.173E-I0 O.36OE-O7 
WATSON12 0 31 12 14 12 R 0.236E-OQ 0.122E-15 0.254E-O7 
WATSON20 0 31 20 18 16 I 0.651E-17 0.532E+00 0.270E+00 
CHEBOD8 0 ~ 8 23 18 B 0.176E-02 0.277E-11 0.I03E-07 
CHEBQD8 I % 8 77 57 R 0.176E-02 0.392E-I0 O.SaIE-07 
BROWN 0 20 4 lq 17 R O.a29E+05 0.224E-I0 0.228E-06 
BROWN I 20 a 22 16 R 0.429E+05 0.848E-12 0.696E-07 
BROWN 2 20 4 ~I 21 R 0.429E+05 0.111E-I0 O.187E-06 
BARD 0 15 z 7 7 R 0.411E-O2 0.270E-12 0.119E-06 
BARD I 15 3 32 23 S 0o871E+01 0.396E-IO O.243E+00 
BARD 2 15 3 70 28 R 0.41 IB-02 O.411E-I0 O. 146E-05 
JENNRICH O IO 2 I 5 I 3 R O. 622E+02 O. 1 69E-I 2 O. 1 34E-O6 
~OWALIK 0 11 4 11 10 R O. I 54E-03 0.421E-I0 0.423E-06 
MOWALIK I 11 4 130 75 S 0.514E-03 0.68QE-I0 0.242B~00 
KOWALIK 2 11 4 7~ 58 R 0.154E-03 O.a70E-11 0.I03E-06 
OSBORNEI O 33 5 27 22 R O.273E-O4 O.332E-11 O.524B-06 
OSBORNE2 0 65 11 17 16 B 0.201E-01 0.492E-12 O.933E-O8 
OSBORNE2 I 65 11 26 12 S 0.895E+00 O.353E-IO O.879B-O7 
MADSEN O 3 2 12 12 R O.387E+O0 0.I05E-13 O.496E-07 
MADSEN I 3 2 16 15 R O.~8~B+OO O.154E-11 0.584E-06 
MADSEN 2 3 2 28 20 R 0.387E+00 0.120E-12 O.152E-O6 
MEYER 0 16 3 335 206 X 0.440E+02 0.705E-05 O.136B-07 
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Table IH Varmtions on NL2SOL 

D = I 
PROBLEM LS m~F NO C 

DEFAULT PURE GN PURE S NO SIZING 
NF NG C NF NG C NF NG C NF NG C NOTE 

RCRNnROF O 22 
ROSNmROK ~ 28 
ROSNBROF 2 77 
~ELT~ O q 
NELTX I 11 
HELI~ 2 16 
SINGULAR 0 20 
SINGULAR I 23 
SI~TGULAR 2 28 
WOODR 0 61 
WOODS I 6~ 
W0~DR 2 72 
ZANQWILL 0 
EITGVALL 0 17 
EVGVALL 1 20 
ENGVALL 2 27 
BRANIN 0 2 
PRAI~I~ I 17 
BRANIN 2 16 
BEALE 0 10 
mEALF I q 
CRAqG 0 2~ 
CRAGG 1 ~4 
~OX 0 7 
BOX 1 27 
D~VIDONI O z 
PRDSTEIN 0 q 9 
FRDSTEIN I lq 15 
FRDSTE[N 2 2R 2~ 
WAT?ON6 0 A R 
WATSOHn 0 10 9 
WATSON12 0 14 11 
WATSON20 0 20 14 
CHE~QD~ O 22 16 
CHEBODR I 78 6~ 
RRnWN 0 14 1 3 
BROWN I 15 15 
BROWN 2 24 23 
BARD O 7 7 
BARD I 36 22 
BARD 2 Z7 23 
,JENNRICH 0 16 12 
VOWALIK 0 14 12 
KOWALIF I 18q 88 
FOWALIK 2 112 6q 
OSBORNEI 0 ~4 26 
0SBORNE2 O 15 I~ 
OSBORNE2 I 16 12 
MADSE~ 0 12 12 
MADSEN I 14 14 
MADSEN 2 21 20 
MEYER 0 380 229 

18 A 26 19 
24 A 57 39 
54 A 141 121 
q X I~ 11 
9 A 10 16 

14 7 103 &5 
20 A 20 2@ 
2-4 A 26 25 
27 A ~4 27 
45 x 70 47 
~& A 50 ~6 
q2 X 77 5~ 

~ Z 3 
15 A 17 13 
18 A 21 19 
25 R Xl 26 

2 A 2 2 
~5 ~ ~,~ ~5 
14 A 20 10 

A A 10 9 
£ A £ 6 

22 A 24 23 
4"7 A 80 47 
7 Y 7 7 

1Q R 16 10 
X 20 15 
R q 
R 18 13 
P 28 1 q 
R 12 10 
R 10 O 
R 14 12 
E 18 16 
R 2z 1R 
R 77 57 
R 18 17 
R 22 16 
R ~I 21 
R v 7 
R 32 23 
B 70 28 
B 15 15 
R 11 10 
s 130 75 
R 75 58 
R 27 22 
R 17 16 
S 26 12 
R 12 12 
B 16 15 
B 28 20 
B 335 206 

A 18 15 A 23 21 
A 38 2q A 155 6q 
A 115 1 01 A 400 146 
A 17 14 A 15 14 
A 15 13 A 23 18 
F 28 23 X 25 I q 
A 20 20 A 32 32 
A 25 24 A aO 3q 
A .~4 27 A 49 44- 
A RO 64 A 45 3 Q 
A ,q,7 70 A 4 7 3 ~ 
X 8q 65 A 63 45 

5 3 A 3 3 
X 14 12 ",,[ lq 17 
x 20 I m X 27 21 
A 1 O0 72 A 44 37 
A 2 2 A 2 2 
A 14 12 A 28 25 
A 21 12 A 49 38 
A 10 9 X IQ 15 
A 6 6 A 13 12 

23 22 A 34 32 
R 1 50 91 R 75 48 
X 7 v X 8 8 
8 12 11 R 45 20 
X 1 c~ 14 X 20 16 
R Z7 16 F a 8 
R 44 22 ~ 22 1 9 
R 53 26 P '58 30 
9 12 11 R 16 12 
R 11 9 B 21 14 
R 16 14 R 23 17 
I 18 16 1 18 16 
B 58 36 F 20 16 
R 400 109 E 143 105 
R 305 301 I 19 17 
R 400 281 E 27 21 
R 400 296 E 35 26 
R '7 7 R 11 10 
S 32 23 S 81 42 
R 63 27 R I 29 58 
R 35 19 F 11 11 
R t ~  17 R 15 12 
S 127 77 S 1 27 73 
R q6 81 R 400 200 
R 18 16 R '54 31 
B 15 14 R 16 15 
S 16 11 S 28 16 
R ~3 33 R 12 12 
R 39 36 R 19 18 
R 47 40 R 28 23 
X 346 213 B 156 129 

A 31 22 h 
X 30 25 A 
E 89 82 A 
X 14 12 X 
X 18 14 A 
X 80 37 P 
A 20 20 A 
A 26 25 A 
A 34 27 A 
A 70 48 A 
A 117 70 A 
X 93 65 A 
A 3 3 A 
X 18 13 X 
R 20 18 A I 
X 36 30 A 2 
A 2 2 A 
h 17 15 A 
A 20 10 A 
A 10 9X 
A 6 6 h 
X 24 23 A 
R 120 78 R 3 
X 7 7 X 
S 16 11 F 
I 20 15 X 
R 9 7 R 4 
R 18 13 R 4 
B 30 20 R 4 
B 12 10 B 
B 10 9R 
B 15 12 B 
I 18 16 I 5 
R 80 35 F 4, 6 
R 1 02 78 S 
R 32 30 R 
R 1 07 64 R 
R 40 27 R 
B 7 7R 
S 32 23 S 7 
R 75 32 S 8 
R 16 14 R 4 
R 1I 1 O R  
R 93 65 S 9 
E 138 124 R 
R 18 16 R 
R 16 15 R 
S 27 13 S 
R 13 13 R 
R 21 19 R 
R 37 29 R 
B 322 I 99 B 

Notes 
1. The  P U R E  S run found a local mlmmmer  x* having f(x*) = 56.1. 
2 The  D = I run also found f(x*) -- 56.1 
3. All  runs found different local minimizers" for D = I, f(x*) = 1.68 x 10-21; for D E F A U L T ,  f(x*) 

= 6 17 × 104; for P U R E  GN, f(x*) = 1 50 × 10 ~, for P U R E  S, f(x*) = 2.30 x 10T; and for NO SIZING, 
f(x*) = t 35 × 105 

4 In the P U R E  GN runs of  these  problems, NL2SOL reports false convergence because the  
Jacobian m (nearly) singular at the solutions found and the G a u s s - N e w t o n  Hess ian differs sufficmntly 
from the true one that  the singular convergence test is not satmfied wi th  the  convergence tolerances 
at their default  values If the b0 m (6 6) were changed from 100 to 1, then NL2SOL would  report 
singular convergence on J E N N R I C H ,  and if the  ~R in (6.6) were also increased sl ightly from 10 -~°, say 
to 2 3 × 10 -"), then NL2SOL would  also report singular convergence on F R D S T E I N .  Note  that  the  
true Hessian is qmte  p o s g w e  definite at the solutions found 

5 The  final funcUon values were as follows for D = I, 1 36 x 10-16; for D E F A U L T ,  6.51 × 10 -18, 
for P U R E  GN, 6 50 × 1O ,8, for P U R E  S, 3.49 × 10 -'6, and for NO SIZING, 4 98 × 10 -~8 

6 In the NO SIZING run, NL2SOL often tried the  augmented  model ,  but always switched back 
to the  G a u s s - N e w t o n  model  (Thin run computed  sl ightly ddferent  iterates than  the  correspondmg 
P U R E  GN run because the  latter used S ,  ~ 0 m (7.1).) 

7 T h e  P U R E  S run found f(x*) ~ 8.57. 
8 The  NO SIZING run found f(x*) = 5 74 x 10 -2 
9. The  P U R E  S run found f(x*) = 1.54 × 10 -s 
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Table IV. Simplif ied Iterations 

PROBLEM 

ROSNBROM 
ROSNBROK 
ROSNBROK 
HELIX 
HELIZ 
HELIX 
SINGULAR 
SINGULAR 
SINGULAR 
WOODS 
WOODS 
WOOD~ 
ZANGWILL 
ENGVALL 
ENGVALL 
ENGV&LL 
BRANIN 
BRANIN 
BRANIN 
BEALE 
BEALE 
CRAGG 
CRAGG 
BOX 
BOX 
DAVIDONI 
FRDSTEIN 
FRDSTEIN 
FRDSTEIN 
WATSON6 
WATSONq 
W&TSON12 
W&TSON20 
CHEBOD8 
CHEBQD8 
BROWN 
BROWN 
BROWN 
BARD 
]%ARD 
BARD 
JENNRICY 
KOWALIK 
KOWALIF 
KOWALIK 
0SBORNEI 
0SBORNE2 
OSBORNE2 
MADSEN 
MADSEN 
MADSEN 
MEYER 

DEFAULT NOIMODSW NOINTD]%L NOGRDTST 
LS NF NG C NF NG C NF NG C YF NG C 

0 26 I g ~ 27 I q A 26 21 X 21 1 8 
I 57 3q A z6 2q A 74 57 A 45 ~5 A 
2 141 121 A 135 115 A 164 I~5 A 210 155 A 
O 13 11 A 13 11 A 13 11 A 17 14 Z 
I lq 16 A 17 14 A lq 16 A lq 15 ) 
2 103 45 m 110 53 F 20 16 X qq 43 P 
0 20 20 A 20 20 A 20 20 A 20 20 A 
I 26 25 A 26 25 A 25 25 A 2R 25 A 
2 34 27 A 34 27 A 31 31 A 54 27 A 
O 70 47 A 65 47 X 59 51 A 75 4q X 
I 5q a6 A 71 48 X 41 37 A 54 42 A 
2 77 53 X 77 53 X 5 Q 55 X 87 54 A 
0 3 ~ A z z A 3 3 A 3 3 A 
0 17 13 X 16 I z X 17 14 X 17 13 X 
I 21 1Q X 2z 19 Y 16 16 X 22 19 A 
2 Zl 26 ~ Zl 26 A 56 34 X z6 28 A 
0 2 2 A 2 2 A 2 2 A 2 2 A 
I 19 15 A 18 I~ A 25 25 A 16 13 A 
2 20 10 A 20 10 A %q 3~ A 23 12 A 
0 10 Q A 11 Q A 10 Q ~ 10 9 A 
I 6 6 A 6 6 A 6 6 A 6 6 A 
0 24 2~ A 23 21 A 24 2z A 25 24 A 
I qO 47 R ~0 47 R I Oq QZ ~ 80 49 
0 7 7 x 7 7 x 7 7 x 7 7 x 
I 16 10 S 17 10 S 16 10 S 15 11 R 
O 20 15 X 20 15 X 16 16 I 20 13 E 
0 q 8 R R 7 R q R R Q a R 
I 18 13 R 18 13 R 19 17 R IR 14 B 
2 28 l q R Z5 22 R 2q 27 R 2q 20 B 
O 12 10 B 12 10 B 11 10 B 12 10 B 
O 10 g R 10 g R 10 q B 11 9 B 
O 14 12 R 14 12 R 14 13 R 18 13 P 
O 18 16 I 18 16 I 16 16 I 20 15 E 
0 23 18 B 24 19 B 19 14 R 23 18 B 
1 77 5'7 R 118 76 R 112 98 R 104 82 R 
O 18 17 R 18 17 R 20 19 R 20 18 R 
I 22 16 R 25 lq R 24 25 R 26 20 B 
2 31 21 R z2 22 B 30 29 B 32 23 R 
0 7 7 R 7 7 R 7 7 R 7 7 R 
I z2 23 S 32 23 S 2q 29 S 32 23 S 
2 70 28 R 77 28 R 66 43 R 66 30 R 
O 15 13 R 15 13 R 15 13 R 15 13 R 
0 11 10 R IZ 10 B 11 10 R 13 10 R 
I 130 75 S 244 IOO F IOg 84 S 124 76 S 
2 75 58 R 74 58 R 78 62 R 117 }%1 R 
O 27 22 R 31 22 R 28 23 R 34 23 R 
O 17 16 B 17 16 ]% 17 16 B 18 16 B 
I 26 12 S 27 12 S 15 12 P 26 12 S 
O 12 12 R 12 12 R 12 12 R 12 12 R 
1 16 15 R 16 15 R 18 18 B 19 17 R 
2 28 20 R 29 21 R 25 25 R 27 22 R 
O 335 206 X 343 214 B 209 181 B 351 213 X 

NOTE 

Notes .  
1. The  N O I N T D B L  run found f ( x * )  = 9.30 × 104, and the N O G R D T S T  run found 

f (x*  ) = 8.65 × 104 
2 T h e  final function values  were as fol lows for D E F A U L T  and N O I M O D S W ,  6 51 × 

10 -~s, for N O I N T D B L ,  3 48 x 10-17; for N O G R D T S T ,  9.71 x 10 -Is 
3 If the  defaults for bo or ~R In (6 6) were shghtly  relaxed (e.g., if bo were reduced from 

100 to 50, or if ~R were increased from 10 -1° to 1.5 × 10-1°), then the N O I M O D S W  run 
would  also report singular convergence.  
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gence, S means singular convergence, F means false convergence, i means  
i terat ion limit reached without  convergence, and E means  function evaluation 
limit reached without  convergence. See the previous section for more  details on 
the convergence criteria. The  column labeled F gives the final function value (half 
the sum of squares of R (x)); the one labeled P R E L D F  gives the relative function 
reduct ion predicted, tha t  is, [ f ( X k )  - -  qk(xk + AXk)]/f(xk) for the last step hxk 
at tempted;  and R E L D X  gives the value of {6.3) for the last step a t tempted.  

The  choice of scale matrices Dk ment ioned in Sect ion 5 can significantly affect 
the performance of NL2SOL. By default, Dk = d i a g ( d ~ , . . . ,  d~ ~) is updated  by the 
rule 

d~+~ := max([ll J-,, [122 + max(0, S,}]  1/2, 0.6d~), (7.1) 

beginning with d71 -- 0, where J.,, denotes  the i th  column of the Jacobian matr ix  
J(xk+l). However,  if (7.1) results in d~ +~ < 10 -6, then  d~ +1 is set to 1.0. (The factor 
0.6 is actually V(DFAC). We exper imented with several values of V(DFAC), 
including 0.0, 0.5, 0.75, and 1.0, and we felt tha t  0.6 gave the best  overall 
performance of the values tried.) The  advantage of this choice of Dk is tha t  it is 
largely scale invariant.  

A choice of Dk tha t  is not  at all scale invariant,  but  tha t  gives be t te r  performance 
on many  of our  test  problems, is Dk = I, the identi ty matrix. Table  III  shows how 
these two choices of D compare: Results  from Table  II are in the columns headed 
D E F A U L T ,  while results corresponding to Dk = I appear  under  D -- I. 

Table  III also summarizes test  runs with three  variants of NL2SOL, all of 
which used the default  choice of Dk and the same IV and V inputs as were used 
for Table  II. The  columns headed P U R E  GN show what  happens  if the augmented  
model  is never  used and S ,  = 0 is used in (7.1), while those headed P U R E  S show 
what  happens if it is always used. Finally, the columns headed NO SIZING give 
the results obtained when adaptive modeling is allowed but  no sizing is performed.  
We feel tha t  Table  III makes a good case for the use of adaptive modeling with 
sizing in NL2SOL. 

Table  IV shows how NL2SOL performs when some of the procedures  described 
in Section 5 are simplified. All runs were made using the same IV and V input  
values as for Table  II, and the columns labeled D E F A U L T  summarize the results 
in Table  II. The  results under  NOIMODSW show what  happens  when there  is no 
internal  model  switching, tha t  is, if we do not  consider switching models within 
the current  iteration. The  columns labeled N O I N T D B L  show what  happens  if 
there  is no internal  doubling of the radius, tha t  is, if we do not  compute  x ~ l  when 
(5.2) and (5.3) hold. Finally, the results under  N O G R D T S T  show what  happens  
if no gradient tests are used in determining the new trust  region radius after  xk+~ 
has been found, tha t  is, if (5.6) is not  considered and the radius is only increased 
if (5.2) and (5.3b) hold with x~+~ := xk+~. Table  IV clearly demonst ra tes  the value 
of internal  model  switching, internal  doubling, and the gradient tests. 

I t  is interesting to see how the performance of NL2SOL compares  with that  of 
a general-purpose quasi-Newton algorithm. We therefore  summarize in Table  V 
the results of running SUMSOL [25] on the same problems used for the earlier 
tables. SUMSOL uses the BFGS secant update  to approximate the Hessian of 
the objective function and uses the double dogleg scheme of Dennis and Mei [16] 

ACM Transact ions  on Mathemat ica l  Software, Vol 7, No. 3, September  1981 



Table  V Compar ison w,th S U M S O L  

NL2SOL SUMSOL SUMSOL SUMSOL 
D = I (J**T)*J LMAXO=I H o = I 

PROBLEM LS NF NG C NF NG C NF NG C NF NG C NOTE 

ROSNBROK O 22 18 A 50 37 X 39 32 X 40 36 X 
ROSNBROK I 28 24 A 70 56 A 104 74 X 96 70 X 
ROSNBROK 2 77 54 A 340 251 I 229 174 X 201 146 X I 
HELIX 0 9 9 X 39 30 X 41 33 X 38 28 X 
HELIX I 11 9 A 47 35 X 57 40 X 48 34 X 
HELIX 2 16 14 X 57 40 X 57 37 X 35 25 X 
SINGULAR 0 20 20 A 45 45 A 77 75 A 80 75 A 
SINGULAR I 23 23 A 53 53 A 88 86 A 91 82 A 
SINGULAR 2 28 27 A 91 89 A 108 99 A 99 90 A 
WOODS O 61 45 X 102 75 X 128 89 X 103 79 X 
WOODS I 63 46 A 130 9q X 92 72 X 80 61 X 
WOODS 2 72 52 X 96 83 X 79 70 X 72 54 X 
ZANGWILL O 3 3 A 3 3 A 6 3 A 10 7 A 
ENGVALL 0 17 15 A 35 30 X 36 32 X 33 30 X 
ENGVALL I 20 18 A 53 42 X 56 45 X 43 39 X 
ENGVALL 2 27 25 R 83 75 X 79 71 X 66 55 X 2 
BRANIN 0 2 2 A 2 2 A 19 16 A 18 15 A 
BRANIN I 17 15 A 28 28 A 38 34 A 38 33 A 
BRANIN 2 16 14 A 51 49 A 64 56 A 48 35 A 
BEALE 0 10 8 A 21 17 X 18 13 X 17 14 A 
BEALE I 8 8 A 19 17 X 16 15 X 16 15 X 
CRAGG 0 23 22 A 118 108 A 119 112 A 115 102 A 
CRAGG I 54 47 A 88 76 R 128 90 R 185 116 R 3 
BOX 0 7 7 X 16 15 X 29 22 X 48 35 A 
BOX I 27 19 R 39 20 X 52 41 B 37 27 B 
DAVIDONI 0 3 3 X 4 4 X 6 5 X 20 2 F 
FRDSTEIN O 9 9 R 9 9 R 9 8 R 13 11 R 
FRDSTEIN I 18 15 R 29 24 R 30 25 R 30 24 R 
FRDSTEIN 2 28 23 B 44 38 R 51 39 R 55 39 R 
WATSON6 O 8 8 R 25 21 R 25 21 R 41 34 R 
WATSON9 0 10 9 R 22 22 B 22 22 B 81 72 R 
WATSON12 0 14 11 R 32 27 R 33 28 B 125 110 R 4 
WATSON20 0 20 14 E 16 16 1 16 16 1 18 16 I 5 
CHEBQD8 0 22 16 R 40 32 R 38 28 R 3q 27 R 
CHEBQD8 I 78 63 R 234 208 B 232 208 B 227 186 R 
BROWN O 14 13 R 25 21 R 24 20 R 46 35 R 
BROWN I 15 15 R 45 43 R 52 46 R 41 30 R 
BROWN 2 24 23 R 78 73 R 80 71 R 47 38 R 
BARD O 7 7 R 20 16 R 17 16 R 22 18 R 
BARD I 36 22 S 79 59 S 66 46 R 34 23 R 6 
BARD 2 37 23 B 80 55 S 89 49 R 73 43 R 7 
JENNRICH 0 16 12 B 16 14 R 16 14 R 34 22 R 
KOWALIK 0 14 12 R 27 19 R 27 19 R 42 33 R 
KOWALIK I 189 88 S 220 159 S 55 48 S 91 73 R 8 
KOWALIK 2 112 69 R 78 56 S 112 72 R 221 124 R 9 
0SBORNEI 0 34 26 R 56 42 R 56 42 R 83 59 R 
0SBORNE2 0 15 13 R 37 32 R 43 34 R 75 59 R 
OSBORNE2 I 16 12 S 28 20 R 52 31 B 53 31 B 
MADSEN O 12 12 R 15 15 R 13 13 R 16 16 R 
MADSEN I 14 14 B 30 28 R 30 28 B 31 28 R 
MADSEN 2 21 20 B 36 35 R 39 32 R 41 36 R 
MEYER O 380 229 B 400 268 E 400 277 E 400 259 B 10 

Notes 
1 The  (J**T)*J run s topped  wi th  f (x)  = 1.32. 

2. NL2SOL found a local soluUon wi th  f(x* ) = 56 1, the  S U M S O L  runs all found the 
global  solution. 

3. NL2SOL found the  global  solution, and  each S U M S O L  run found a different local 
solut ion for (J**T)*J,  f(x*) = 232, for L M A X 0 = I ,  f(x*) = 33 0, and for Ho = I, f(x*) 
= 1 .27  x 106. 

4 The  Ho - I run  of S U M S O L  found f(x*) = 1 33 x 10 -7. 

5 The  final function values  were as follows: for NL2SOL, 1.36 × 10 -~4, for (J**T)*J, 
0 290; for L M A X 0 = I ,  0 293, and  for H0 = I, 4.13 × 10 -3 

6 The  (J**T)*J run  f o u n d / ( x * )  = 8.51 and the  L M A X 0 = I  run  f o u n d / ( x * )  = 1.18. 
7 The  (J**T)*J run  found f(x*) = 5.74 × 10 -2 and the  L M A X 0 = I  run  found f(x*) 

= 0 943. 

8 The  L M A X 0 = I  run  found f (x* )  = 2.90 x 10 -3 and the  Ho = I run found f(x*) = 
1.54 × 10 -4 (as did all runs  for LS = 0). 

9. The  (J**T)*J run  found f(x * ) = 3.40 × 10 -3 and the  H0 = I run found f(x* ) = 4 71 
X 10 -4. 

10 The  final funet lon values  for the  S U M S O L  runs  were as follows; for (J**T)*J, 
359.; for L M A X 0 = I ,  189, for Ho = I, 237. 
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to select the steps it tries. It uses the same convergence tests as NL2SOL 
(performed, in fact ,  by the same ASSESS module), so the return codes in the 
columns labeled C in Table V have the same meaning as for the earlier tables. 
Like NL2SOL, SUMSOL employs a scale matrix D, which can be updated from 
the diagonal elements of the Hessian approximation, but to eliminate the effects 
of different updates to D, we report only results for D -- I here. The columns 
labeled NL2SOL, D = I repeat the D = I columns of Table III. Those labeled 
(J* *T)*J show what happens when the initial Hessian approximation supplied to 
SUMSOL is H0 = JoTJo, where Jo = J(xo) is the initial Jacobian matrix. (SUMSOL 
actually works only with the Cholesky factor L of its Hessian approximation H 
= LL T, and the initial L supplied in the (J**T)*J run was obtained from a QR 
factorization of Jo.) The columns labeled LMAX0=I show what happens when 
the imtial step bound is decreased from the default value that NL2SOL uses, that 
is, 100., to the default value for SUMSOL, that is, 1.0, and everything else is the 
same as for the (J**T)*J run. The columns labeled H0 = I show what happens 
when SUMSOL sets its initial Hessian approximation to the identity matrix with 
everything else as for the LMAX0=I run. Except as listed in the notes in Table 
V, all runs found the final function value reported in Table II. None of the 
SUMSOL runs dominates or is dominated by any of the other SUMSOL runs. 
On problems where both find the same locally optimal function value, NL2SOL 
generally requires fewer--sometimes substantially fewer--function and gradient 
evaluations than SUMSOL, so in cases where function evaluations are expensive, 
Table V suggests that it is quite worthwhile to exploit the structure present in 
the least-squares Hessian. 

8. CODE SIZE AND TIMING 

NL2SOL is substantmlly larger than a simple Levenberg-Marquardt code, and 
its size deserves some explanation. The following remarks about code size refer to 
the ob3ect code produced by the version of IBM's FORTHX compiler (optimi- 
zation level 2) available under CMS at M.I.T. when this work was done. We may 
regard somewhere between 35 and 40 percent of the code as constituting a 
Levenberg-Marquardt code. Another 30 percent of the code takes care of switch- 
ing models and using the augmented model. The remainder of the code is devoted 
to such "extras" as computing covariance matrices, printing an iteration summary 
and certain initial and final information, providing default values for various 
inputs, checking the validity of certain input parameters and reporting ones that  
have nondefault values, and computing a finite-difference Jacobian approxima- 
tion (subroutine NL2SNO). 

One feature that  increases the code size by somewhere between 5 and 10 
percent is the option of providing the res]dual vector and Jacobian matrix by 
reverse communication: one initially calls NL2ITR, passing in the starting guess 
xo along with R (x0) and J (x0). Whenever NL2ITR requires R or J to be evaluated 
at a new point x, it returns with a special return code specifying what is needed; 
one computes the required values and calls NL2ITR again. Subroutine NL2SOL 
interacts with NL2ITR, using subroutines provided by its caller to compute R(x) 
and J(x). Subroutine NL2SNO also interacts with NL2ITR, using a subroutine 
provided by its caller to compute R(x) and approximating J(x) by forward 
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differences. Reverse communication is vital in applications where the calculation 
of R(x) is so elaborate that  it requires a sequence of overlays. 

The somewhat elaborate scheme described above for switching models and 
choosing the new trust region also contributes to the code size. In particular, we 
had to code a number of things two ways, one assuming that we have the Jacobian 
matrix, the other assuming that  we have its QR factorization, since we save 
scratch storage by overwriting the Jacobian matrix with its QR factorizatlon (or, 
more precisely, with the R matrix and the information needed to multiply vectors 
by Q and QT). 

We have conducted some timing experiments with NL2SOL and with a recent 
version of MorO's [32] excellent code LMDER with the aim of discovering how 
much adaptive modeling and reverse communication cost in terms of execution 
time. To eliminate time differences due to the step-computing codes, we modified 
LMDER so that it called the same step-computing code (LMSTEP) that NL2SOL 
uses. When trying to assess the cost of reverse communication, we also modified 
NL2SOL to make it act like LMDER, in that it used only the Gauss-Newton 
model, did not update S, and updated the trust radius and scale vector m the 
same way as LMDER. We ran both codes for 5 function evaluations on problems 
SINGULAR, CHEBQD8, WATSON6, WATSON12, OSBORNE2, DAVIDON1, 
and BROWN (see Table I). For most of these problems, having the option of 
using reverse communication (but not actually using it, i.e., calling NL2SOL) cost 
less than a 15 percent increase in execution time; only for SINGULAR (23 
percent) and WATSON6 (18 percent) did we observe increases larger than 15 
percent. 

We repeated the timing tests just described with five FORTRAN utility 
routines (DOTPRD, VAXPY, VCOPY, VSCOPY, and V2NORM, which compute 
the inner product of two vectors, add a multiple of one vector to another, copy 
one vector to another, copy a scalar to all components of a vector, and compute 
the 2-norm of a vector, respectively) with the]r assembly language equivalents, 
and the maximum increase in time for reverse communication dropped to less 
than 15 percent. More significantly, this simple change reduced the execution 
times by as much as 33 percent (for WATSON20, one of the larger problems in 
terms of n and p). Thus it appears substantially more worthwhile (on our 
computer, anyway) to replace a few simple FORTRAN subroutines by their 
assembly language equivalents than to remove the option of using, reverse 
communication. (It is interesting to note that  the object code for the five 
FORTRAN utility routines amounted to 2072 bytes, while that for our assembly 
routines was only 472.) 

Adaptive modeling, in particular updating the S matrix, also costs some time. 
We ran the unmodified NL2SOL on the problems mentioned above for five 
function evaluations, and it took between 10 and 15 percent longer on most of the 
problems (35 percent on SINGULAR) than did the modified code that always 
used the Gauss-Newton model and did not update S. 

All our tests used problems whose residual vectors and Jacobian matrices are 
relatively cheap to compute. On some problems of more practical interest, the 
ability to find a solution quickly (i.e., in a small number of function evaluations) 
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a n d  r e l i a b l y  is  v e r y  i m p o r t a n t .  O u r  e x p e r i e n c e  w i t h  N L 2 S O L  s u g g e s t s  t h a t  i t  is 

w e l l  s u i t e d  to  s o l v i n g  s u c h  p r o b l e m s .  
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