
An Adaptive Nonlinear
Algorithm
JOHN E. DENNIS, JR.
Rice University
and
DAVID M. GAY and ROY E. WELSCH
Massachusetts Institute of Technology

Least-Squares

NL2SOL is a modular program for solving nonhnear least-squares problems that incorporates a
number of novel features. It maintains a secant approximation S to the second-order part of the least-
squares Hessian and adaptively decides when to use this approximation. S is "sized" before updating,
something that is similar to Oren-Luenberger scaling. The step choice algorithm is based on
minimizing a local quadratic model of the sum of squares ftmctmn constrained to an elhptmal trust
regmn centered at the current approximate minimizer This is accomphshed using ideas chscussed by
Mor6, together with a special module for assessing the quahty of the step thus computed. These and
other ideas behind NL2SOL are discussed, and its evolution and current implementation are also
described briefly.

Key Words and Phrases" unconstrained optimization, nonlinear least squares, nonlinear regression,
quasi-Newton methods, secant methods
CR Categories: 5 14, 5.5
The A.lgonthm: NL2SOL: An Adaptive Nonlinear Least-Squares Algorithm. A C M Trans. Math.
Softw. 7, 3(Sept 1981), 348-368

1. INTRODUCTION

T h i s p r o j e c t b e g a n in o rde r to m e e t a n e e d for a n o n l i n e a r l e a s t - s q u a r e s a l g o r i t h m

which , in t he la rge r e s idua l case, wou ld be m o r e r e l i ab le t h a n the G a u s s - N e w t o n

or L e v e n b e r g - M a r q u a r d t m e t h o d [15] and m o r e ef f ic ien t t h a n the s e c a n t or

v a r i a b l e m e t r i c a l g o r i t h m s [17], such as t h e D a v i d o n - F l e t c h e r - P o w e l l m e t h o d ,

w h i c h are i n t e n d e d for gene ra l f unc t i on m i n i m i z a t i o n .

W e h a v e d e v e l o p e d a s a t i s f ac to ry c o m p u t e r p r o g r a m ca l led N L 2 S O L based on

ideas in [18], and ou r p r i m a r y p u r p o s e h e r e is to r e p o r t t h e de ta i l s and to give

Permission to copy without fee all or part of this material is granted provided that the cop, es are not
made or distributed for drrect commercial advantage, the ACM copyright notice and the title of the
pubhcatlon and its date appear, and notice]s given that copying Is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This work was supported m part by National Science Foundation Grants DCR75-10143, MCS76-
00324, and SOC76-14311 to the National Bureau of Economm Research, Inc, and MCS79-06671 to
the Massachusetts Institute of Technology, and was sponsored m part by NSF Grant MCS78-09525
and Umted States Army Contract DAAG29-75-C-0024 to the Mathematics Research Center at the
University of Wisconsin-Madison.
Authors' addresses: J E Dennis, Department of Mathematmal Sciences, Rme Umverslty, P.O. Box
1892, Houston, TX 77001; D.M. Gay, M.I.T./CCREMS, Room E38-278, Cambridge, MA 02139; R.E.
Welsch, M.I.T./CCREMS, Room E53-383, Cambridge, MA 02139.
© 1981 ACM 0098-3500/81/0900-0348 $00.75

ACM Transactions on Mathematmal Software, Vol. 7, No 3, September 1981, Pages 348-368

An Adaptwe Nonlinear Least-Squares Algorithm • 349

some test results. On the other hand, we learned so much during the development
that seems likely to be applicable in the development of other algorithms that we
have chosen to expand our exposition to include some of this experience.

In Section 2 we set out the problem and the notation we intend to use. Section
3 deals with our way of supplementing the classical Gauss-Newton approximation
to the least-squares Hessian by various analogs of the Davidon-Fletcher-Powell
method. Section 4 briefly describes our interpretation of the Oren-Luenburger
[33] sizing strategy for this augmentation. In Section 5 we describe our adaptive
quadratic modeling of the objective function. Section 6 contains a discussion of
the stopping criteria and covariance matrices. Section 7 contains test results, and
Section 8 discusses the size of NL2SOL and the time it takes for housekeeping.
The NL2SOL Usage Summary is included in the accompanying algorithm.

2 . THE NONLINEAR LEAST-SQUARES PROBLEM

There are good reasons for numerical analysts to study least-squares problems.
In the first place, they are a computation of primary importance in statistical
data analysis and hence in the social sciences, as well as in the more traditional
areas within the physical sciences. Thus a computer algorithm able to deal
efficiently with both sorts of data is widely applicable.

Although applicability should always constitute sufficient justification to tackle
a problem, in this case there is also an opportunity for more far-reaching progress
in numerical optimization. In order to be more specific, it will be useful to have
a formal statement of the nonlinear least-squares problem.

We adopt notation consistent with fitting a model to n pieces of data using p
parameters: Given R: ~P --~ ~n, we wish to solve the unconstrained minimization
problem

1 1 n
min f (x) = ~ R(x)TR(x) = -~ ~ r,(x) 2. (2.1)

Notice that if J (x) = R ' (x) --- (O~r~ (x)), then the gradient of f i s

Vf(x) = J (x)TR(x) (2.2)

and the Hessian of f is

n

V2f (x) - - J (x)TJ (x) + ~ r,(x)V2r,(x). (2.3)
tB1

Since we are seeking a minimum of f, we wish to have f(x*) = O, an obviously
global minimum; in the more realistic case where f i s not anywhere near zero, we
will be forced to terminate on small parameter changes or to use some other
convergence criteria (see Section 6). It is clear from (2.2) that Vf(x*) = 0 and
R (x*) ~ 0 corresponds to R (x*) ± C(J(x*)) , the column space of J (x*) . Thus it
is essential as the iteration proceeds that C (J(xk)) be approximated very well in
the usual case where p < n and R (x*) ~ 0.

In addition to making a precise convergence test possible, having an accurate
Jacobian matrix means that a good approximation to a portion of the Hessian is
available as a by-product of the gradient computation. In fact, it is often possible

ACM Transactions on Mathematma] Software, Vol 7, No 3, September 1981

350 J. E Dennis, Jr , D. M Gay, and R E. Welsch

to ignore the second-order t e rm E r, (x)V~r, (x) of the Hessian al together on the
grounds tha t if the nonzero residuals are not of the sort tha t reinforce their
nonlineari ty [41-43, 15], then J (x) W j (x) is a sufficiently good Hessian approxi-
mation. In the resulting Gauss -Newton method, the "Newton step" from xk is
defined by the linear system of equat ions

J (x k)WJ(xk)8k = - J (x k) T R (Xk). (2 .4)

{2.4) is the system of normal equat ions for the l inear least-squares Since
problem

m i n (J (x k) s + R (x k)) w (J (x D s + R(xk)) , (2.5)
s

it is be t te r to obtain Sk f rom a QR decomposit ion of J (x k) (see [27]).
We can view {2.5) as defining a quadrat ic model in x = xk + s of the least-

squares cri terion function (2.1):

qG(x) = ½ R (x D T R (x D + (x - x k) T J (x D T R (x D (2.6)

+ ½(X -- X k) T J (x k) T J (x k) (X -- Xk).

From (2.1)-(2.3) we see tha t the difference between this Gauss -Newton model
and the usual Newton model obtained from a quadrat ic Tay lor expansion around
xk is just the te rm ½(x - xk)T[Er, (Xk)V2r , (Xk)](X -- Xk).

T h e conceptual difference between these two models is interesting in tha t it
exposes some reasons for the deficiencies of the Gauss -Newton algorithm. Th e
Newton model is based on the assumption tha t f can be adequate ly modeled by
a quadratic, while the Gauss -Newton model {2.6) is shown by (2.5) to result f rom
the stronger assumption tha t R can be adequate ly modeled by an affine function.

3. AN AUGMENTATION OF THE GAUSS-NEWTON HESSIAN

Our purpose in this section is to suggest a way to augment the Gauss -Newton
model (2.6) by adding an approximation to the difference between it and the
quadrat ic Tay lor expansion to obtain

qS(x) = ½ R (x k) T R (x k) + (X -- x k) T J (x k) T R (X k) (3.1)

+ ½(X -- xk)w[J (xk)WJ(xk) + Sk](X -- Xk).

We suggest an approximation rule for Sk tha t is simple, general, and geometric.
T he approach is to decide on a set of desirable characterist ics for the approximant
and then to select Sk+l to be the nearest such feasible point to Sk. Th e rat ionale
is tha t every point in the feasible set incorporates equally well the new information
gained at xk+t and tha t taking the nearest point (in a sense to be explained later)
corresponds to destroying as little of the information stored in Sk as possible.

Current ly we begin with So = 0, since this is bo th cheap and reasonable in the
sense tha t q0 s = qG. Suppose Sk is available. First let us decide on the propert ies
Sk+l should have. R e m e m b e r tha t it is to approximate Er , (xk+l)~72r, (xk+l) and so
it should obviously be symmetric. I t is easy to find examples where the te rm to
be approximated is indefinite, so we reject any restrict ion on the eigenvalues of
Sk+~. Finally, we want to incorporate the new information about the problem,

ACM Transactions on Mathematmal Software, Vol 7, No 3, September 1981

An Adaptive Nonlinear Least-Squares Algorithm 351

Jk+l and R~+I, into Sk+l. The s tandard way to do this is to ask the second-order
approximant to t ransform the current x-change into the observed first-order
change, tha t is,

Sk+lhxk = Er,(xk+l)V~r, (Xk+1)hXk

- E r , (x k + 1) (V r , (xk+ 1) - Vr, (xh)) (3 . 2)

T - - JWRk+l Yk. = Jk+aRk+~ =:

I t is perhaps worth noting in passing tha t we tes ted several choices for yk,
including the Broyden-Dennis [14] choice JT+1R~+a j W R k _ T -- Jk+aJk+lA xk and
the Bet ts [7] choice JW+~Rh+~ -- J T R k - J W J k A x k . Happily, (3.2), which makes
more use of the s t ructure of the problem, was the slight bu t clear winner. In
summary, we choose So = O, Sk+l E Q := { S : S = S T and S A x k = yk) .

Our choice of Sk+l from Q is made in analogy with the D F P me thod for
unconstra ined minimization [17]. Before giving the formula and its properties, we
review some useful notation.

I f A is any real matrix, then the Frobenius norm of A is II A [Ir := (~]A2]) 1/2. If
B is any symmetr ic positive definite matrix, then it has a symmetric , positive
definite square root, B m . Define [1 A [I v.R := 11 B-1/2AB-~/2][~. This weighted
Frobenius norm is a natural analog of the Frobenius norm for a matr ix when the
s tandard inner product norm on the domain is replaced by H x l[B = (xTBx)2/2,

because II A II 2F,B = Z II Av~ I] ~ for any set of vectors Vl , V2 Vp or thonormal in
the inner product on ~ " defined by (x, y) := xTBy . The following theorem gives
the update formulas as well as their defining properties. I t is just a res ta tement
of [17, T h e o r e m 7.3].

THEOREM 3.1. L e t vT A xk > 0. T h e n f o r a n y p o s i t i v e de f in i t e s y m m e t r i c m a t r i x

H fo r w h i c h H A x k = v,

~s s o l v e d by

rain II 8 - s k II ~,. for S ~ Q

(y k -- S k A Xk)V T "1" v (yk - SkAxk) T
Sk+l = Sk + Ax[v

h x T (y k -- S k A X k) U V T

(Axrv) 2

In NL2SOL we compute Sk+l corresponding to v = hgk = JT+IRk+I -- J W R k .
This corresponds to weighting the change by any positive definite symmetr ic
matr ix tha t sends Axh to Agk. Thus we hope the metric being used is not too
different from tha t induced by the natural scaling of the problem.

4. SIZING THE HESSIAN AUGMENTATION

I t is well known by now tha t the update methods do not generate approximations
tha t become arbitrari ly accurate as the i terat ion proceeds. On the other hand, we
know tha t for zero residual problems, Sk should ideally converge to zero and tha t
if it does not at least become small in those cases, then the augmented model
{3.1) cannot hope to compete with (2.6), the Gauss-Newton model.

ACM Transact ions on Mathematmal Software, Vol 7, No. 3, September 1981

352 J.E. Denms, Jr., D. M. Gay, and R. E. Welsch

The crux of the problem can be seen by observing that even if Rk+l happened
to be zero and even if yk defined by (3.2) were used to make the update to Sk,
then Sk÷IAxk = yk = O, but Sk+l would be the same as Sk on the orthogonal
complement of {A xk, V}.

We use a straightforward modification of the 0ren-Luonburger self-scaling
technique [33]. The idea is to update rkSk rather than Sk to get Sk+l. The scalar
vk is chosen to try to shift the spectrum of Sk in hopes that the spectrum of vkSk
will overlap that of the second-order term we are approximating. We could take
the scalar to be

_ [A x k S k h x k l AxTy k - 1

'a'x~Skaxk L ax~axa][~]
We prefer to call this sizing, and since we are primarily concerned with Sa being
too large, we actually take

• a = min{[ZhxTya [/[hxTSaAxa [, 1}. (4.1)

Whatever this strategy is called, notice that when Ra+~ = 0, our ya = 0, and so
ra = 0 and Sa+l = 0. The use of sizing factor (4.1) made a significant difference in
the performance of the algorithm. (See Table IV.)

5. ADAPTIVE QUADRATIC MODELINO

In Section 3 we noted that So = 0, which means that the augmented model (3.1)
is initially equal to the Gauss-Newton model {2.6). Tests have shown that often

G x qa (k+l) predicts f(xa+~) better than s qa (xa÷~) for small k; so it seems useful to
have some way to decide which model to use to determine the step.

Betts [7] also starts with So = 0 and takes Gauss-Newton steps for at least p
iterations and until Axa is small enough to make it likely that xa+~ is near x*. It
seems therefore as though his aim is to make a last few refining iterations based
on the augmented Hessian. The heuristic we use in NL2SOL usually uses the
augmented Hessian much sooner. This heuristic is intimately connected with our
choice of hxa.

NL2SOL uses a model/trust-region strategy to pick hxa. The step is of the form

Axa - - -(Ha + ~kD~)-lVf(xa), (5.i)

where Ha is the current Hessian approxitnation, Da is a diagonal scaling matrix
discussed more in Section 7, and ha -> 0 is chosen by the safeguarded Reinsch [39]
iteration as in [31], with the case of near singularity in Ha + haD~ handled as
in [24]. The important thing is the idea of having at xa a local quadratic model qa
of f and an estimate of a region in which qk is trusted to represent f. The next
point, xa+~, is chosen to approximately minimize qa in this region or to minimize
qa in an approximation to this region. In either case, the information gained about
f at xa+~ is then used to update the model and also to update the size or shape of
the trust region.

We begin with the assumption that qo G holds globally. Since the trust region
revision is always based on the length of the step just taken, this causes the radius
to be set automatically by the initial Gauss-Newton step, This scheme often
works well, but it can have problems. If the Gauss-Newton step is too long, the

A C M Transac t ions on M a t h e m a t m a l Software, Vol 7, N o 3, Sep temb~l ~ 1981

An Adaptive Nonlinear Least-Squares Algorithh~ ~ 353

Figure 1.

trust region may have to be shrunk repeatedly with attendant evaluations of the
residual function R to obtain an acceptable x~. Much more serious is the possibility
of overflow. The initial step bound b0, that is, the maximum length allowed for
the very first step attempted, is a parameter in NL2SOL; so the initial assumption
of global linearity can be overruled by making b0 small.

Figure 1 will perhaps be helpful at this point. The ellipses represent the
contours of qk and the circle is the trust region--our picture assumes the diagonal
scaling matrix Dk to be the identity and the Hessian approximation to be positive
definite. The point Nk is the "Newton point" or global minimizer of the convex
quadratic model qk, and the curve s(r) represents the locus of minimizers of qk(xk
+ S) constrained by II s II 2 -< r, 0 < r < oo. Complete details, based largely on [31],
can be found in [24], including the case where/ark is not positive definite, but we
choose hxk = s(r) so that II Dkhxk II 2 lies between 0.9 and 1.1 of the current trust
radius.

Since we were using this adaptive approach, it is not surprising that we also
thought of using the new information at xk+~ to choose between qS+l and q~+~ for
use in determining xk+2. We begin by default with S -- 0 and hence with the
Gauss-Newton model. Before giving our decision rules for step choice anal model
switching, we give some informal remarks that will probably be sufficient e:~pla-
nation for everyone except the specialist reader.

ACM Transactions on Mathematical Software, Vol, 7, No. 3, September 1981.

354 • J.E. Denn,s, Jr., D. M. Gay, and R. E Welsch

I t would certainly be simpler to completely separate model selection from trust
radius selection, and we do so except in one instance tha t we feel calls for their
interaction. If the current ly preferred model and t rust region propose an unac-
ceptable step, then we may decrease the t rus t radius; bu t the difficulty might
equally well lie in our model preference. T h e easy route would be always to blame
an excessive t rus t radius for a bad step, bu t our experience (see Table IV in
Sect ion 7) indicates tha t we obtain a more reliable algori thm if we t ry changing
models in the reasonable manner tha t we now describe.

When the first trial step of an i terat ion fails, we test the a l ternate model to see,
roughly speaking, if it would have predicted the observed failure at tha t point. If
so, the al ternate model gets a chance to make a trial step with the same t rust
radius. If we do not decide to t ry changing models, or if the a l ternate model fails
to suggest a more successful step with the same t rust radius, then we assume for
the durat ion of the present i terat ion tha t our current model preference is correct.
We then decrease the t rus t radius until xk+l is de termined or the algori thm fails.

In order to pin down the above comments about "successful steps" and
"reasonable ways to change models," etc., we give a more formal description of
our model switching strategy. We use qk to denote the current ly preferred model
and q~ for the al ternate model. Our tests depend on comparing predicted and
observed function differences at certain points, and so it will be useful to have
Ark(x) := f (x) -- f (xD, hqk(x) := qk(x) -- qk(xD = qk(x) -- f(xk), and 5q~(x) := q~(x)

a x a x - q k (k) = qk() - f (xk) . The Aqk and hq~ are our predictors for Ark.
We begin the (k + 1)st i terat ion by computing a prospective Xk+l, say x p k + l '

based on qk and the current t rust radius. We compute f(xP+~), but we do not yet
compute Vf(x~+l); our only gradient calculation in this i terat ion is Vf(xk+l). If

Afk(x~+l) > 10-', (5.2)
Aqk(x~+l)

then the step is a good one; so if (see (5.1))

)~k > 0 (5.3a)

and

Ah(xk+,) <_ 0.75 • Vf(x~)T(x~+, - xk), (5.3b)

tha t is, if the step constraint is binding and the direction appears worth pursuing,
then we save x~+l and f(x~+~) and t ry increasing the t rus t radius by a factor
(between 2 and 4) chosen as in [21] and analogous to the decrease factor described
in [31, p. 109]. We compute x~'+~ on the basis of qk and the increased t rust radius.
If f(x~'+~) >_ f (x $+1), then we accept x~+ 1 as xk+~ and s tar t getting ready for the
next i teration. Iff(x$~l) < f(x~+l), then we replace x~+ 1 byx$+l and re turn to test
(5.2). If ever (5.2) is t rue bu t (5.3) is false, then x~+ 1 is accepted as xk+~ and we get
ready for the next iteration.

Now let us trace the branch tha t originates when (5.2) is false. In this case, we
do not regard x~+ 1 very highly as a candidate for xk+l, but its fate will be decided
by fur ther tests. We first test whether it might be useful to t ry changing models,
but only if this is the first t ime through (5.2) in the current iteration. If

I qk(XPk+l) -- f(xPk+l) I > 1.5lq~ (X~+~) -- f(x~+,) l, (5.4)

ACM Transac tmns on Mathemat ica l Software, Vol 7, No 3, September 1981

An Adaptive Nonlinear Least-Squares Algorithm • 355

then we t ry the o ther model in the sense tha t we compute x~+l with the same
x a f(x~+l), then we change our model preference, so x]+~ t rus t radius. I f f (k + l) <

becomes x p and we re turn to tes t (5.2); otherwise, we re ta in our cur rent model
preference. Note t ha t we test (5.4) only if the very first p roposed s tep of an
i terat ion is bad.

I f we reach this point wi thout having decided on xk+l, t hen we have a
poor proposed new i terate x~+~ and we have rejected the notion of switching
models. I f

ah(x~+') < 10 -4, (5.5)
Aqk(x~+l)

then we reject x~+~, shrink the t rus t region as suggested by Fle tcher [21] and
Mor~ [31], r eeompute x~+ v and re turn to tes t (5.2). I f (5.5) is false, then we accept
x~+~ as Xk+l, bu t we shrink the t rus t region in gett ing ready for the next i teration.

Once xk+l has been found, we decide what t rus t region radius to use first when
seeking xh+2. T h e radius chosen has the form # • [t Dk+x hxk [2, where hxk = xk+~
-- xk. I f (5.2) with x~+ 1 := xh+~ is false, then # is Fle teher ' s [21] decrease factor;
otherwise, if e i ther (5.3b) holds with x~+~ := Xk+l or

II Dk+11 {V2qhhXk -- [Vf(Xk+l) -- Vf(xD]) II 2 < I[Dkl+l f(xk+l) II 2, (5.6a)

o r

ax[Vf(xk+,) < 0.75 Ax T Vf(xD, (5.6b)

then 2 _< # _< 4 as above; otherwise # = 1. This rule for updat ing the radius is a
modificat ion of one described by PoweU [36].

After we have found an acceptable xk+~, we decide whe ther to change model
preferences for comput ing xk+2. We have found tha t it is bes t to re ta in the
current ly preferred model if (5.4) holds with x~+~ := xk+a, tha t is, unless the o ther
model does a significantly be t te r job of predict ing the new function value. Th is
decision is independent of our choice of the new t rus t radius.

6. CONVERGENCE CRITERIA AND COVARIANCE

An impor tant , somet imes difficult issue in pract ical comput ing is the m a t t e r of
deciding when to s top an i terat ive process. We have chosen to include five
convergence tests in NL2SOL: tests for "X-convergence," "relat ive function-
convergence," "absolute funct ion-convergence," "singular convergence," and
"false convergence."

Absolute funct ion-convergence occurs if an i terate xk is found with

f (xD < EA (6.1)

for a prescr ibed tolerance ~A. This tes t is included to cover the rare ease where x*
is the zero vector and f (x*) = 0, since the X-convergence and relat ive function-
convergence tests do not work in this case.

T h e o ther convergence tests are only per formed if the current s tep Axk yields
no more than twice the predicted function decrease, tha t is, if

f (xk) -- f (xk + AXD <__ 2[f(xk) -- qk(xk + hXk)]. (6.2)

ACM Transactions on Mathematical Software, Vol 7, No. 3, September 1981

356 J.E. Dennis, Jr., D. M. Gay, and R. E Welsch

These other tests rely heavily on qk, the current quadratic model, which seems
very untrustworthy if (6.2) fails to hold. We do not worry if the latest step ~xk
actually increases the computed function value, since this may happen becaus~
of roundoff error. But we do return whichever of xk and xk + hxk gives the
smallest computed fuhction value.

Both the X-convergence and false-convergence tests employ the scale matrix
Dk - diag(d~ , d~) mentioned in Section 5 to compute a scaled relative
difference, RELDX(x, y, D), between two vectors x, y ~ ~P. This could be defined
in any of several ways. For simplicity, we have chosen the definition

max,([d,(x, - y,)])
RELDX(x, y, D) : = m a x j (d j ([x j [+ [y~[))' {6.3)

where i and j range between 1 and p.
X-convergence means it appears likely that the current iterate xk is within a

prescribed tolerance ex of a strong local minimizer x* (a minimizer at which the
Hessian V2f(x *) is positive definite) in the sense that RELDX (Xk, X*, Dk) --< Ex.
We judge this to be the case if the current step is a Newton step (i.e., kk -- 0 in
{5.1)) for which (6.2) holds and

RELDX (xk, xk + hxk, DD <- Ek. (6.4}

Relative function-convergence means it appears likely that the current function
value f (xk) is close to its value f (x *) at a strong local minimizer x* in the sense
that f (xk) - f (x *) <_ ~Rf(xD for a prescribed tolerance eR. We judge this to be the
case if, simultaneously, (6.2) holds, the Hessian Hk = V2qk of the current quadratic
model is positive definite, and the function reduction predicted for a Newton step
is no more than eRf(Xk), that is,

f (x D - qk(xk -- H Z l V f (x D)
-< ER. (6.5)

f(x,)
It sometimes happens that (6.4) and (6.5) both hold, and NL2SOL has a special
return code for this case.

Singular convergence is similar to relative function-convergence, except that
the least-squares Hessian V2f(xk) appears to be singular or nearly so. In cases
where R arises from a data-fitting problem, this means that the model for the
data is overspecified, that is, x has too many components, at least for x near xk.
We declare singular convergence to have occurred if, simultaneously, none of the
stopping tests already described is satisfied and the current model predicts that
a change of no more than ERf(xD can be made in the objective function value by
any step from xk bounded by the initial step bound bo, that is,

max(f(xk) - qk(x) : [[Dk(x - xD[h -< bo} - ERf(Xk). (6.6)

If necessary, the left-hand side of (6.6) is evaluated by computing (but not trying)
another step of the form (5.1).

False convergence means that the iterates appear to be converging to a
noncritical point. We declare it to occur if, simultaneously, none of the previously
described tests is satisfied, (6.2) does not hold for the current step Axk, and

RELDX(xk, xk + Axk, DD < ~F (6.7)

ACM Transac tmns on Mathematmal Software, Vol 7, No. 3, September 1981

An Adaptive Nonhnear Least-Squares Algorithm • 357

A

C = current res idual ' C 2 = 2f(xD.
B = opt imal res idual accorchng to the Gauss -Newton model , for

whmh Hk -- J(x~)Wj(xk)" B 2 = 2qk(xk -- H ~ ~ ~7f(xD).
A = projectmn of the current res idual onto the co lumn space of

J (xD, the cur rent Jacobian. A 2 = C -~ - B ~.

ck = c o s v~ = A/C" c~ = lef t -hand side of (6.5)

Fag. 2. ck for the Gaus s -Newton model

for a specified tolerance ev that should generally be less than cx. This may mean
that the convergence tolerances in {6.1) and {6.4)-{6.6) are too small for the
accuracy to which fand J are being computed, that there is an error in computing
J, or that f or Vf is discontinuous near xk.

Earlier versions of NL2SOL included a stopping test called the COSMAX test
that measured the cosines of the angles between the columns of the current
Jacobian matrix and the corresponding residual vector. We would have preferred
to examine Ck, the cosine of the angle between the residual vector and its
orthogonal projection onto the column space of the Jacobian matrix, but this
cosine would be expensive to compute for the augmented model. By contrast, Ck
is readily available for the Gauss-Newton model, since it is then the square root
of the left-hand side of (6.5); see Figure 2. For the Gauss-Newton model, (6.5)
thus amounts to a test that we would have preferred to the COSMAX test, and
for the augmented model it is a natural generalization of this preferred test.
Several people have suggested tests based on ck, including Allen [1] and Bates
and Watts [4]. (See also Belsley's weighted gradient stopping test [6].)

Test (6.5) can also be motivated by statistical considerations. Since there is
inherent variability in the data, it is generally not useful to continue iterating
when a candidate step Axk = (Ax~ , Axe) is generated for which

max([hx~ I/s.e.(x~): 1 _< i<_p} (6.8)

is sufficiently small. Here s.e.(x~) denotes some estimate of the standard error
(square root of the variance) of the i th component of the current parameter
vector estimate xk and so is a function of the statistical variability in the data.

An alternative to {6.8) suggested by Pratt [37] is to consider general linear
combinations l W A x k of the components of hxk, that is,

max([1WAxk [/ (1 W V k l) : 1 ~ 0) = X w -1 -1/2 (A k V~ AXD , (6.9)

where Vk is a current estimate of the covariance matrix. For s.e.(xf) =
(eWVke,) 1/2, where e, is the i th standard unit vector, (6.9) clearly dominates (6.8),
so it seems reasonable to base a test on {6.9}. If we choose Vk = &HE 1, where
is the current residual sum of squares divided by max(l , n - p) , that is,

~k = 2 f (xD/max{1 , n - p) , (6.10)

and if Axk is a full Newton step, that is, hxk = - H [1 V f (x D , then (6.9) equals
max(l , n - p } times the square root of the left-hand side of (6.5).

Many statistical inference procedures require an estimate of the covariance
matrix at the solution x*. NL2SOL provides three possibilities:

5 2 H - 1 j T j H - 1 (6.11)
ACM Transacuons on Mathematmal Software, Vol 7, No 3~ September 1981.

358 J.E. Denms, Jr., D M. Gay, and R. E. Welsch

$2H-1 (6.12)

5 2 (j T j) - ' (6.13)

where ~2 is given by (6.10) with xk :-- x*. When (6.11) or (6.12) is specified, a
symmetr ic finite difference Hessian approximation H is obtained at the solution
x*. If H is positive definite (or J has full rank at x* for (6.13)), the specified
covariance matr ix is computed.

A detailed discussion of all three covariance forms is contained in [3]. Th e
second form (6.12) is based on asymptot ic maximum likelihood theory and is
perhaps the most common form of es t imated covariance matrix. We feel tha t
(6.11), the default, is more useful for smaller sample sizes and in o ther cases where
the conditions necessary for the asymptot ic theory [38] may be violated. Th e
third form assumes tha t the residuals at the solution are small and is therefore
often highly suspect.

7. TEST RESULTS

We have run NL2SOL on a number of the tes t problems repor ted in the l i terature.
In particular, we have run it on the tes t problems listed in [26] and on one
described in [30]. The original sources for these problems, together with the
abbreviated problem names used in Tables I I - IV and some notes, are given in
Table I.

The behavior of NL2SOL is de termined in par t by an integer ar ray IV and a
floating-point a r ray V, which contain i terat ion and function evaluation limits,
convergence tolerances, and o ther switches and constants. In the runs summarized
in Tables II-IV, most of the IV and V input components (other than the i terat ion
and function evaluat ion limits) had the default values given them by subrout ine
D F A U L T . In particular, the initial step bound (trust radius), b0 = V(LMAX0),
had the value 100, and the convergence tolerances CA, ex, eR, eF tha t appear in
{6.1) and {6.4)-(6.7) had the following values: ~A = V(AFCTOL) = 10-2°; ex =
V(XCTOL) - 1.49 × 10-s; eR = V(RFCTOL) = 10-1°; and er = V(XFTOL) - 2.22
× 10 -14. The values just ment ioned are the defaults for the double-precision
version of NL2SOL on IBM 360 and 370 computers: we obta ined Tables I I - IV on
the IBM 370/168 at the Massachuset ts Inst i tute of Technology; the double-
precision ar i thmetic on this machine has a unit roundoff of 16 -13 = 2.22 × 10 -16.

{Except as noted below and except for the runs s topped by the i terat ion or
function evaluation limits, all runs repor ted in Tables III and IV found essentially
the same function value listed in Table II.)

Table II summarizes the performance of NL2SOL on the test problem set when
all IV and V input components (except the i terat ion and function evaluation
limits) have their default values. Following a suggestion of J. J. Mor6 [private
communicat ion] , we obtained new starting guesses for many of the test problems
by multiplying the s tandard starting guess by 10 and 100. Th e column labeled LS
gives the base 10 logari thm of the factor by which the s tandard start ing guess
was multiplied. The problem dimensions appear in the columns headed N and P,
while the number of function (i.e., R(x)) and gradient (i.e., J (x)) evaluations
performed, respectively, appear under NF and NG. Located under C is a code
telling why NL2SOL stopped: X means X-convergence, R means relative func-
t ion-convergence, B means both X and R, A means absolute function-conver-
ACM Transac tmns on Mathematmal Software, Vol 7, No 3, September 1981

An Adapt,ve Nonhnear Least-Squares Algorithm 359

Table I Original Sources of Test Problems

Problem Note Source

ROSNBROK [40]
HELIX 1 [22]
S INGULAR [35]
WOODS [11]
ZANGWILL 2 [44]
ENGVALL [19]
BRANIN [9]
BEALE [5]
CRAGG 3 [26]
BOX [8]
DAVIDON1 4 [13]
F R D S T E I N 5 [23]
WATSON6,9,12,20 6 [29]
CHEBQD8 [20]
BROWN 7 [10]
BARD [2]
J E N N R I C H [28]
KOWALIK [29]
OSBORNE1,2 [34]
MEYER [30]

Notes
1. The residual vector R(x) for this problem is a discontinuous

function of x On those runs where NL2SOL halts with false con-
vergence, the iterates have converged to a point of discontinuity

2. This is a linear least-squares problem that NL2SOL solves in
one step when the initial step bound, that is, V(LMAX0), is inn
creased somewhat from its default value of 100 (to at least 174).

3. The olagmal Mlele problem described in [12], which Gill and
Murray [26] cite as the source for this problem, does not have the
residual component r~(x) = x4 - 1 This new component forces x4 to
move more rapidly toward 1, but otherwise causes no noteworthy
change in the performance of NL2SOL.

4 This is a very ill-conditioned linear least-squares problem If
V{LMAX0) is set large (to at least 1 9 × 107), then NL2SOL halts
with X-convergence after two steps when using double-precision
arithmetic on an IBM 370 computer With a double precision of a
few bits more accuracy, such as that of the Honeywell 6180 or the
Univac 1110, NL2SOL attains absolute function convergence after
a single step

5 In all our test runs, NL2SOL found a local solution to this
problem. The residual vector vanishes at the global solution

6. WATSON20 lies near the boundary between zero-residual and
nonzero-residual problems. After the first dozen or so iterations,
NL2SOL can neither make further substantial reductions in the
sum of squares nor satisfy any of its default convergence criteria
To reduce the computer time spent on this problem, we used a
function evaluation limit of 20 and an iteration limit of 15 on all
runs of WATSON20 reported here.

7 Gill and Murray [26] call this problem "Davldon 2"

ACM Transactions on Mathematical Software, Vol 7, No. 3, September 1981

360 j. i= Dennis, Jr., D. M. Gay, and R. E. Welsch

Table II Defaul t NL2SOL

PROBLEM LS N P N~ NG C F PRELDF RELDX

ROSNBRO~ 0 2 2 26 19 A 0.9~3E-32 0.I00E+01 0.818E-03
ROSNBROM I 2 2 57 39 A 0.973E-32 0.I00E+01 0.594E-Oa
ROSNBROK 2 2 2 141 121 A O.Q73E-32 0.IOOE+O1 0.440E-03
HELIX O 3 ~ 13 11 A 0.276E-20 0.I00E+01 0.145E-05
HELIX I 3 3 19 16 A 0.120E-20 0.IOOE+O1 0.244E-05
HELIX 2 3 3 103 a5 F 0.120E+05 O.984E~O0 O.181E-13
SINGULAR 0 a 4 20 20 A 0.I07E-20 0.I00E+01 0.333E+00
SINGULAR I 4 4 26 25 A 0.751E-21 0.I00E+01 O.Z33E+OO
SINGULAR 2 4 4 54 27 A 0.224E-20 0,I00E+01 0.333E+00
WOODS 0 7 4 ~0 47 A 0.232E-23 0.I00E+01 0.197E-06
WOODS I 7 4 5q 46 A 0.487E-26 0oI00E+01 0.426E-07
WOODS 2 7 4 77 53 X 0.0 0.I00E+01 0.359E-I0
ZANGWILL 0 3 z ~ z A 0.426E-27 0.I00E+O1 0.IOOE+01
ENGVALL 0 5 ~ 17 15 X 0.27QE-32 0.IOOE+O1 0.357E-IO
ENGVALL I 5 z 21 lq X O.6ZIE-29 0.I00E+01 O.268E-08
BNGVALL 2 5 Z 31 26 A O.164E-22 O.IOOB+O1 0.I07E-O6
BRANIN O 2 2 2 2 A O.1~2E-2R 0.I00E+01 0.I00E+01
~RANIN I 2 2 lq 15 A 0.662E-2q 0.I00E+01 0.IOOE+01
BRANIN 2 2 2 20 10 A 0.13RE-20 0.IOOE+01 0.I00E+01
BEALE 0 3 2 10 q A O.RQ3E-26 0.I00E+01 O.116E-06
BEALE I 3 2 6 6 A 0.148E-21 0.I00E+01 0.115E-05
CRAGG O 5 4 2a 23 A 0.217E-20 0.I00E+01 0.253E-07
CRAGG I 5 4 80 47 R 0.617E+05 0.919E-11 O.Q79E-07
BOX 0 10 3 7 7 X 0.174E-ZI 0.IOOB+01 O.lq6E-09
BOX I I0 ~ 16 10 S O.Z78E-01 0.537E-I0 0.177E-13
DAVIDONI 0 15 15 20 15 X 0.400E-18 0.IOOE+O1 O.I05E-08
FRDSTEIN 0 2 2 q 8 R 0.245E+02 0.35QE-11 0.769B-06
FRDSTEIN I 2 2 18 13 R 0.245E+02 O.532E-15 o.q54B-07
FRDSTEIN 2 2 2 28 19 R 0.245E+02 O.782E-13 O.418E-O7
WATSON6 0 31 6 12 10 B 0.114E-02 0.422E-19 0.142E-IO
WATSON9 O 31 q 10 9 R O.70OE-06 0.173E-I0 O.36OE-O7
WATSON12 0 31 12 14 12 R 0.236E-OQ 0.122E-15 0.254E-O7
WATSON20 0 31 20 18 16 I 0.651E-17 0.532E+00 0.270E+00
CHEBOD8 0 ~ 8 23 18 B 0.176E-02 0.277E-11 0.I03E-07
CHEBQD8 I % 8 77 57 R 0.176E-02 0.392E-I0 O.SaIE-07
BROWN 0 20 4 lq 17 R O.a29E+05 0.224E-I0 0.228E-06
BROWN I 20 a 22 16 R 0.429E+05 0.848E-12 0.696E-07
BROWN 2 20 4 ~I 21 R 0.429E+05 0.111E-I0 O.187E-06
BARD 0 15 z 7 7 R 0.411E-O2 0.270E-12 0.119E-06
BARD I 15 3 32 23 S 0o871E+01 0.396E-IO O.243E+00
BARD 2 15 3 70 28 R 0.41 IB-02 O.411E-I0 O. 146E-05
JENNRICH O IO 2 I 5 I 3 R O. 622E+02 O. 1 69E-I 2 O. 1 34E-O6
~OWALIK 0 11 4 11 10 R O. I 54E-03 0.421E-I0 0.423E-06
MOWALIK I 11 4 130 75 S 0.514E-03 0.68QE-I0 0.242B~00
KOWALIK 2 11 4 7~ 58 R 0.154E-03 O.a70E-11 0.I03E-06
OSBORNEI O 33 5 27 22 R O.273E-O4 O.332E-11 O.524B-06
OSBORNE2 0 65 11 17 16 B 0.201E-01 0.492E-12 O.933E-O8
OSBORNE2 I 65 11 26 12 S 0.895E+00 O.353E-IO O.879B-O7
MADSEN O 3 2 12 12 R O.387E+O0 0.I05E-13 O.496E-07
MADSEN I 3 2 16 15 R O.~8~B+OO O.154E-11 0.584E-06
MADSEN 2 3 2 28 20 R 0.387E+00 0.120E-12 O.152E-O6
MEYER 0 16 3 335 206 X 0.440E+02 0.705E-05 O.136B-07

ACM Transactions on Mathematmal Software, Vol 7, No 3, September 1981

Table IH Varmtions on NL2SOL

D = I
PROBLEM LS m~F NO C

DEFAULT PURE GN PURE S NO SIZING
NF NG C NF NG C NF NG C NF NG C NOTE

RCRNnROF O 22
ROSNmROK ~ 28
ROSNBROF 2 77
~ELT~ O q
NELTX I 11
HELI~ 2 16
SINGULAR 0 20
SINGULAR I 23
SI~TGULAR 2 28
WOODR 0 61
WOODS I 6~
W0~DR 2 72
ZANQWILL 0
EITGVALL 0 17
EVGVALL 1 20
ENGVALL 2 27
BRANIN 0 2
PRAI~I~ I 17
BRANIN 2 16
BEALE 0 10
mEALF I q
CRAqG 0 2~
CRAGG 1 ~4
~OX 0 7
BOX 1 27
D~VIDONI O z
PRDSTEIN 0 q 9
FRDSTEIN I lq 15
FRDSTE[N 2 2R 2~
WAT?ON6 0 A R
WATSOHn 0 10 9
WATSON12 0 14 11
WATSON20 0 20 14
CHE~QD~ O 22 16
CHEBODR I 78 6~
RRnWN 0 14 1 3
BROWN I 15 15
BROWN 2 24 23
BARD O 7 7
BARD I 36 22
BARD 2 Z7 23
,JENNRICH 0 16 12
VOWALIK 0 14 12
KOWALIF I 18q 88
FOWALIK 2 112 6q
OSBORNEI 0 ~4 26
0SBORNE2 O 15 I~
OSBORNE2 I 16 12
MADSE~ 0 12 12
MADSEN I 14 14
MADSEN 2 21 20
MEYER 0 380 229

18 A 26 19
24 A 57 39
54 A 141 121
q X I~ 11
9 A 10 16

14 7 103 &5
20 A 20 2@
2-4 A 26 25
27 A ~4 27
45 x 70 47
~& A 50 ~6
q2 X 77 5~

~ Z 3
15 A 17 13
18 A 21 19
25 R Xl 26

2 A 2 2
~5 ~ ~,~ ~5
14 A 20 10

A A 10 9
£ A £ 6

22 A 24 23
4"7 A 80 47
7 Y 7 7

1Q R 16 10
X 20 15
R q
R 18 13
P 28 1 q
R 12 10
R 10 O
R 14 12
E 18 16
R 2z 1R
R 77 57
R 18 17
R 22 16
R ~I 21
R v 7
R 32 23
B 70 28
B 15 15
R 11 10
s 130 75
R 75 58
R 27 22
R 17 16
S 26 12
R 12 12
B 16 15
B 28 20
B 335 206

A 18 15 A 23 21
A 38 2q A 155 6q
A 115 1 01 A 400 146
A 17 14 A 15 14
A 15 13 A 23 18
F 28 23 X 25 I q
A 20 20 A 32 32
A 25 24 A aO 3q
A .~4 27 A 49 44-
A RO 64 A 45 3 Q
A ,q,7 70 A 4 7 3 ~
X 8q 65 A 63 45

5 3 A 3 3
X 14 12 ",,[lq 17
x 20 I m X 27 21
A 1 O0 72 A 44 37
A 2 2 A 2 2
A 14 12 A 28 25
A 21 12 A 49 38
A 10 9 X IQ 15
A 6 6 A 13 12

23 22 A 34 32
R 1 50 91 R 75 48
X 7 v X 8 8
8 12 11 R 45 20
X 1 c~ 14 X 20 16
R Z7 16 F a 8
R 44 22 ~ 22 1 9
R 53 26 P '58 30
9 12 11 R 16 12
R 11 9 B 21 14
R 16 14 R 23 17
I 18 16 1 18 16
B 58 36 F 20 16
R 400 109 E 143 105
R 305 301 I 19 17
R 400 281 E 27 21
R 400 296 E 35 26
R '7 7 R 11 10
S 32 23 S 81 42
R 63 27 R I 29 58
R 35 19 F 11 11
R t ~ 17 R 15 12
S 127 77 S 1 27 73
R q6 81 R 400 200
R 18 16 R '54 31
B 15 14 R 16 15
S 16 11 S 28 16
R ~3 33 R 12 12
R 39 36 R 19 18
R 47 40 R 28 23
X 346 213 B 156 129

A 31 22 h
X 30 25 A
E 89 82 A
X 14 12 X
X 18 14 A
X 80 37 P
A 20 20 A
A 26 25 A
A 34 27 A
A 70 48 A
A 117 70 A
X 93 65 A
A 3 3 A
X 18 13 X
R 20 18 A I
X 36 30 A 2
A 2 2 A
h 17 15 A
A 20 10 A
A 10 9X
A 6 6 h
X 24 23 A
R 120 78 R 3
X 7 7 X
S 16 11 F
I 20 15 X
R 9 7 R 4
R 18 13 R 4
B 30 20 R 4
B 12 10 B
B 10 9R
B 15 12 B
I 18 16 I 5
R 80 35 F 4, 6
R 1 02 78 S
R 32 30 R
R 1 07 64 R
R 40 27 R
B 7 7R
S 32 23 S 7
R 75 32 S 8
R 16 14 R 4
R 1I 1 O R
R 93 65 S 9
E 138 124 R
R 18 16 R
R 16 15 R
S 27 13 S
R 13 13 R
R 21 19 R
R 37 29 R
B 322 I 99 B

Notes
1. The P U R E S run found a local mlmmmer x* having f(x*) = 56.1.
2 The D = I run also found f(x*) -- 56.1
3. All runs found different local minimizers" for D = I, f(x*) = 1.68 x 10-21; for D E F A U L T , f(x*)

= 6 17 × 104; for P U R E GN, f(x*) = 1 50 × 10 ~, for P U R E S, f(x*) = 2.30 x 10T; and for NO SIZING,
f(x*) = t 35 × 105

4 In the P U R E GN runs of these problems, NL2SOL reports false convergence because the
Jacobian m (nearly) singular at the solutions found and the G a u s s - N e w t o n Hess ian differs sufficmntly
from the true one that the singular convergence test is not satmfied wi th the convergence tolerances
at their default values If the b0 m (6 6) were changed from 100 to 1, then NL2SOL would report
singular convergence on J E N N R I C H , and if the ~R in (6.6) were also increased sl ightly from 10 -~°, say
to 2 3 × 10 -"), then NL2SOL would also report singular convergence on F R D S T E I N . Note that the
true Hessian is qmte p o s g w e definite at the solutions found

5 The final funcUon values were as follows for D = I, 1 36 x 10-16; for D E F A U L T , 6.51 × 10 -18,
for P U R E GN, 6 50 × 1O ,8, for P U R E S, 3.49 × 10 -'6, and for NO SIZING, 4 98 × 10 -~8

6 In the NO SIZING run, NL2SOL often tried the augmented model , but always switched back
to the G a u s s - N e w t o n model (Thin run computed sl ightly ddferent iterates than the correspondmg
P U R E GN run because the latter used S , ~ 0 m (7.1).)

7 T h e P U R E S run found f(x*) ~ 8.57.
8 The NO SIZING run found f(x*) = 5 74 x 10 -2
9. The P U R E S run found f(x*) = 1.54 × 10 -s

362 J . E . Dennm, Jr., D. M. Gay, and R E. Welsch

Table IV. Simplif ied Iterations

PROBLEM

ROSNBROM
ROSNBROK
ROSNBROK
HELIX
HELIZ
HELIX
SINGULAR
SINGULAR
SINGULAR
WOODS
WOODS
WOOD~
ZANGWILL
ENGVALL
ENGVALL
ENGV&LL
BRANIN
BRANIN
BRANIN
BEALE
BEALE
CRAGG
CRAGG
BOX
BOX
DAVIDONI
FRDSTEIN
FRDSTEIN
FRDSTEIN
WATSON6
WATSONq
W&TSON12
W&TSON20
CHEBOD8
CHEBQD8
BROWN
BROWN
BROWN
BARD
]%ARD
BARD
JENNRICY
KOWALIK
KOWALIF
KOWALIK
0SBORNEI
0SBORNE2
OSBORNE2
MADSEN
MADSEN
MADSEN
MEYER

DEFAULT NOIMODSW NOINTD]%L NOGRDTST
LS NF NG C NF NG C NF NG C YF NG C

0 26 I g ~ 27 I q A 26 21 X 21 1 8
I 57 3q A z6 2q A 74 57 A 45 ~5 A
2 141 121 A 135 115 A 164 I~5 A 210 155 A
O 13 11 A 13 11 A 13 11 A 17 14 Z
I lq 16 A 17 14 A lq 16 A lq 15)
2 103 45 m 110 53 F 20 16 X qq 43 P
0 20 20 A 20 20 A 20 20 A 20 20 A
I 26 25 A 26 25 A 25 25 A 2R 25 A
2 34 27 A 34 27 A 31 31 A 54 27 A
O 70 47 A 65 47 X 59 51 A 75 4q X
I 5q a6 A 71 48 X 41 37 A 54 42 A
2 77 53 X 77 53 X 5 Q 55 X 87 54 A
0 3 ~ A z z A 3 3 A 3 3 A
0 17 13 X 16 I z X 17 14 X 17 13 X
I 21 1Q X 2z 19 Y 16 16 X 22 19 A
2 Zl 26 ~ Zl 26 A 56 34 X z6 28 A
0 2 2 A 2 2 A 2 2 A 2 2 A
I 19 15 A 18 I~ A 25 25 A 16 13 A
2 20 10 A 20 10 A %q 3~ A 23 12 A
0 10 Q A 11 Q A 10 Q ~ 10 9 A
I 6 6 A 6 6 A 6 6 A 6 6 A
0 24 2~ A 23 21 A 24 2z A 25 24 A
I qO 47 R ~0 47 R I Oq QZ ~ 80 49
0 7 7 x 7 7 x 7 7 x 7 7 x
I 16 10 S 17 10 S 16 10 S 15 11 R
O 20 15 X 20 15 X 16 16 I 20 13 E
0 q 8 R R 7 R q R R Q a R
I 18 13 R 18 13 R 19 17 R IR 14 B
2 28 l q R Z5 22 R 2q 27 R 2q 20 B
O 12 10 B 12 10 B 11 10 B 12 10 B
O 10 g R 10 g R 10 q B 11 9 B
O 14 12 R 14 12 R 14 13 R 18 13 P
O 18 16 I 18 16 I 16 16 I 20 15 E
0 23 18 B 24 19 B 19 14 R 23 18 B
1 77 5'7 R 118 76 R 112 98 R 104 82 R
O 18 17 R 18 17 R 20 19 R 20 18 R
I 22 16 R 25 lq R 24 25 R 26 20 B
2 31 21 R z2 22 B 30 29 B 32 23 R
0 7 7 R 7 7 R 7 7 R 7 7 R
I z2 23 S 32 23 S 2q 29 S 32 23 S
2 70 28 R 77 28 R 66 43 R 66 30 R
O 15 13 R 15 13 R 15 13 R 15 13 R
0 11 10 R IZ 10 B 11 10 R 13 10 R
I 130 75 S 244 IOO F IOg 84 S 124 76 S
2 75 58 R 74 58 R 78 62 R 117 }%1 R
O 27 22 R 31 22 R 28 23 R 34 23 R
O 17 16 B 17 16]% 17 16 B 18 16 B
I 26 12 S 27 12 S 15 12 P 26 12 S
O 12 12 R 12 12 R 12 12 R 12 12 R
1 16 15 R 16 15 R 18 18 B 19 17 R
2 28 20 R 29 21 R 25 25 R 27 22 R
O 335 206 X 343 214 B 209 181 B 351 213 X

NOTE

Notes .
1. The N O I N T D B L run found f (x *) = 9.30 × 104, and the N O G R D T S T run found

f (x*) = 8.65 × 104
2 T h e final function values were as fol lows for D E F A U L T and N O I M O D S W , 6 51 ×

10 -~s, for N O I N T D B L , 3 48 x 10-17; for N O G R D T S T , 9.71 x 10 -Is
3 If the defaults for bo or ~R In (6 6) were shghtly relaxed (e.g., if bo were reduced from

100 to 50, or if ~R were increased from 10 -1° to 1.5 × 10-1°), then the N O I M O D S W run
would also report singular convergence.

ACM Transactions on Mathematical Software, Vol 7, No 3, September 1981

An Adaptwe Nonhnear Least-Squares Algorithm • 363

gence, S means singular convergence, F means false convergence, i means
i terat ion limit reached without convergence, and E means function evaluation
limit reached without convergence. See the previous section for more details on
the convergence criteria. The column labeled F gives the final function value (half
the sum of squares of R (x)); the one labeled P R E L D F gives the relative function
reduct ion predicted, tha t is, [f (X k) - - qk(xk + AXk)]/f(xk) for the last step hxk
at tempted; and R E L D X gives the value of {6.3) for the last step a t tempted.

The choice of scale matrices Dk ment ioned in Sect ion 5 can significantly affect
the performance of NL2SOL. By default, Dk = d i a g (d ~ , . . . , d~ ~) is updated by the
rule

d~+~ := max([ll J-,, [122 + max(0, S,}] 1/2, 0.6d~), (7.1)

beginning with d71 -- 0, where J.,, denotes the i th column of the Jacobian matr ix
J(xk+l). However, if (7.1) results in d~ +~ < 10 -6, then d~ +1 is set to 1.0. (The factor
0.6 is actually V(DFAC). We exper imented with several values of V(DFAC),
including 0.0, 0.5, 0.75, and 1.0, and we felt tha t 0.6 gave the best overall
performance of the values tried.) The advantage of this choice of Dk is tha t it is
largely scale invariant.

A choice of Dk tha t is not at all scale invariant, but tha t gives be t te r performance
on many of our test problems, is Dk = I, the identi ty matrix. Table III shows how
these two choices of D compare: Results from Table II are in the columns headed
D E F A U L T , while results corresponding to Dk = I appear under D -- I.

Table III also summarizes test runs with three variants of NL2SOL, all of
which used the default choice of Dk and the same IV and V inputs as were used
for Table II. The columns headed P U R E GN show what happens if the augmented
model is never used and S , = 0 is used in (7.1), while those headed P U R E S show
what happens if it is always used. Finally, the columns headed NO SIZING give
the results obtained when adaptive modeling is allowed but no sizing is performed.
We feel tha t Table III makes a good case for the use of adaptive modeling with
sizing in NL2SOL.

Table IV shows how NL2SOL performs when some of the procedures described
in Section 5 are simplified. All runs were made using the same IV and V input
values as for Table II, and the columns labeled D E F A U L T summarize the results
in Table II. The results under NOIMODSW show what happens when there is no
internal model switching, tha t is, if we do not consider switching models within
the current iteration. The columns labeled N O I N T D B L show what happens if
there is no internal doubling of the radius, tha t is, if we do not compute x ~ l when
(5.2) and (5.3) hold. Finally, the results under N O G R D T S T show what happens
if no gradient tests are used in determining the new trust region radius after xk+~
has been found, tha t is, if (5.6) is not considered and the radius is only increased
if (5.2) and (5.3b) hold with x~+~ := xk+~. Table IV clearly demonst ra tes the value
of internal model switching, internal doubling, and the gradient tests.

I t is interesting to see how the performance of NL2SOL compares with that of
a general-purpose quasi-Newton algorithm. We therefore summarize in Table V
the results of running SUMSOL [25] on the same problems used for the earlier
tables. SUMSOL uses the BFGS secant update to approximate the Hessian of
the objective function and uses the double dogleg scheme of Dennis and Mei [16]

ACM Transact ions on Mathemat ica l Software, Vol 7, No. 3, September 1981

Table V Compar ison w,th S U M S O L

NL2SOL SUMSOL SUMSOL SUMSOL
D = I (J**T)*J LMAXO=I H o = I

PROBLEM LS NF NG C NF NG C NF NG C NF NG C NOTE

ROSNBROK O 22 18 A 50 37 X 39 32 X 40 36 X
ROSNBROK I 28 24 A 70 56 A 104 74 X 96 70 X
ROSNBROK 2 77 54 A 340 251 I 229 174 X 201 146 X I
HELIX 0 9 9 X 39 30 X 41 33 X 38 28 X
HELIX I 11 9 A 47 35 X 57 40 X 48 34 X
HELIX 2 16 14 X 57 40 X 57 37 X 35 25 X
SINGULAR 0 20 20 A 45 45 A 77 75 A 80 75 A
SINGULAR I 23 23 A 53 53 A 88 86 A 91 82 A
SINGULAR 2 28 27 A 91 89 A 108 99 A 99 90 A
WOODS O 61 45 X 102 75 X 128 89 X 103 79 X
WOODS I 63 46 A 130 9q X 92 72 X 80 61 X
WOODS 2 72 52 X 96 83 X 79 70 X 72 54 X
ZANGWILL O 3 3 A 3 3 A 6 3 A 10 7 A
ENGVALL 0 17 15 A 35 30 X 36 32 X 33 30 X
ENGVALL I 20 18 A 53 42 X 56 45 X 43 39 X
ENGVALL 2 27 25 R 83 75 X 79 71 X 66 55 X 2
BRANIN 0 2 2 A 2 2 A 19 16 A 18 15 A
BRANIN I 17 15 A 28 28 A 38 34 A 38 33 A
BRANIN 2 16 14 A 51 49 A 64 56 A 48 35 A
BEALE 0 10 8 A 21 17 X 18 13 X 17 14 A
BEALE I 8 8 A 19 17 X 16 15 X 16 15 X
CRAGG 0 23 22 A 118 108 A 119 112 A 115 102 A
CRAGG I 54 47 A 88 76 R 128 90 R 185 116 R 3
BOX 0 7 7 X 16 15 X 29 22 X 48 35 A
BOX I 27 19 R 39 20 X 52 41 B 37 27 B
DAVIDONI 0 3 3 X 4 4 X 6 5 X 20 2 F
FRDSTEIN O 9 9 R 9 9 R 9 8 R 13 11 R
FRDSTEIN I 18 15 R 29 24 R 30 25 R 30 24 R
FRDSTEIN 2 28 23 B 44 38 R 51 39 R 55 39 R
WATSON6 O 8 8 R 25 21 R 25 21 R 41 34 R
WATSON9 0 10 9 R 22 22 B 22 22 B 81 72 R
WATSON12 0 14 11 R 32 27 R 33 28 B 125 110 R 4
WATSON20 0 20 14 E 16 16 1 16 16 1 18 16 I 5
CHEBQD8 0 22 16 R 40 32 R 38 28 R 3q 27 R
CHEBQD8 I 78 63 R 234 208 B 232 208 B 227 186 R
BROWN O 14 13 R 25 21 R 24 20 R 46 35 R
BROWN I 15 15 R 45 43 R 52 46 R 41 30 R
BROWN 2 24 23 R 78 73 R 80 71 R 47 38 R
BARD O 7 7 R 20 16 R 17 16 R 22 18 R
BARD I 36 22 S 79 59 S 66 46 R 34 23 R 6
BARD 2 37 23 B 80 55 S 89 49 R 73 43 R 7
JENNRICH 0 16 12 B 16 14 R 16 14 R 34 22 R
KOWALIK 0 14 12 R 27 19 R 27 19 R 42 33 R
KOWALIK I 189 88 S 220 159 S 55 48 S 91 73 R 8
KOWALIK 2 112 69 R 78 56 S 112 72 R 221 124 R 9
0SBORNEI 0 34 26 R 56 42 R 56 42 R 83 59 R
0SBORNE2 0 15 13 R 37 32 R 43 34 R 75 59 R
OSBORNE2 I 16 12 S 28 20 R 52 31 B 53 31 B
MADSEN O 12 12 R 15 15 R 13 13 R 16 16 R
MADSEN I 14 14 B 30 28 R 30 28 B 31 28 R
MADSEN 2 21 20 B 36 35 R 39 32 R 41 36 R
MEYER O 380 229 B 400 268 E 400 277 E 400 259 B 10

Notes
1 The (J**T)*J run s topped wi th f (x) = 1.32.

2. NL2SOL found a local soluUon wi th f(x*) = 56 1, the S U M S O L runs all found the
global solution.

3. NL2SOL found the global solution, and each S U M S O L run found a different local
solut ion for (J**T)*J, f(x*) = 232, for L M A X 0 = I , f(x*) = 33 0, and for Ho = I, f(x*)
= 1 .27 x 106.

4 The Ho - I run of S U M S O L found f(x*) = 1 33 x 10 -7.

5 The final function values were as follows: for NL2SOL, 1.36 × 10 -~4, for (J**T)*J,
0 290; for L M A X 0 = I , 0 293, and for H0 = I, 4.13 × 10 -3

6 The (J**T)*J run f o u n d / (x *) = 8.51 and the L M A X 0 = I run f o u n d / (x *) = 1.18.
7 The (J**T)*J run found f(x*) = 5.74 × 10 -2 and the L M A X 0 = I run found f(x*)

= 0 943.

8 The L M A X 0 = I run found f (x*) = 2.90 x 10 -3 and the Ho = I run found f(x*) =
1.54 × 10 -4 (as did all runs for LS = 0).

9. The (J**T)*J run found f(x *) = 3.40 × 10 -3 and the H0 = I run found f(x*) = 4 71
X 10 -4.

10 The final funet lon values for the S U M S O L runs were as follows; for (J**T)*J,
359.; for L M A X 0 = I , 189, for Ho = I, 237.

An Adaptwe Nonlinear Least-Squares Algorithm * 365

to select the steps it tries. It uses the same convergence tests as NL2SOL
(performed, in fact , by the same ASSESS module), so the return codes in the
columns labeled C in Table V have the same meaning as for the earlier tables.
Like NL2SOL, SUMSOL employs a scale matrix D, which can be updated from
the diagonal elements of the Hessian approximation, but to eliminate the effects
of different updates to D, we report only results for D -- I here. The columns
labeled NL2SOL, D = I repeat the D = I columns of Table III. Those labeled
(J* *T)*J show what happens when the initial Hessian approximation supplied to
SUMSOL is H0 = JoTJo, where Jo = J(xo) is the initial Jacobian matrix. (SUMSOL
actually works only with the Cholesky factor L of its Hessian approximation H
= LL T, and the initial L supplied in the (J**T)*J run was obtained from a QR
factorization of Jo.) The columns labeled LMAX0=I show what happens when
the imtial step bound is decreased from the default value that NL2SOL uses, that
is, 100., to the default value for SUMSOL, that is, 1.0, and everything else is the
same as for the (J**T)*J run. The columns labeled H0 = I show what happens
when SUMSOL sets its initial Hessian approximation to the identity matrix with
everything else as for the LMAX0=I run. Except as listed in the notes in Table
V, all runs found the final function value reported in Table II. None of the
SUMSOL runs dominates or is dominated by any of the other SUMSOL runs.
On problems where both find the same locally optimal function value, NL2SOL
generally requires fewer--sometimes substantially fewer--function and gradient
evaluations than SUMSOL, so in cases where function evaluations are expensive,
Table V suggests that it is quite worthwhile to exploit the structure present in
the least-squares Hessian.

8. CODE SIZE AND TIMING

NL2SOL is substantmlly larger than a simple Levenberg-Marquardt code, and
its size deserves some explanation. The following remarks about code size refer to
the ob3ect code produced by the version of IBM's FORTHX compiler (optimi-
zation level 2) available under CMS at M.I.T. when this work was done. We may
regard somewhere between 35 and 40 percent of the code as constituting a
Levenberg-Marquardt code. Another 30 percent of the code takes care of switch-
ing models and using the augmented model. The remainder of the code is devoted
to such "extras" as computing covariance matrices, printing an iteration summary
and certain initial and final information, providing default values for various
inputs, checking the validity of certain input parameters and reporting ones that
have nondefault values, and computing a finite-difference Jacobian approxima-
tion (subroutine NL2SNO).

One feature that increases the code size by somewhere between 5 and 10
percent is the option of providing the res]dual vector and Jacobian matrix by
reverse communication: one initially calls NL2ITR, passing in the starting guess
xo along with R (x0) and J (x0). Whenever NL2ITR requires R or J to be evaluated
at a new point x, it returns with a special return code specifying what is needed;
one computes the required values and calls NL2ITR again. Subroutine NL2SOL
interacts with NL2ITR, using subroutines provided by its caller to compute R(x)
and J(x). Subroutine NL2SNO also interacts with NL2ITR, using a subroutine
provided by its caller to compute R(x) and approximating J(x) by forward

ACM Transactions on Mathematmal Software, Vol 7, No 3, September 1981.

366 J.E Denn~s, J r ,D M Gay, andR. E Welsch

differences. Reverse communication is vital in applications where the calculation
of R(x) is so elaborate that it requires a sequence of overlays.

The somewhat elaborate scheme described above for switching models and
choosing the new trust region also contributes to the code size. In particular, we
had to code a number of things two ways, one assuming that we have the Jacobian
matrix, the other assuming that we have its QR factorization, since we save
scratch storage by overwriting the Jacobian matrix with its QR factorizatlon (or,
more precisely, with the R matrix and the information needed to multiply vectors
by Q and QT).

We have conducted some timing experiments with NL2SOL and with a recent
version of MorO's [32] excellent code LMDER with the aim of discovering how
much adaptive modeling and reverse communication cost in terms of execution
time. To eliminate time differences due to the step-computing codes, we modified
LMDER so that it called the same step-computing code (LMSTEP) that NL2SOL
uses. When trying to assess the cost of reverse communication, we also modified
NL2SOL to make it act like LMDER, in that it used only the Gauss-Newton
model, did not update S, and updated the trust radius and scale vector m the
same way as LMDER. We ran both codes for 5 function evaluations on problems
SINGULAR, CHEBQD8, WATSON6, WATSON12, OSBORNE2, DAVIDON1,
and BROWN (see Table I). For most of these problems, having the option of
using reverse communication (but not actually using it, i.e., calling NL2SOL) cost
less than a 15 percent increase in execution time; only for SINGULAR (23
percent) and WATSON6 (18 percent) did we observe increases larger than 15
percent.

We repeated the timing tests just described with five FORTRAN utility
routines (DOTPRD, VAXPY, VCOPY, VSCOPY, and V2NORM, which compute
the inner product of two vectors, add a multiple of one vector to another, copy
one vector to another, copy a scalar to all components of a vector, and compute
the 2-norm of a vector, respectively) with the]r assembly language equivalents,
and the maximum increase in time for reverse communication dropped to less
than 15 percent. More significantly, this simple change reduced the execution
times by as much as 33 percent (for WATSON20, one of the larger problems in
terms of n and p). Thus it appears substantially more worthwhile (on our
computer, anyway) to replace a few simple FORTRAN subroutines by their
assembly language equivalents than to remove the option of using, reverse
communication. (It is interesting to note that the object code for the five
FORTRAN utility routines amounted to 2072 bytes, while that for our assembly
routines was only 472.)

Adaptive modeling, in particular updating the S matrix, also costs some time.
We ran the unmodified NL2SOL on the problems mentioned above for five
function evaluations, and it took between 10 and 15 percent longer on most of the
problems (35 percent on SINGULAR) than did the modified code that always
used the Gauss-Newton model and did not update S.

All our tests used problems whose residual vectors and Jacobian matrices are
relatively cheap to compute. On some problems of more practical interest, the
ability to find a solution quickly (i.e., in a small number of function evaluations)

ACM TransacUons on Mathematmal Software, Vol 7, No 3, September 1981

An Adaptwe Nonhnear Least-Squares Algori thm . 367

a n d r e l i a b l y is v e r y i m p o r t a n t . O u r e x p e r i e n c e w i t h N L 2 S O L s u g g e s t s t h a t i t is

w e l l s u i t e d to s o l v i n g s u c h p r o b l e m s .

REFERENCES
1 ALLEN, D M Private commumcatlon, 1976
2 BARD, Y Comparison of gradient methods for the solution of nonlinear parameter estimation

problems S I A M J Numer Anal 7 (1970), 157-186
3 BARD, Y Nonlinear Parameter Eshmatmn Academic Press, New York, 1974
4 BATES, D M, AND WATTS, D G An orthogonahty convergence criterion for nonlinear least

squares Queen's Mathematmai Preprmt 1979-14, Queen's Umv, Kingston, Ont., Canada, 1979
5 BEALE. E M L On an lteratlve method for finding a local minimum of a function of more than

one vallable Tech Rep 25, Statistical Techniques Research Group, Princeton Univ., Princeton,
N J , 1958

6 BELSLEY, D A On the efficient computation of the nonhneal full-reformation maximum like-
lihood estimator Tech Rep 5, Center for Computational Research in Economics and Manage-
ment Science, Massachusetts Institute of Technology, Cambridge, Mass, 1980

7 BETTS, J T Solving the nonlinear least squazes problem Application of a general method J
Optzm Theory Appl 18 (1976), 469-484

8 Box, M J A comparison of several current optlmlzatmn methods and the use of transformations
in constrained problems Comput J 9 (1966), 67-77

9 BRAN1N, F H Widely convergent method for finding multiple solutions of simultaneous nonlin-
ear equatmns I B M J Res Develop 16 {1971), 504-522

10 BROWN, K M, AND DENNIS, J.E A new algorithm for nonlinear least-squares curve fitting In
Mathemattcal Software, J R Rice, Ed., Academic Press, New York, 1971, 391-396.

11 COLVILLE, A R A comparative study of nonlinear programming codes Tech Rep 320-2949,
IBM New York Scientific Center, 1968

12 CRAGG, E E , AND LEVY, A V Study on a supermemory gradient method for the minimization
of functions J Opttm Theory Appl 4 (1969), 191-205

13 DAVIDON, W C New least-square algorithms J Opt~m Theory Appl 18 (1976), 187-197.
14 DENNIS, J E Some computational techniques for the nonlinear least squares problem In

Numertcal Solutmns of Systems of Nonhnear Equations, G D Byrne and C A Hall, Eds,
Academic Press, New York, 1973, pp 157-183

15 DENNIS, J E Nonlinear least squares and equations In The State of the Ar t *n Numerical
Analys~s, D Jacobs, Ed, Academic Press, London, 1977, pp 269-312

16 DENNIS, J E, AND MEI, H.H -W Two new unconstrained optimization algorithms which use
function and gradient values J Opt,m Theory Appl 28 (1979), 453-482

17 DENNIS, J E , AND MORE, J J Quasi-Newton methods, motivation and theory S I A M Rev 19
(1977), 46-89

18. DENNIS, J .E , ANI) WELSCH, R E. Techmques for nonlinear least squares and robust regression.
Commun Statist B7(1978), 345-359

19 ENGVALL, d L Numerical algorithm for solving over-determined systems of nonlinear equations
NASA Document N70-35600, 1966

20 FLETCHER, R Function minimization without evaluating derlvatlves~A review Comput J 8
(1965), 33-41

21 FLETCHER, R A modified Marquardt subroutine for nonhnear least squares Rep R6799, AERE,
Harwell, England, 1971

22 FLETCHER, R., AND POWELL, M.J D A rapidly convergent descent method for mlmmizatlon.
Comput J 6 (1963), 163-168

23 FREUDENSTEIN, F , AND ROTH, B Numerical solution of systems of nonlinear equations J,
A C M 10, 4 (Oct 1963), 550-556

24 GAY, D M Computing optimal locally constrained steps S I A M J Sct StatLst. Comput 2, 2
(June 1981), 186-197

25 GaY, D M Subroutines for general unconstrained minimization using the model/trust-region
approach Tech Rep 18, Center for Computatmnal Research m Economics and Management
Scmnce, Massachusetts Institute of Technology. 1980

ACM Transactions on Mathematical Software, Vol 7, No 3, September 1981

368 J E. Dennis, Jr., D M. Gay, and R E. Welsch

26 GILL, P E , AND MURRAY, W Algorithm for the solution of the nonlinear least-squares problem
S I A M J Numer. Ana l 15 (1978), 977-992

27. GOLUB, G H Matrix decompositions and statlstwal calculations In Statistical Computatmn,
R.C Milton and J.A. Nelder, Eds , Academic Press, New York, 1969, pp 365-397

28 JENNRICH, R I , AND SAMPSON, P F Apphcation of step-wise regression to nonlinear estimation.
Technometrtcs 10 (1968), 63-72

29 KOWALIK, J S , AND OSBORNE, M R Methods for Unconstrazned Opttmtzatmn Problems,
American Elsevier, New York, 1968

30 MEYER, a R Theoretical and computational aspects of nonlinear regression In Nonhnear
Programming, J B Rosen, O L Mangasarlan, and K RItter, Eds, Academm Press, New York,
1970

31 MORE, J J The Levenberg-Marquardt algorithm Implementation and theory In Lecture Notes
zn Mathemattcs No 630 Numerical Analysts, G Watson, Ed , Sprmger-Verlag, New York, 1978,
pp 105-116

32 MORI~, J J. Implementation and testing of optimization software DAMTP Rep 79/NA4, Cam-
bridge Univ, Cambridge, England, 1979

33 OREN, S S Self-scaling variable metric algorithms without line search for unconstrained min-
imization Math Comput 27 {1973), 873-885.

34 OSBORNE, M R Some aspects of nonhnear least squares calculations In Numerical Methods
for Nonhnear Opttmtzatzon, F A Lootsma, Ed., Academic Press, New York, 1972

35 POWELL, M J D An iteratlve method for finding stationary values of a function of several
variables Comput J 5 {1962), 147-151

36 POWELL, M J.D A FORTRAN subroutine for unconstrained mlmmizatlon, requiring first deriv-
atives of the objective function. Rep AERE-R.6469, AERE Harwell, England, 1970.

37 PRATT, J W When to stop a quasi-Newton search for a maximum bkehhood est,mate Working
Paper 77-16, Harvard School of Business, Cambridge, Mass., 1977

38 RAO, C R. Ltnear Statistical Inference and Its Applwatmns, 2nd ed, Wiley, New York, 1973.
39 REINSCH, C H. Smoothing by sphne functions. II Numer Math 16 (1971), 451-454
40 ROSENBROCK, H H An automatic method for finding the greatest or least value of a function

Comput J 3 (1960), 175-184
41 WEDIN, P -A The non-linear least squares problem from a numerical point of view, I and II

Comput Sci Tech Reps, Lund Umv, Lund, Sweden, 1972 and 1974.
42 WE')IN, P -A On surface dependent properties of methods for separable non-hnear least squares

problems ITM Arbetsrapport nr 23, Inst for Tellampad Matematik, Stockholm, Sweden,] 974.
43 WEDIN, P-A. On the Gauss-Newton method for the non-hnear least squares problem ITM

Arbetsrapport nr 24, Inst for Tellampad Matematik, Stockholm, Sweden, 1974.
44 ZANGWlLL, W J Nonhnear programming via penalty functmns Manage Sct 13 {1967), 344-

358

Received September t977, revised August 1979 and September 1980, accepted April 1981

ACM Transactions on Mathematmal Software, Vol 7, No 3, September 1981

