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Abstract. The convergence theory of generalized pattern search algorithms for unconstrained optimization
guarantees under mild conditions that the method produces a limit point satisfying first order optimality conditions
related to the local differentiability of the objective function. By exploiting the flexibility allowed by the algorithm,
we derive six small dimensional examples showing that the convergence results are tight in the sense that they
cannot be strengthened without additional assumptions, i.e., that certain requirement imposed on pattern search
algorithms are not merely artifacts of the proofs.

In particular, we first show the necessity of the requirement that some algorithmic parameters are rational. We
then show that, even for continuously differentiable functions, the method may generate infinitely many limit points,
some of which may have non-zero gradients. Finally, we consider functions that are not strictly differentiable. We
show that even when a single limit point is generated, the gradient may be non-zero, and zero may be excluded
from the generalized gradient, therefore, the method does not necessarily produce a Clarke stationary point.

Keywords: pattern search algorithms, convergence analysis, unconstrained optimization, non-smooth analysis,
Clarke derivatives

1. Introduction

Consider the unconstrained optimization problem of minimizing a function f : Rn →
R ∪ {∞}, without any knowledge of its derivatives, and without any means of approxi-
mating them accurately. Torczon (1997) observes that several existing search methods for
this problem share a common structure, and they can be subsumed into a more general one.
The pattern search algorithm defined there, and slightly generalized in Lewis and Torczon
(1996), encompasses a wide class of algorithms, and still yields strong convergence results
under the assumption of continuous differentiability of f . The algorithm produces a se-
quence of iterates x0, x1, . . . in Rn with monotone non-increasing objective function value.
Torczon (1997) shows that when f is continuously differentiable then

lim inf
k→∞

‖∇ f (xk)‖ = 0. (1)
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Booker et al. (1999) present an equivalent formulation of the algorithm, that they call
the Generalized Pattern Search (GPS) algorithm. Audet and Dennis (2003) use Clarke’s
calculus (Clarke, 1990) to show a hierarchy of convergence behavior for GPS. They show
that any limit point x̂ (of any refining subsequence, see Section 2.1 below where GPS is
fully described) satisfies some optimality condition that depends on local differentiability
of the function f . Their main result is a necessary condition for optimality, namely that if
f is Lipschitz near x̂ , then the generalized directional derivative

f ◦(x̂ ; d) = lim sup
y→x̂, t↓0

f (y + tv) − f (y)

t

is non-negative for some directions d forming a positive spanning set (i.e., non-negative
linear combinations of the directions d span Rn). This result is weaker than showing that x̂
is a Clarke stationary point, i.e., that zero belongs to the generalized gradient

∂ f (x̂) = {s ∈ 
n : f ◦(x̂ ; v) ≥ vT s for all v ∈ 
n}.

Clarke stationarity is shown to be false in general for GPS in Section 5.2. For a Lipschitz
function near x̂ , 0 ∈ ∂ f (x̂) is equivalent to f ◦(x̂ ; d) ≥ 0 for all directions d ∈ Rn .

It is also shown in Audet and Dennis (2003) that if f is strictly differentiable at x̂ (i.e.,
limy→x̂,t↓0

f (y+tv)− f (y)
t = ∇ f (x̂)T v for all v ∈ Rn—therefore continuous differentiability

implies strict differentiability), then ∇ f (x̂) = 0. This last result is stronger than (1) since
it only requires local strict differentiability instead of global continuous differentiability.

The contribution of this paper is to show through six examples in R1 or R2 that the
theoretical convergence results presented in Torczon (1997) and Audet and Dennis (2003)
cannot be strengthened without introducing additional assumptions on the objective function
f or additional requirements on the algorithm.

These examples are constructed in a way that exploits the flexibility allowed by the GPS
exploration of the space of variables. The fact that the flexibility allowed by the method
limits the convergence results should not be thought as of a weakness of GPS, since the same
flexibility is what often makes the algorithm work well in practice on some real problems
(e.g., see Booker et al., 1999 where GPS is used jointly with surrogate functions to optimize
the design of an helicopter rotor blade).

The paper is divided as follows. Section 2 briefly describes the GPS class of algorithms,
and then highlights the key features of the examples presented in Sections 3, 4 and 5.
Concluding remarks are presented in Section 6.

Notation. R, Q, Z and N respectively denote the sets of real numbers, rational numbers,
integers and non-negative integers. For a matrix D, the notation d ∈ D indicates that d is a
column of D.

2. Generalized pattern search

The reader is referred to Torczon (1997) and Lewis and Torczon (1996) for the origi-
nal description of pattern search algorithm and its parameters. We adopt the notation for
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GPS presented in Audet and Dennis (2003), and present a very brief description of the
algorithm.

2.1. Generalized pattern search algorithms

Any instance of a GPS algorithm requires the following parameters:

– Initial point x0 ∈ Rn (with finite value f (x0)) and mesh size parameter �0 > 0 in R.
– Non-singular generating matrix G ∈ Rn×n and a n×m matrix Z ⊂ Zn×m whose columns

form a positive spanning set.
– Mesh update parameters τ ∈ Q and w−, w+ ∈ Z with τ > 1, w− ≤ −1 and w+ ≥ 0.

Generalized pattern search algorithms generate a sequence of iterates {xk} in Rn with
non-increasing objective function value. Each trial point where the algorithm evaluates f
must lie on the current mesh, defined by

Mk = {xk + �k Dz : z ∈ Nm}, where D = G Z , (2)

and where �k > 0 is the mesh size parameter at iteration k (the rules for constructing it
from �k−1 are presented below).

At each iteration, trial points can be generated in two steps. In the first step, called the
SEARCH, any finite strategy can be used to find a mesh point that yields a lower objective
function value than the incumbent as long as only finitely many trial points are selected.
When a trial point xk+1 ∈ Mk satisfying f (xk+1) < f (xk) is found, then xk+1 is said to be
an improved mesh point, and the SEARCH step can be halted.

The SEARCH step is optional: An empty SEARCH step consists in considering no trial
points. The SEARCH is where most (but not all) of the GPS flexibility is located; it is there,
for example, that the user knowledge of the optimization problem can be used and where
surrogate functions (Booker et al., 1999) can be used to identify potentially good trial points.
What we call a SEARCH point is what (Torczon, 1997) refers to as an exploratory move with
step in �k BLk .

Whenever the SEARCH step fails to generate an improved mesh point, a second step,
called the POLL, is invoked before the iteration is completed. This second step consists of
evaluating the objective function at the neighboring mesh points to see if a lower value can
be found there. The set of neighboring mesh points (called the poll set) is constructed using
a positive spanning matrix Dk composed of columns of the finite set D (defined in Eq. (2)):

Poll set: {xk + �kd : d ∈ Dk} ⊂ Mk . (3)

If the poll set contains a trial point xk+1 ∈ Mk such that f (xk+1) < f (xk), then, as in the
SEARCH step xk+1 is said to be an improved mesh point, and the POLL step can be halted.

If both the SEARCH and the POLL steps fail to generate an improved mesh point, then the
current incumbent solution xk is said to be a mesh local optimizer (i.e., its objective function
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value is less than or equal to that of all points from the poll set). The algorithm then refines
the mesh by setting the mesh size parameter

�k+1 = τwk �k where wk ∈ Z and w− ≤ wk ≤ −1 (4)

and therefore 0 < τwk < 1. If either the SEARCH or POLL step produces an improved mesh
point, then the new point xk+1 �= xk has a strictly lower objective function value, the mesh
size parameter is kept the same or is increased, and the process is reiterated. It follows that
if xk+1 is an improved mesh point, than later iterates can never return to previous iterates:
x j �= x� and f (x j ) > f (x�) for any j ≤ k and � > k. The coarsening of the mesh follows
the rule

�k+1 = τwk �k where wk ∈ N and 0 ≤ wk ≤ w+ (5)

and therefore τwk ≥ 1. The algorithm is stated formally.

A basic GPS algorithm

– INITIALIZATION: Let x0, �0, G, Z , τ , w− and w+ satisfy the requirements given above.
Set the iteration counter k to 0.

– SEARCH AND POLL STEP: Perform the SEARCH and possibly the POLL steps (or only part
of them if an improved mesh point xk+1 is found on the mesh Mk defined by Eq. (2)).

• OPTIONAL SEARCH: Evaluate f on a finite subset of trial points on the mesh Mk .
• LOCAL POLL: Evaluate f on the poll set defined in Eq. (3).

– PARAMETER UPDATE: If the SEARCH or POLL step produced an improved mesh point,
i.e., an xk+1 ∈ Mk for which f (xk+1) < f (xk), then update �k+1 ≥ �k according to
rule (5).
Otherwise, f (xk) ≤ f (xk + �kd) for all d ∈ Dk and so xk is a mesh local optimizer;
set xk+1 = xk , update �k+1 < �k according to rule (4).
Increase k ← k + 1 and go back to the SEARCH and POLL step.

The convergence results of Audet and Dennis (2003) hold for the limits of subsequences
of mesh local optimizers located on meshes that get infinitely fine. These convergent sub-
sequences are called refining subsequences. The POLL step is what ensures the convergence
results (the SEARCH step cannot be used in these proofs since is free of any rules, except
that it must be finite and on the mesh).

2.2. Summary of the examples

GPS convergence analyses that appear in the literature are divided into two phases. First,
relying on the assumption that all iterates belong to a compact set, the limit inferior of the
mesh size parameter is shown to converge to zero. The proof of this first phase is independent
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of the differentiability or continuity of f . In Torczon (1997) and Lewis and Torczon (1996)
it is assumed that the level sets of f are bounded. This assumption is more restrictive than
only assuming that all iterates belong to a compact set.

Then, local properties of the objective function f are used to establish appropriate con-
vergence results. The examples presented in this paper validate the necessity of including
certain assumptions in both these phases. None of these examples contradict any of the
theoretical convergence results.

The first two examples show that lifting rationality restrictions on two of the GPS pa-
rameters can result in a mesh size parameter bounded away from zero, thereby nullifying
the entire convergence theory. The first one, Example A, shows the necessity of ensuring
that the positive spanning set D is the product of a non-singular real matrix and an integer
matrix, while Example B shows that τ must be rational.

The two next examples illustrate how GPS can produce multiple limit points of the
sequence of iterates, even when f is continuously differentiable. The first of these, Example
C, shows that the gradient at one such limit point may be non-zero. Therefore, the main
result of Torczon (1997) cannot be strengthened to

lim
k→∞

‖∇ f (xk)‖ = 0. (6)

Under stronger algorithmic requirements (restated here in Section 4.2), Torczon (1997)
shows that (1) may be improved to (6). Example D shows that even under these additional
restrictions, there still could be an infinite number of limit points.

Finally, in the last two examples, the sequence of iterates produced by GPS is convergent.
Moreover, in both examples, the objective function is Lipschitz, differentiable and has a
non-zero gradient at the limit point x̂ , but is not globally strictly differentiable (thus not
globally continuously differentiable). Therefore, the convergence analysis of Audet and
Dennis (2003) must be applied since that of Torczon (1997) requires global continuous
differentiability. Furthermore, the function f in Example E is in R1 and therefore the
Clarke generalized directional derivatives are non-negative in all directions in R1. In other
words, the sequence of iterates converge to a Clarke stationary point where the gradient
exists and is non-zero. Example F shows that zero does not necessarily lie in the generalized
gradient at x̂ . This confirms that without strict differentiability, GPS cannot be guaranteed
to produce a Clarke stationary point.

All the examples are constructed using the notation of Audet and Dennis (2003). However,
each of them can be reconstructed using the notation in Torczon (1997) and the same
behavior would be observed.

3. Rationality requirements

Rationality or integrality requirements appear twice in the description of GPS algorithms.
The two examples of this section show that removing either of these requirements compro-
mises the existence of refining subsequences.
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3.1. Example A: The positive spanning set D

Each direction d j in the positive spanning set D (for j = 1, 2, . . . , m) is the product Gz j of
the non-singular generating matrix G ∈ Rn×n by an integer vector z j ∈ Zn (note that this is
equivalent to requiring that z j ∈ Qn since G is real). An example briefly outlined in Audet
and Dennis (2003) validates this requirement by showing that without it, the sequence of
mesh size parameters {�k} can remain bounded away from zero; in fact �k remains constant
for all k ∈ N. For completeness, we present the example here in full.

Consider the optimization problem in R1 with the continuously differentiable function
f (x) = x , and parameters x0 = π − 3, �0 = 1, G = 1, Z = D = [−1, +π ], τ = 2,
w− = −1 and w+ = 0. At iteration k, if �k = 1 and if there exist positive integers ak and
bk such that xk = bkπ − ak > 0, then the SEARCH considers the trial point

tk = xk + �k((qk − 1)bkπ − ((qk − 1)ak + 1)) = qk xk − 1 (7)

where qk = � 1
xk

� ∈ N \ {0}, where � 1
xk

� denotes the smallest integer larger than 1
xk

. This
trial search point tk belongs to the current mesh Mk since it is constructed through non-
negative integer combinations of the direction matrix Dk = D : (qk − 1)bk ∈ N times the
direction d = π and ((qk − 1)ak + 1)) ∈ N times the direction d = −1. Note that with
these parameters, the algorithm is not a GPS instance since D cannot be written as a scalar
multiple of a 1 × 2 integer matrix.

Theorem 3.1. Let {xk} and {�k} be the sequences of iterates and mesh size parameters
generated by the above algorithm with the non-rational set of directions D = [−1, +π ].
Then �k = 1 for all k ∈ N and 1 > x0 > x1 > x2 > · · · > 0.

Proof: Suppose that �k = 1 and that xk = bkπ − ak > 0 for some ak, bk ∈ N \ {0}.
Therefore, the trial SEARCH point tk in Eq. (7) satisfies

0 = 1

xk
xk − 1 < tk =

⌈
1

xk

⌉
xk − 1 <

(
1

xk
+ 1

)
xk − 1 = xk .

It follows that the trial point belongs to the open interval ]0, xk[ and therefore f (tk) < f (xk).
Thus xk+1 = tk is an improved mesh point and �k+1 = �k = 1. The proof follows by
induction on k. �

Therefore, the sequence of iterates is monotone decreasing and belongs to the compact set
[0, x0]. The mesh size parameter remains constant at the value 1 since the SEARCH step al-
ways generates an improved mesh point. In conclusion, even for continuously differentiable
functions (the function above is linear), rationality of the set of directions Z is necessary to
ensure that for a fixed mesh size, the mesh is not a dense subset of Rn .
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3.2. Example B: The mesh update parameter τ

In GPS methods, the mesh update parameter τ > 1 of Eqs. (4) and (5) must be rational. To
show that this requirement cannot be relaxed, we assume in this section that τ is irrational,
and we present a GPS instance that generates the following sequence of iterates:

u0 = 0, u3 j = u3 j−1 − �u3 j−1�, (8)
u2 = u1 = τ, u3 j+2 = u3 j+1 = u3 j + τ

for j = 1, 2, . . ., and where �u3 j−1� denotes the largest integer less than or equal to u3 j−1.
One can easily show by induction that for j = 0, 1, . . .

u3 j = jτ − � jτ� ∈ [0, 1[ and u3 j+2 = u3 j+1 = ( j + 1)τ − � jτ� ∈ [τ, τ + 1[.

Also, since τ is irrational, the sequence has the properties that if i and j are natural numbers
then u3i �= u3 j+1 = u3 j+2 and if in addition i �= j then u3i �= u3 j and u3i+1 = u3i+2 �=
u3 j+1 = u3 j+2. We will show that the sequence of iterates has the property that the mesh
size parameter �k is bounded away from zero when the algorithm is applied to the following
well-defined function f : R → R:

f (x) =




3−� if x = �τ − ��τ� for some � ∈ N

2 × 3−(�+1) if x = (� + 1)τ − ��τ� for some � ∈ N

1 otherwise.

This function is discontinuous, so the part of the GPS convergence analysis requiring local
Lipschitz continuity can not be applied. However, the part of the GPS analysis showing that
the mesh size parameter gets infinitely small can be applied since the analysis is independent
of the continuity of f .

Consider the parameters x0 = 0, �0 = τ �∈ Q, G = 1, Z = D = [+1; −1], w− = −1
and w+ = 1. The mesh refining rule (4) is �k+1 = τ−1�k and define the mesh coarsening
rule (5) as �k+1 = �k when k is a multiple of three, and as �k+1 = τ�k otherwise. Define
the SEARCH step as follows. When the iteration number k can be written as 3 j + 2 for some
j ∈ N, then the trial point xk − �xk��k is considered. When the POLL step is invoked,
it evaluates f at xk + �k , and if it did not produce an improved mesh point, it considers
xk − �k . These parameters do not define a GPS instance since τ is irrational.

Theorem 3.2. Let {xk} be the sequence of iterates generated by the above algorithm with
irrational mesh size update parameter τ > 1. Then xk = uk for all k ∈ N (where uk is
defined in Eq. (8)), and the sequence of mesh size parameters satisfies �3 j = �3 j+1 = τ

and �3 j+2 = 1 for j ∈ N.

Proof: Let us proceed by induction on j . We first show that the result holds when k =
3 j = 0.
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At iteration 0, x0 = 0 = u0, and �0 = τ , and no SEARCH is performed. The first trial poll
point improves the incumbent: f (x0 +�0) = f (τ ) = 2

3 < f (x0) = 1. The iteration number
k = 0 is a multiple of three, so x1 = τ and�1 = τ . No SEARCH is performed at iteration 1 and
the POLL step shows that x1 is a mesh local optimizer since f (x1+�1) = f (2τ ) = 1 > f (x1)
and f (x1 − �1) = f (0) = 1 > f (x1). Therefore x2 = τ and �2 = 1. The SEARCH step
at iteration 2 improves the incumbent: f (x2 − �x2��2) = f (τ − �τ�) = 1

3 < f (x2).
The iteration number k = 2 is not a multiple of three, so x3 = τ − �τ� = u3 and
�3 = τ .

Assuming that the result is true for k ≤ 3 j for some j ∈ N we will show that the result
is also true for k = 3 j + 1, 3 j + 2 and 3( j + 1).

– Iteration k = 3 j : x3 j = u3 j = jτ − � jτ�, �3 j = τ and f (x3 j ) = 3− j . No SEARCH is
performed and the first trial poll point improves the incumbent: f (xk + �k) = f (( j +
1)τ − � jτ�) = 2 × 3−( j+1) < f (xk). The iteration number k is a multiple of three, so the
mesh size parameter is kept constant.

– Iteration k = 3 j + 1: xk = ( j + 1)τ − � jτ� = uk, �k = τ and f (xk) = 2 × 3−( j+1).

No SEARCH is performed and the POLL step shows that xk is a mesh local optimizer
since f (xk + �k) = f (( j + 2)τ − � jτ�) = 1 > f (xk) (indeed, the fact that τ is
irrational implies that there are no � ∈ N such that ( j + 2)τ − � jτ� = �τ − ��τ� or
( j + 2)τ − � jτ� = (� + 1)τ − ��τ�) and f (xk − �k) = f (xk−1) = 3− j > f (xk). The
mesh size parameter is reduced.

– Iteration k = 3 j + 2: xk = ( j + 1)τ − � jτ� = uk, �k = 1 and f (xk) = 2 × 3−( j+1).

The SEARCH step improves the incumbent: f (xk − �xk��k) = f (( j + 1)τ − �( j +
1)τ�) = 3−( j+1) < f (xk). The iteration number k is not a multiple of three, so the
mesh size parameter becomes �3( j+1) = τ and iteration 3( j + 1) is initiated from
x3( j+1) = ( j + 1)τ − �( j + 1)τ�) = u3( j+1).

�

The first phase of the GPS convergence analysis uses the rationality of τ to show that
there is a subsequence of mesh size parameters that converges to zero, and its proof is
independent of the smoothness of f . The approach presented in Coope and Price (2001) is
related to GPS, and allows trial points located off the mesh, but explicitly forces the mesh
size parameter to converge to zero. By removing the GPS rationality requirement on τ the
above example shows that a non-smooth function f can violate this result: the sequence of
mesh size parameters is bounded away from zero since it takes only two strictly positive
values. This suggests the following open question: Is there an example with an irrational
value of τ but with a continuous function f such that the mesh size parameter is bounded
away from zero?

4. Infinitely many limit points

In this section we present two examples of continuously differentiable functions in R2

for which a GPS instance produces infinitely many limit points. The differentiability of
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f ensures that in addition to the convergence analysis of Audet and Dennis (2003), that
of Lewis and Torczon (1996) and Torczon (1997) can also be applied.

In Example C, the gradient at a limit point is non-zero (and thus the convergence result (1)
cannot be improved to (6)). Example D shows that the algorithm can still generate infinitely
many limit points even under the stronger algorithmic requirements explicitly presented in
the example.

4.1. Example C: Non-zero gradient at a limit point

Consider the function f defined as follows,

f (a, b) =




f1(a, b) = −26a3 − 32a2b + 7|b|3 if a < 0

f2(a, b) = (7 − 8a2)|b|3 if 0 ≤ a <
1

2

f3(a, b) = f2(a, b) + 8

(
a − 1

2

)2

(b3 + b + a − 1) if
1

2
≤ a.

It can be shown that f is continuously differentiable everywhere on R2: For any b ∈ [−1
2 , 1

2 ],
the values and gradients at the transition points of f are

f (0, b) = f1(0, b) = 7|b|3, f

(
1

2
, b

)
= f2

(
1

2
, b

)
= 5|b|3

∇ f (0, b) =
[

0
21b|b|

]
, ∇ f

(
1

2
, b

)
= ∇ f2

(
1

2
, b

)
.

The GPS parameters are the following: x0 = (a0, b0)T = (−1, 1), �0 = 1
4 , G = I (the

identity matrix),

Z = D =
[

1 −1 0 0 4

0 0 1 −1 −2

]
, τ = 2, w− = −1 and w+ = 1.

The SEARCH step is empty. The POLL step stops as soon as an improved mesh point is
detected and the mesh size parameter is doubled. The positive spanning set Dk used at
iteration k with xk = (ak, bk)T varies as follows (where d j is the j th column of D)

Dk =




[d5; d2; d3] if ak = −4�k

[d1; d2; d3; d4] if −4�k �= ak <
1

2

[d2; d1; d3; d4] if ak ≥ 1

2
.

Figure 1(a) displays part of the domain of function f and plots the first few iterates.
Figure 1(b) shows the shape of the function f when a varies from −b to 1 − b, and b is
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Figure 1. Initial iterates of GPS and objective function.

fixed to a value between 0 and 1
2 . We will show that a subsequence of iterates converges to

(1, 0)T with ∇ f (1, 0) �= 0. Table 1 details the search strategy of the first eight iterations. A
new cycle is initiated at iteration 7. The trial points that improve the incumbent appear in
shaded boxes.

The key structure of this example is that for any fixed value of b on [0, 1
2 ], the func-

tion value strictly decreases from 7b3 to 5b3 when a varies from 0 to 1
2 , as illustrated in

Figure 1(b). From the iterate ( 1
2 − b, b)T , a mesh size parameter of 1

2 yields the improved
mesh point (1 − b, b)T , at which the function value is (1 + 8b)b3 ∈ ]b3, 5b3]. From there,
a mesh size parameter of 1 leads to (−b, b)T with function value b3.

We define the �th cycle (for an � ∈ N) as the iterations beginning at k = �2 + 6� and
ending and including k = (� + 1)2 + 6(� + 1) − 1. As shown below, a cycle starts at
the iterate xk = (−1

2� , 1
2� )T with �k = 1

2�+2 and function value 1
8� . The cycle goes through

� + 3 successful iterations, increasing the mesh size parameter to 2, then, goes through
� + 4 unsuccessful iterations leading to the start of cycle � + 1. For example, cycle 0 starts

Table 1. Initial eight iterations of GPS with f (x0) = 1.

k xk �k Poll

0 (−1, 1) 1
4 f2(0, 1

2 ) = 7
8

1 (0, 1
2 ) 1

2 f3( 1
2 , 1

2 ) = 5
8

2 ( 1
2 , 1

2 ) 1 f1( −1
2 , 1

2 ) = 1
8

3 ( −1
2 , 1

2 ) 2 f3( 3
2 , 1

2 ) = 61
8 f1( −5

2 , 1
2 ) = 2457

8 f1( −1
2 , 5

2 ) = 741
8 f1( −1

2 , −3
2 ) = 311

8

4 x3 1 f2( 1
2 , 1

2 ) = 5
8 f1( −3

2 , 1
2 ) = 421

8 f1( −1
2 , 3

2 ) = 119
8 f1( −1

2 , −1
2 ) = 65

8

5 x3
1
2 f1(0, 1

2 ) = 7
8 f1(−1, 1

2 ) = 87
8 f1( −1

2 , 1) = 18
8 f1( −1

2 , 0) = 26
8

6 x3
1
4 f1( −1

4 , 1
2 ) = 9

32 f1( −3
4 , 1

2 ) = 91
32 f1( −1

2 , 3
4 ) = 13

64 f1( −1
2 , 1

4 ) = 87
64

7 x3
1
8 f2(0, 1

4 ) = 7
82
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with (a0, b0) = (−1, 1) and �0 = 1
4 . Three successful iterations go through the points

(0, 1
2 )T , ( 1

2 , 1
2 )T and finally (−1

2 , 1
2 )T , where �3 = 2. Then four unsuccessful iterations

reduce the mesh size parameter to �7 = 1
8 . This initiates cycle 1 at k = 7.

We show that the sequence of iterates possesses an infinite number of limit points, namely
all points of the set {( 1

2� , 0)T : � = 0, 1, . . .} ∪ {(0, 0)T }. Moreover, the gradient norm of all
these points is zero, except for the point (1, 0)T .

Theorem 4.1. For any integer � ≥ 0, the iterates and mesh size parameters of cycle �

generated by the above instance of GPS are

(ak, bk), �k =




(−1

2�
,

1

2�

)
,

1

2�+2
if k = �2 + 6�

(
2 j−1 − 1

2�+1
,

1

2�+1

)
1

2�− j+2
if k = �2 + 6� + j,

with j ∈ {1, 2, . . . , 2 + �},( −1

2�+1
,

1

2�+1

)
,

1

2 j−2
if k = �2 + 7� + 2 + j

with j ∈ {1, 2, . . . , 4 + �}.

Proof: The proof is done by induction on �. We already verified in Table 1 that the result
holds for the cycle � = 0, that is, from iterations 0 to 6.

Suppose that cycle � is initiated at iterate xk = (−1
2� , 1

2� )T where k = �2 + 6�, and that
�k = 1

2�+2 . The objective function value is f (xk) = f1(−1
2� , 1

2� ) = 1
8� . The top half of Table 2

details all iterations of cycle �. The function values for the iterations k = �2 + 7� + 2 + j
for 1 ≤ j ≤ 4 + � appear in the bottom half of the table. The objective function value
of all four trial points (labelled A+, A−, B+ and B−) are greater than the incumbent value
f (xk) = f1(−u, u) = u3, where u = 1

2�+1 , and therefore all these iterations are unsuccessful
in improving the incumbent solution.

The iteration number following the last iteration presented in Table 2 is k = (�2 + 7�) +
2 + (4 + �) + 1 = (� + 1)2 + 6(� + 1). The incumbent solution is not improved, therefore,
cycle � + 1 is initiated at xk = ( −1

2�+1 ,
1

2�+1 )T with mesh size parameter �k = 1
2�+3 . This

completes the proof. �

The previous theorem details all iterates generated by the algorithm. We now discuss
some properties of the limit points of the sequence of iterates. All iterates and trial points
generated by the algorithm belong to a compact set. Consider the sequence of iterations
k = �2+7�+2 for � ≥ 0: all corresponding iterates xk = (1− 1

2�+1 ,
1

2�+1 )T are successful and
converge to the point (1, 0)T at which the gradient is ∇ f (1, 0) = ∇ f3(1, 0) = (2, 2)T . All
other limit points are of the form ( 1

2� , 0)T for � > 0, and they have zero gradient. Moreover,
only the sequence of iterates that converges to (0, 0)T contains mesh local optimizers.

In summary, even if the objective function is continuously differentiable everywhere,
there can be a subsequence of iterates converging to a solution whose gradient is non-zero.
In the example presented above, that point is the limit of iterates that were successful in
finding improved mesh points with mesh size parameters all equal to one. The large mesh
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Table 2. Objective function values of cycle �.

k
xk

�k
Poll

�2 + 6�
( −1

2� , 1
2� )

1
2�+2

f (xk + (4, −2)�k ) = f2(0, 1
2�+1 ) = 7

8�+1

�2 + 6� + j
1 ≤ j ≤ �

( 2 j−1−1
2�+1 , 1

2�+1 )
1

2�− j+2

f (xk + (1, 0)�k ) = f2( 2 j −1
2�+1 , 1

2�+1 ) = 7−8( 2 j −1
2�+1 )2

8�+1

�2 + 7� + 1
( 1

2 − 1
2�+1 , 1

2�+1 )
1
2

f (xk + (1, 0)�k ) = f3(1 − 1
2�+1 , 1

2�+1 ) = 1+ 1
2�−2

8�+1

�2 + 7� + 2
(1 − 1

2�+1 , 1
2�+1 )

1
f (xk + (−1, 0)�k ) = f1( −1

2�+1 , 1
2�+1 ) = 1

8�+1

�2 + 7� + 2 + j

1 ≤ j ≤ 4 + �

( −1
2�+1 , 1

2�+1 )
1

2 j−2

A± : f (xk ± (1, 0)�k ) = f ( −1
2�+1 ± 1

2 j−2 , 1
2�+1 )

B± : f (xk ± (0, 1)�k ) = f1( −1
2�+1 , 1

2�+1 ± 1
2 j−2 )

------------------------------------------------------------------------------------------------------------------------------
A+ : f (xk + (1, 0)�k ) = f ( 1

2 j−2 − u, u) where u = 1
2�+1

j = 1 f3(2 − u, u) = 18 − 24u + 8u2 − 7u3 + 8u4

j = 2 f3(1 − u, u) = u3 + 8u4

3 ≤ j ≤ 3 + � a = 1
2 j−2 − u ∈ [0, 1

2 ] ⇒ f2(a, u) ∈ [5u3, 7u3] (see Figure 1(b))

j = 4 + � f1( −u
2 , u) = 9

4 u3

------------------------------------------------------------------------------------------------------------------------------
A− : f (xk − (1, 0)�k ) = f ( −1

2 j−2 − u, u) where u = 1
2�+1

1 ≤ j ≤ 4 + � a = −u − 1
2 j−2 ≤ −3u

2

⇒ f1(a, u) = −26a3 − 32a2u + 7u3

≥ 26×3
2 a2u − 32a2u + 7u3 = 7(a2u + u3)

------------------------------------------------------------------------------------------------------------------------------
B+ : f (xk + (0, 1)�k ) = f (−u, u + 1

2 j−2 ) where u = 1
2�+1

1 ≤ j ≤ 2 + � b = u + 1
2 j−2 ≥ u + 1

2� = 3u

⇒ f1(−u, b) = 26u3 − 32u2b + 7b3

≥ 26u3 − 32u2b + 63u2b = 26u3 + 31u2b
j = 3 + � f1(−u, 2u) = 18u3

j = 4 + � f1(−u, 3u
2 ) = 13

8 u3

------------------------------------------------------------------------------------------------------------------------------
B− : f (xk − (0, 1)�k ) = f (−u, u − 1

2 j−2 ) where u = 1
2�+1

1 ≤ j ≤ 3 + � b = u − 1
2 j−2 ≤ u − 1

2�+1 = 0

⇒ f1(−u, b) = 26u3 − 32u2b − 7b3 ≥ 26u3

j = 4 + � f1(−u, u
2 ) = 87

8 u3

size parameter allowed the POLL step to move away from the region containing the non-
stationary point (1, 0)T . Of course, as predicted by the theory (Audet and Dennis, 2003), any
limit point of a refining subsequence (i.e., subsequences of mesh local optimizers located on
meshes that get infinitely fine) has a zero gradient limit point. In the example there is only
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one such limit point: the origin. Moreover, since the function is lower-semi continuous at
all limit points, they all share the same objective function value (Audet and Dennis, 2003).
Observe that the limit point (1, 0)T where the gradient is non-zero is the more interesting
one since any local exploration around this point would identify a descent direction.

4.2. Example D: Infinitely many limit points when under strong requirements

The example presented in this section shows that even under the stronger requirements
presented in Torczon (1997) for continuously differentiable functions (to strengthen the
convergence result from (1) to (6)), there still can be infinitely many limit points produced
by a GPS algorithm. These additional requirements are

(i) Any trial point xk + �k Dz for some z ∈ Nm has to be such that z is bounded in norm.
(ii) limk→∞ �k = 0.

(iii) f (xk+1) ≤ f (xk + �kd) for all d ∈ Dk .

Requirement (i) ensures that the distance from the trial points visited by SEARCH step to
the incumbent solution xk is bounded above by a multiple of the mesh size parameter. And
so, as k increases, requirement (ii) ensures that the SEARCH is conducted locally around xk .
Requirement (iii) ensures that the iteration does not stop at the first trial point that deceases
the objective function value f . All other examples in this document violate at least one of
these requirements.

Consider the convex continuously differentiable function in R2:

f (a, b) =
{

(a2 + 1)b2 if b ≥ 0

((1 − a)2 + 1)b2 if b < 0.

For any b > 0 the function monotonically decreases when a varies from 1 to 0, and for
any b < 0 the function monotonically decreases when a varies from 0 to 1. It achieves its
minimum value 0 whenever b = 0.

The GPS parameters are xT
0 = (0, 2

3 ), �0 = 1, G = I (the identity matrix), Z = D =
[I ; −I ], τ = 2, w− = −1 and w+ = 0. The SEARCH is empty, therefore the requirement
(i) is satisfied. Requirement (ii) is also satisfied since all level sets of f are bounded and the
mesh size parameter is never increased (Torczon, 1997). All four trial points are evaluated
in the POLL step. When there is improvement, the best one is chosen to be the next iterate;
therefore requirement (iii) is respected.

Figure 2 and Table 3 detail the first iterates generated by the algorithm. The trial points
that improve the incumbent appear in shaded boxes in the table. We will show that there are
iterates that go infinitely close to every point on the line segment from the origin to (1, 0)T .

We define an even cycle to be the successful iterations starting at (0, b)T where b > 0,
then going to (0, −b

2 )T and ending at the unsuccessful one at (1, −b
2 )T . The following odd

cycle is composed of the successful iterations starting at (1, −b
2 )T , then going to (1, b

4 )T and
ending at the unsuccessful one at (0, b

4 )T . We now explicitly write the values of all iterates.
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Figure 2. Initial iterates of GPS.

Theorem 4.2. For any integer � ≥ 0, the iterates of cycle � are

x2�+2�−1 =
(

0,
2�k

3

)
, when k = 2� + 2� − 1,

x2�+2�+ j =
(

j�k,
−�k

3

)
, j ∈ {0, 1, . . . , 2�} and � is even,

x2�+2�−1 =
(

1,
−2�k

3

)
, when k = 2� + 2� − 1,

x2�+2�+ j =
(

1 − j�k,
−�k

3

)
, j ∈ {0, 1, . . . , 2�} and � is odd

and the mesh size parameters are all equal to �k = 1
2� .

Table 3. Initial eight iterations of GPS with f (x0) = 4
9 .

Cycle k xk �k f (ak + �k , bk ) f (ak , bk + �k ) f (ak − �k , bk ) f (ak , bk − �k )

0 0 (0, 2
3 ) 1 f (1, 2

3 ) = 8
32 f (0, 5

3 ) = 25
32 f (−1, 2

3 ) = 8
32 f (0, −1

3 ) = 2
32

1 (0, −1
3 ) 1 f (1, −1

3 ) = 1
32 f (0, 2

3 ) = 4
32 f (−1, −1

3 ) = 5
32 f (0, −4

3 ) = 32
32

2 (1, −1
3 ) 1 f (2, −1

3 ) = 2
32 f (1, 2

3 ) = 8
32 f (0, −1

3 ) = 2
32 f (1, −4

3 ) = 16
32

1 3 x2
1
2 f ( 3

2 , −1
3 ) = 5

62 f (1, 1
6 ) = 2

62 f ( 1
2 , −1

3 ) = 5
62 f (1, −4

6 ) = 4
32

4 (1, 1
6 ) 1

2 f ( 3
2 , 1

6 ) = 13/4
62 f (1, 4

6 ) = 32
62 f ( 1

2 , 1
6 ) = 5/4

62 f (1, −1
3 ) = 4

62

5 ( 1
2 , 1

6 ) 1
2 f (1, 1

6 ) = 2
62 f ( 1

2 , 2
3 ) = 20

62 f (0, 1
6 ) = 1

62 f ( 1
2 , −1

3 ) = 5
62

6 (0, 1
6 ) 1

2 f ( 1
2 , 1

6 ) = 5/4
62 f (0, 2

3 ) = 16
62 f ( −1

2 , 1
6 ) = 5/4

62 f (0, −1
3 ) = 8

62

2 7 x6
1
4 f ( 1

4 , 1
6 ) = 17/4

122 f (0, 5
12 ) = 25

122 f ( −1
4 , 1

6 ) = 17/4
122 f (0, −1

12 ) = 2
122
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Table 4. Objective function values of the trial points of the even cycle �.

f (ak + �k , bk ) f (ak , bk + �k )
k xk f (ak − �k , bk ) f (ak , bk − �k )

2� + 2� − 1 (0,
2�k

3 ) (�2
k + 1)

4�2
k

9
25�2

k
9

(�2
k + 1)

4�2
k

9
2�2

k
9

2� + 2� + j ( j�k ,
−�k

3 ) ((1 − ( j + 1)�k )2 + 1)
�2

k
9 ( j2�2

k + 1)
4�2

k
9

0 ≤ j ≤ 2� − 1 ((1 − ( j − 1)�k )2 + 1)
�2

k
9 ((1 − j�k )2 + 1)

16�2
k

9

2�+1 + 2� (1,
−�k

3 ) (�2
k + 1)

�2
k

9
8�2

k
9

(�2
k + 1)

�2
k

9
16�2

k
9

Proof: The proof is done by induction on �. We already verified in Table 3 that the result
holds for the even cycle � = 0, and for the odd cycle � = 1.

Suppose that the even cycle � is initiated with �k = 1
2� and xk = (0, 2�k

3 )T for k =
2� + 2� − 1. The current objective function value is f (xk) = 4�2

k
9 . Table 4 details the

objective function values at the poll points for the even cycle �. The trial points that improve
the incumbent appear in shaded boxes. All iterations but the last improve the incumbent,
therefore the mesh size parameter remains constant through the cycle.

The odd cycle � + 1 starts at iteration k ′ = 2(�+1) + 2(� + 1) − 1. The last iteration
appearing in Table 4 does not improve the incumbent, and therefore �k ′ = �k

2 = 1
2�+1 and

xk ′ = (1,
−2�k′

3 )T . We have shown that the result is true for even values of �. The proof for
odd cycles is similar, and is omitted. �

This example shows that even under stronger restrictions there still can be infinitely many
limit points of the sequence of iterates. Every point of the of the line segment whose end-
points are (0, 0)T and (1, 0)T is a limit point and the gradient at these points is zero (Torczon,
1997). The function is lower-semi continuous at these points, and so they all share the same
objective function value (Audet and Dennis, 2003).

This example, and its conclusion that infinitely many limit points can be generated, also
applies to the framework of Coope and Price (2001) since the mesh size parameter converges
to zero.

5. Single limit point with non-zero gradient

The examples presented in this section apply to the convergence analysis of Audet and
Dennis (2003) for functions that are not continuously differentiable. They show that the
following result is tight.

Proposition 5.1. Let f : R1 → R be Lipschitz near a limit point x̂ of a refining subse-
quence produced by a GPS algorithm. Then 0 ∈ ∂ f (x̂).
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Proof: By a result in Audet and Dennis (2003), f ◦(x̂ ; d1) ≥ 0 ≤ f ◦(x̂ ; d2) for some
directions d1 < 0 and d2 > 0. Moreover, since f ◦(x̂ ; λv) = λ f ◦(x̂ ; v) for any λ ≥ 0 and
v ∈ R1, it follows that f ◦(x̂ ; v) ≥ 0 for any direction v ∈ R1 and the generalized gradient
of f at x̂

∂ f (x̂) = {ζ ∈ R1 : f ◦(x̂ ; v) ≥ vζ for all v ∈ R1}

contains zero. �

Both examples have differentiable Lipschitz functions f that are not strictly differentiable
and produce a single limit point x̂ . In both cases the gradient exists at x̂ and is non-zero.
Example 5.1 is in R1 and therefore the Clarke derivatives are non-negative for all directions
(the above proposition guarantees that zero belongs to the generalized gradient). The last
example shows that in higher dimensions, the generalized gradient at x̂ may not contain
zero.

5.1. Example E: Single limit point with non-zero gradient in R1

The example presented in this section applies GPS to a Lipschitz function in R1 which is
not strictly differentiable (and thus not continuously differentiable) but is continuous and
differentiable everywhere. The sequence of iterates generated by the algorithm possesses a
single limit point. This limit point is a Clarke stationary point where the gradient exists and
is non-zero.

First, let us define for α = 2−�, � ∈ {2, 3, . . .} the cubic functions pα : [α − α2

2 , α[ → R

and qα : [α, 2α − 2α2[ → R as

pα(x) = 8

α4
x3 + 6(α − 4)

α3
x2 + 12(2 − α)

α2
x + (α − 2)(4 − α − α2)

α

qα(x) = α − 1

(2α − 1)3

[−2

α2
x3 + 3(3 − 2α)

α
x2 + 12(α − 1)x

− 2α(4α3 − 6α2 + 6α − 3)

]

Consider the piecewise function in R1 defined as:

f (x) =




x if x ≤ 0,

pα(x) if α − α2

2 ≤ x < α, where α = 2−�

qα(x) if α ≤ x < 2α − 2α2, for some � ∈ {2, 3, . . .}.
3

8
if x ≥ 3

8
,

The plot of the function f appears on the top part of Figure 3 and its derivative on the
bottom. Using elementary calculus, one can verify that f is continuous, bounded above by
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Figure 3. A continuous function that is not strictly differentiable at the origin.

x + x2, bounded below by x − 2x2, Lipschitz and differentiable everywhere, and

1 = lim
t↓0

t − 2t2

t
≤ f ′(0; 1) = lim

t↓0

f (t)

t
≤ lim

t↓0

t + t2

t
= 1,

therefore the gradient at the origin is ∇ f (0) = 1. One can also show that for any � ∈
{2, 3, . . .}, the point x = 2−� is a local minimizer of f with f (x) = qx (x) = x − x2 (this is
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in fact the key to this example, the iterates will move from one local minimum to another
and will converge to the origin).

The following GPS parameters are used: x0 = 2−2, �0 = 2−5, G = 1, Z = D =
[−1, +1], τ = 22, w− = −1 and w+ = 0. When the iteration number k is odd, the SEARCH

step considers the mesh trial point xk + zk�k where zk is the integer part of −4
xk

. The SEARCH

is empty when k is even.
Polling around the local minimum x0 forces the algorithm to reduce the mesh size pa-

rameter since the value f (x0) = 3
16 is less than both values

f (x0 − �0) = px0

(
x0 − x2

0

2

)
= p1/4

(
7

32

)
= 7

32
> f (x0),

f (x0 + �0) = qx0

(
x0 + x2

0

2

)
= q1/4

(
9

32

)
= 111

512
> f (x0).

Therefore x1 = x0 and �1 = τ−1�0 = 2−7. The other iterates are described by the
following result.

Theorem 5.2. For any integer � ∈ N, the iterates and mesh size parameters generated
by the above instance of GPS are x2� = x2�+1 = 2−(�+2), �2� = 2−(2�+5) and �2�+1 =
2−(2�+7).

Proof: The proof is by induction on �. We already showed the result for � = 0.
Suppose that the odd iteration k = 2(� − 1) + 1 is initiated with xk = 2−(�+1), �k =

2−(2�+5) and f (xk) = 2−(�+1) − 2−(2�+2) for some � − 1 ≥ 0. The SEARCH step considers
the trial point t = xk + zk�k with zk = −4

2−(�+1) = −2�+3. The trial point is therefore t =
2−(�+1)−2�+32−(2�+5) = 2−(�+2) and its function value is f (t) = 2−(�+2)−2−(2�+4) < f (xk).
Therefore xk+1 = x2� = t is an improved mesh point and �k+1 = �2� = �k .

Now, at the even iteration k ′ = k + 1 = 2� no SEARCH is performed, and the POLL step
identifies a mesh local optimizer since

f (xk ′ − �k ′ ) = f

(
xk ′ − x2

k ′

2

)
= pxk′

(
xk ′ − x2

k ′

2

)

= xk ′ − x2
k ′

2
> xk ′ − x2

k ′ = qxk′ (xk ′ ) = f (xk ′ )

f (xk ′ + �k ′ ) = f

(
xk ′ + x2

k ′

2

)
= qxk′

(
xk ′ + x2

k ′

2

)

=
(
xk ′ − x2

k ′
)(

39x3
k ′ − 51x2

k ′ + 24xk ′ − 4
)

4(2xk ′ − 1)3

> xk ′ − x2
k ′ = qxk′ (xk ′ ) = f (xk ′ ).

Therefore x2�+1 = x2� = 2−(�+2) and �2�+1 = �2�

4 = 2−(2�+7). �
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The previous result shows that the sequence of iterates converges to the origin where the
function is Lipschitz but not continuously differentiable. Proposition 5.1 is tight in R1 in the
sense that even if Clarke derivatives are non-negative in every direction and if zero belongs
to the generalized gradient (this can also be seen by looking at the sequence of mesh local
optimizers in Figure 3), then it is possible that the gradient exists but is non-zero.

5.2. Example F: Single limit point with zero excluded from the generalized gradient

When n = 1 and f is Lipschitz at a limit point x̂ of a refining sequence, Proposition 5.1
ensures that zero is contained in the generalized gradient. The previous example showed
that even if the gradient exists, it might be non-zero. We now present an example with
n = 2, where zero is not in the generalized gradient but where the gradient exists at the
limit of the sequence of iterates. We will need the following lemma.

Lemma 5.3. If there exists an ε > 0 such that the functions �, f and u satisfy

�(x̂) = f (x̂) = u(x̂) and �(x) ≤ f (x) ≤ u(x) ∀ x ∈ Bε(x̂)

where Bε(x̂) is a ball of radius ε centered at x̂ ∈ Rn, and if both � and u are differentiable
at x̂, and if ∇�(x̂) = ∇u(x̂) then f is differentiable at x̂ and ∇ f (x̂) = ∇�(x̂).

Proof: By definition of differentiability,

0 = 7 lim inf
h→0

�(x̂+h)−�(x̂)−hT ∇�(x̂)
‖h‖ ≤ lim inf

h→0

f (x̂+h)− f (x̂)−hT ∇�(x̂)
‖h‖

lim sup
h→0

f (x̂+h)− f (x̂)−hT ∇u(x̂)
‖h‖ ≤ lim sup

h→0

u(x̂+h)−u(x̂)−hT ∇u(x̂)
‖h‖ = 0,

and therefore, limh→0
f (x̂+h)− f (x̂)−hT ∇�(x̂)

‖h‖ exists and equals zero. The result follows by the
definition and uniqueness of the gradient (Rockafellar, 1970). �

Consider the function f defined as follows,

f (a, b) =




2b(1 − b2) if 0 < b(1 − 2b2) ≤ a ≤ b

2a(1 − a2) if 0 < a(1 − 2a2) ≤ b < a

a + b otherwise.

f is continuous and Lipschitz everywhere on {(a, b)T : a < 1√
2
, b < 1√

2
}. The plot of the

function is displayed on the left of Figure 4 and the piecewise linear level sets on the right.
We will show that every iterate lies on the diagonal b = a and that they converge to the

origin, which is not a Clarke stationary point.
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Figure 4. Objective function landscape, and level sets.

The GPS parameters are xT
0 = ( 1

2 , 1
2 ), �0 = 1

8 , G = I (the identity matrix),

Z = D =
[−1 0 1

0 −1 1

]
, τ = 8, w− = −1 and w+ = 0.

When the iteration number k is odd, the SEARCH step considers the mesh trial point xk +
2k+3�k(−1, −1)T . There is no SEARCH when k is even.

The next result shows that the entire sequence of iterates converges to the origin.

Theorem 5.4. For any integer � ∈ N, the iterates and mesh size parameters generated
by the above instance of GPS are x2� = x2�+1 = (2−(�+1), 2−(�+1))T , �2� = 8−(�+1) and
�2�+1 = 8−(�+2).

Proof: The proof is by induction on �. When � = 0, polling around x0 yields a mesh local
optimizer: f ( 3

8 , 1
2 ) = f ( 1

2 , 3
8 ) = 3

4 = f (x0) and f ( 5
8 , 5

8 ) = 195
256 > f (x0). So x1 = x0 and

�1 = 1
64 .

Suppose that the result is true up to k = 2�, and therefore x2� = (2−(�+1), 2−(�+1)) and
�2� = 8−(�+1). Then polling around xk yields a mesh local optimizer:

f
(
2−(�+1) − 8−(�+1), 2−(�+1)

) = f
(
2−(�+1), 2−(�+1) − 8−(�+1)

) = 2−� − 2−(3�+2)

= f (xk) < f
(
2−(�+1) + 8−(�+1), 2−(�+1) + 8−(�+1)

)
.

So x2�+1 = x2� and �2�+1 = 8−(�+2).
Iteration k = 2� + 1 is odd, and so the SEARCH trial point is t = (2−(�+2), 2−(�+2))T with

f (t) < f (xk). So x2�+2 = t and �2�+2 = �2�+1. �

The previous result shows that the entire sequence of iterates converges to the origin.
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Proposition 5.5. The generalized gradient ∂ f (0) does not contain zero, and ∇ f (0) exists.

Proof: The generalized gradient ∂ f (0) is the convex hull of the set {(2, 0)T , (0, 2)T ,

(1, 1)T }. It clearly does not contain zero.
Define the functions �(a, b) = (a + b)(1 − ab) and u(a, b) = a + b. If 0 < b(1 − 2b2) ≤

a ≤ b then f (a, b) = 2b(1 − b2) =≤ a + b = u(a, b). Let ε > 0 be such that 2b − ab < 1
for all (a, b)T ∈ Bε(0), then

f (a, b) − �(a, b) = 2b(1 − b)(1 + b) − (1 − ab)(a + b)

≥ 2b(1 − b)(1 + a) − (1 − ab)(a + b)

= (b − a)(1 − 2b − ab) ≥ 0.

Similarly, �(a, b) ≤ f (a, b) ≤ u(a, b) when 0 < a(1 − 2a2) ≤ b < a. Therefore,
Lemma 5.3 ensures that ∇ f (0) exists and equals ∇u(0) = (1, 1)T �= 0. �

This example shows that the sequence of iterates produced by a GPS algorithm on a
Lipschitz function can converge to a point where the gradient exists, is non-zero, but where
zero does not belong to the generalized gradient. Proposition 5.1 is tight since it is only valid
in R1. Therefore, when GPS is applied to a function in R2 that is not strictly differentiable,
then it is possible that the limit of a refining subsequence is not a Clarke stationary point.

6. Discussion

GPS algorithms are well-suited for non-smooth optimization problems. The convergence
behavior of these algorithms has been analyzed under a hierarchy of differentiability
hypotheses.

The first analysis is due to Torczon (1997). She shows that the limit inferior of the
mesh size parameter goes to zero. She also shows that when f is globally continuously
differentiable then the limit inferior of the norm of the gradient of the sequence of iterates
produced by the algorithm goes to zero. Audet and Dennis (2003) analyze convergence
under less restrictive differentiability assumptions. They first identify limits of refining
subsequences, regardless of the differentiability of f . Then they show that if f is strictly
differentiable near the limit of any refining subsequence, the gradient at that point is zero.
They also analyze the situation where f is simply Lipschitz continuous at the limit point.
They show that Clarke derivatives are non-negative in a set of positive spanning directions.
This does not imply Clarke stationarity.

The GPS examples presented in this paper confirm that these theoretical convergence
results cannot be improved without either assuming more about the optimization problem,
or without adding more requirements on the algorithm.

In particular, we showed that the requirements on the set of directions D and on the mesh
update parameter τ cannot be relaxed, otherwise, the existence of a refining subsequence
would be compromised.
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We also showed that, even for continuously differentiable functions, the sequence of
iterates produced by GPS algorithms can possess infinitely many limit points. Furthermore,
the gradient at some (but not all) of these limit points can be non-zero.

Finally, we also showed that even when the sequence of iterates produced by GPS algo-
rithms possesses a single limit point where the gradient exists, it can be non-zero. In R1,
the limit point is necessarily a Clarke stationary point. But, in larger dimensions, zero may
be excluded from the generalized gradient. This shows that the standard GPS class of algo-
rithm does not guarantee to generate a Clarke stationary point for Lipschitz functions (the
theory (Audet and Dennis, 2003) guarantees it only for strictly differentiable functions).

Recent work (Audet and Dennis, 2004) propose a new class of direct search algorithms
that generalizes GPS by allowing polling directions to be chosen in a larger set. As the
mesh size parameter goes to zero, the normalized polling directions become dense in the
unit sphere. They show that the new method can produce a Clarke stationary point for
locally Lipschitz functions.
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