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Pooling and blending problems occur frequently in the petrochemical industry where crude oils,
procured from various sources, are mixed together to manufacture several end-products. Finding
optimal solutions to pooling problems requires the solution of nonlinear optimization problems
with multiple local minima. We introduce a new Lagrangian relaxation approach for developing
lower bounds for the pooling problem. We prove that, for the multiple-quality case, the
Lagrangian approach provides tighter lower bounds than the standard linear-programming
relaxations used in global optimization algorithms. We present computational results on a set
of 13 problems which includes four particularly difficult problems we constructed.

1. Introduction

The pooling problem is a planning problem that arises
in blending materials to produce products, an example
being the blending of crude or refined petroleum.
Pooling occurs whenever streams are mixed together,
often in a storage tank, and the resulting mixture is
dispatched to several locations. Pooling and blending
of raw materials and stored products is an important
step in the synthesis of end-products having diverse
component quality specifications.

Optimization of gasoline blending is a critical refinery
operation. Consider, for example, the case of a large
company such as Texaco. According to DeWitt et al.,8
the use of a nonlinear optimizer to predict output blend
qualities given input stock qualities and volumes led to
an improvement in the blending procedure over what
was being followed earlier. The nonlinear optimizer,
which was used to solve pooling and blending problems,
led to a saving of about 2.5 cents/gal of gasoline which
translated into a saving of more than 30 million dollars
annually for Texaco in the 1980s. Texaco’s blending
system evolved to a decision support system used in all
Texaco refineries in the 1990s.32

Pooling also occurs in distillation and other separation
processes. The mathematics of the pooling problem
apply to such processes and their applications, which
are numerous. A recent application in New Zealand
refineries is reported by Amos et al.2

The process of pooling introduces nonlinearities and
nonconvexities into optimization models leading to the
existence of several locally optimal solutions. Naturally,
it takes more effort to solve a problem to global opti-
mality than it takes to find a locally optimal solution
and one must often weigh the benefits against the costs.
It is apparent though that, given the volumes of sales
of petroleum products, the global optimization of the
pooling and blending process could lead to substantial
savings in cost, resulting in higher margins of profit.

Perhaps the most popular global optimization tech-
nique is branch-and-bound.22 Branch-and-bound is a
deterministic global optimization technique which uses
controlled enumeration and relaxation to divide the
original feasible set into a number of subsets and then
derive lower and upper bounds of the objective function
over each of these subsets. On the basis of these bounds,
some of the subsets are subjected to further refinement,
while others are excluded from further consideration
based on optimality or feasibility arguments. The tight-
ness of the bounding procedure used is an important
factor which determines the efficacy of the branch-and-
bound procedure. Consequently, there is a need to
develop bounding procedures which would provide tight
bounds within the branch-and-bound framework.

Lagrangian relaxation was popularized in the early
1970s by Held and Karp20,21 in their work on the
traveling salesman problem. Lagrangian relaxation is
based upon the observation that many problems can be
considered to be relatively easy problems made difficult
because of the presence of complicating constraints. The
Lagrangian approach creates a subproblem, termed the
Lagrangian subproblem, wherein the complicating con-
straints are replaced with a penalty term in the objec-
tive function involving the amount of violation of the
constraints and their dual variablessalso known as
Lagrange multipliers. The Lagrangian subproblem is
typically easy to solve compared to the original problem
and provides a lower bound on the global optimum of
the original problem for the case of a minimization
problem. This allows the use of a Lagrangian relaxation
for generating lower bounds for use in algorithms to
solve combinatorial optimization problems.

Lagrangian relaxation has been applied to different
classes of problems, both discrete and continuous.
Applications of Lagrangian duals for nonconvex opti-
mization have been suggested by Falk,10 Dür and
Horst,9 and Ben-Tal et al.7 Properties of Lagrangian
relaxations and strategies for generating and updating
Lagrange multipliers have been discussed by Bazaraa
and Goode,5 Fisher,12 and Minoux.29
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Whereas it is well-known that Lagrangian relaxation
provides bounds that are not weaker than standard
linear-programming (LP) relaxations, it is not known
how to construct Lagrangian relaxations that provide
bounds that are strictly stronger than LP-based bounds.
Depending on what we consider complicating con-
straints, several alternative lagrangian relaxations can
be developed. In general, we would like to choose a
relaxation which makes the Lagrangian subproblem
easy to solve. However, it is often observed that an easy
subproblem leads to lower bounds that are not very
strong and consequently one has to solve a more difficult
and therefore more expensive subproblem to get tighter
bounds on the original problem. The primary purpose
of this paper is to introduce a Lagrangian relaxation
approach that provides tighter bounds than conven-
tional Lagrangian and linear-programming-based ap-
proaches for the case of the pooling problem.

In the case of the pooling problem, the complicating
terms are constraints having bilinear terms. Dualizing
all constraints leads to a Lagrangian subproblem which
consists of optimizing a bilinear objective function over
a hypercube. The Lagrangian subproblem obtained from
this relaxation is thus a special case of bilinear-
programming problemssan important area of research
in itself. We provide a method of solving this Lagrangian
subproblem by reformulating it as a mixed integer
linear program.

Several alternative Lagrangian relaxations could be
constructed from the constraint set of the pooling
problem. One approach would be the introduction of
separability for the bilinear terms which makes the
corresponding Lagrangian subproblem separable in
each variable and therefore easy to optimize. We prove
that this easier approach does not provide bounds that
are as tight as our Lagrangian approach.

The paper is organized in the following way. Section
2 describes the pooling problem. Section 3 presents a
literature survey on pooling and blending problems and
describes some of the techniques commonly used to solve
such problems. Section 4 introduces a Lagrangian lower
bounding procedure for the pooling problem and pro-
vides a method for solving the Lagrangian subproblem
to optimality. Section 5 describes several properties of
the Lagrangian subproblem and the proposed Lagrangian
relaxation. Section 6 compares and contrasts the
Lagrangian relaxation procedure with a linear relax-
ation procedure obtained by using the convex and
concave envelopes of the bilinear terms using McCor-
mick estimators. The comparison is made for both the
single-quality and the multiple-quality cases of the
pooling problem. We prove that the lower bounds
obtained by the Lagrangian relaxation procedure are
at least as strong as those obtained by the McCormick-
estimator-based linear relaxation and they might be
strictly stronger. Section 7 provides computational
results with 13 test problems, including four hard
problems designed in the course of this study. For the
latter four examples, the Lagrangian lower bounds are
strictly stronger than the linear-programming based
bounds. Finally, in section 8 we show through an
illustrative example how the Lagrangian procedure can
be used within a branch-and-bound framework.

2. Problem Description

Figure 1 shows a small pooling problem taken from
Haverly.18 There is a single pool which receives supplies

from two different sources of crude oil A and B. Since A
and B are different sources, they have different sulfur
qualities. A third supply C is not fed into the pool but
is directly mixed with the two outflows from the pool.
The quality parameters for the streams going into the
pool are 3% for A, 1% for B, and 2% for C. The blending
of flows from the pool and from the supply stream C
produces products X and Y, which have to adhere to
sulfur quality specifications of 2.5% and 1.5%, respec-
tively. These restrictions on end-products X and Y are
dictated by the consumer. In the context of the petro-
leum industry, for instance, these restrictions might be
the maximum percentage of sulfur in gasoline. The
maximum demands for products X and Y are S1 ) 100
and S2 ) 200, respectively, which also restrict the
quantities of end-products produced.

The variables in the above example are the quantities
of supplies of A, B, and C, denoted by f11, f21, and f12,
respectively, the final quality of sulfur in the pool as a
result of mixing of A and B, denoted by q, the magni-
tudes of flows from the pool products, denoted by x11
and x12, respectively, and the amounts of supply C which
go to products X and Y, denoted by x21 and x22,
respectively. The quantities of each end-product and
their final qualities can be easily recovered from the
values of the above variables. On the basis of the
assumption of a linear mixing model, the problem in
Figure 1 can then be formulated as

(1) represents the difference between the cost of the
input streams and the profits from selling the products.
Equations 2 and 3 represent mass balances. Equation
4 expresses the pool quality, q, in terms of the input
streams and their qualities. Equations 5 and 6 represent
the quality restrictions on the products. Finally, (7) and
(8) ensure that the flows do not exceed demands.

Figure 1. Haverly’s pooling problem.

(H)

min 6f11 + 16f21 + 10f12 - 9(x11 + x21) -
15(x12 + x22) (1)

s.t. f11 + f21 - x11 - x12 ) 0 (2)

f12 - x21 - x22 ) 0 (3)

q(x11 + x12) - 3f11 - f21 ) 0 (4)

qx11 + 2x21 - 2.5(x11 + x21) e 0 (5)

qx12 + 2x22 - 1.5(x12 + x22) e 0 (6)

x11 + x21 e S1 (7)

x12 + x22 e S2 (8)
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The bilinear terms in constraints (4)-(6) introduce
nonconvexities in the problem leading to the existence
of multiple local optima. Problem (1)-(8), for example,
has infinite local solutions with an objective function of
0, a local minimum with an objective function of -100,
and a single global optimum with a value of -400.
Consequently, standard nonlinear-programming tech-
niques may provide grossly suboptimal solutions and
we need to look at global optimization techniques for
such problems.

In practice, pooling problems become even more
complicated because of the presence of a large number
of pools and end-products. Often, each stream into a pool
can have more than one quality component (e.g., sulfur
and phosphorus). The pooling problem then becomes a

problem with multiple-component qualities and every
end-product has to adhere to quality specifications on
each of its several qualities. The existence of multiple
pools, products, and qualities leads to the existence of
hundreds of bilinear terms even for moderately sized
problems and therefore a large number of local optima,
thereby increasing the need for a global optimization
approach. Figure 2 depicts a general pooling problem
with p pools, r products, and l quality parameters. Table
1 describes the nomenclature used throughout this
article.

Problem P below provides a mathematical formula-
tion of the general pooling problem described in Figure
2.

In (P), the objective function represents the difference
between the cost of using the input streams and the
returns from selling the end-products. Equation 9
represents the mass balances for each pool. Equation
10 expresses the pool quality, qjw, in terms of the
qualities, λijw, of the input streams. Equation 11 ensures
that the flows do not exceed demand. Equation 12
enforces the quality requirements for each of the end-
products.

3. Literature Review

Variants of formulation P above have been used by
Haverly,18,19 Lasdon et al.,23 Floudas and Aggarwal,13

and Foulds et al.14 for the case of pooling problems with
a single-component quality. A similar formulation for
the pooling problem is the p-formulation of Ben-Tal et
al.7 The more general formulation based on total flows
and component compositions for general process net-
works suggested by Quesada and Grossmann31 is simi-
lar to (P), if applied in the context of the pooling
problem. The formulations used by Fieldhouse,11 Main,26

and Amos et al.2 are similar to (P). Thus, (P) appears

Figure 2. Pooling problem.

Table 1. Pooling Problem Nomenclature

indices i streams, i ) 1, ..., nj
j pools, j ) 1, ..., p
k products, k ) 1, ..., r
w qualities, w ) 1, ..., l

parameters cij unit cost of the ith stream into pool j
dk unit price of product k
l total number of component qualities
nj number of streams entering pool j
p total number of pools
r total number of end-products
Sk demand for product k
Zkw wth quality requirement for product k
λijw wth quality specification of the

ith stream into pool j
variables fij flow of ith input stream into pool j

qjw wth quality of pool j from pooling of streams
xjk total flow from pool j to product k

bounds f ij
L lower bound on flow for fij

f ij
U upper bound on flow for fij

qjk
L lower bound on flow for qjk

qjk
U upper bound on flow for qjk

xjk
L lower bound on flow for xjk

xjk
U upper bound on flow for xjk

(P)

min ∑
j)1

p

∑
i)1

nj

cijfij - ∑
k)1

r

dk∑
j)1

p

xjk

s.t. ∑
i)1

nj

fij - ∑
k)1

r

xjk ) 0 j ) 1, ..., p (9)

qjw∑
k)1

r

xjk - ∑
i)1

nj

λijwfij ) 0 j ) 1, ..., p; w ) 1, ..., l

(10)

∑
j)1

p

xjk - Sk e 0 k ) 1, ..., r (11)

∑
j)1

p

qjwxjk - Zkw∑
j)1

p

xjk e 0 k ) 1, ..., r;

w ) 1, ..., l (12)

f ij
L e fij e f ij

U i ) 1, ..., nj; j ) 1, ..., p (13)

qjw
L e qjw e qjw

U j ) 1, ..., p; w ) 1, ..., l (14)

xjk
L e xjk e xjk

U j ) 1, ..., p; k ) 1, ..., r (15)
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to be the formulation most commonly used for modeling
the pooling problem in chemical process industries.

Alternative formulations of the pooling problem in-
clude the q-formulation suggested by Ben-Tal et al.,7
which does not explicitly use the pool qualities as
variables, but instead uses variables based on the
fraction that each input stream contributes to the total
input to each pool. This leads to a concise formulation
of the dual suggested by the authors. Quesada and
Grossmann31 model the pooling problem as a special
case of more general process networks. They propose a
formulation based on flows of individual quality com-
ponents, which produces fewer nonconvexities, but gives
rise to a large number of linear equations.

Various solution procedures for the pooling problem
have also been reported in the literature. These solution
procedures can be classified based on their convergence
to either a local or a global optimum. The first algorithm
for the pooling problem in the form of a “poor man’s
NLP” was suggested by Haverly.18,19 Haverly’s approach
was based on the idea of using recursion to solve the
pooling problem. A recursive approach “guesses” the
value of the pool qualities. These guessed values of pool
qualities convert (P) into a linear program in the flow
variables, fij and xjk. The actual values of the pool
qualities can then be calculated from the values of the
flow variables that are obtained by solving the linear
program. The process continues until the actual values
of the qualities are within a range of tolerance from the
guessed values. The main drawback in using any form
of recursive method for the pooling problem lies in the
fact that often the process does not converge to a
solution, and when it does, it converges only to a local
optimum. Moreover, Main26 shows that as the number
of pools and end-products increases, recursive methods
tend to become more unstable, resulting in computa-
tional difficulties.

Successive linear-programming (SLP) approaches
which solve nonlinear problems as a sequence of linear
programs have also been popular. Lasdon et al.23

describe an algorithm based on SLP procedures. Such
an approach has been used at Exxon and is described
by Baker and Lasdon.4 These approaches converge to
locally optimal solutions.

Decomposition methods are based on the observation
that a difficult problem could be converted to an easy
problem by fixing values of certain variables. In the case
of the pooling problem, for example, fixing the pool
quality variables, qjw, converts (P) into a linear program.

On the basis of this observation, Floudas and Aggar-
wal13 suggest an approach based on decomposing the
original pooling problem into a primal problem and a
relaxed master problem and iterating between these
problems based on a generalized Benders decomposition
procedure until appropriate stopping conditions are met.
Though their decomposition strategy is successful for
the problems suggested by Haverly, in general, it offers
no guarantee for global optimality. This variant of the
Benders decomposition algorithm may converge to a
local minimum, a local maximum, or even a non-KKT
(Karush-Kuhn-Tucker) point as shown by Sahinidis
and Grossmann.37

Visweswaran and Floudas41 propose a deterministic
global optimization (GOP) algorithm for solving certain
classes of nonconvex problems including the pooling
problem. The algorithm was proven to finitely terminate
with an ε-global optimum, even though this might
require a modification of the original algorithm as noted
by Gourdin et al.16 Using this algorithm, they were able
to solve three cases of the Haverly problem. The authors
also report solving a single pool, five-product problem,
with each stream having two quality components, to
global optimality using their algorithm. Subsequently,
the authors suggested improvements to enhance the
performance of the GOP algorithm,40 and were able to
solve problems with three pools and five products with
each stream having two quality components. Large-scale
pooling problems, generated randomly, having up to five
pools, five products, and 30 qualities, were solved by
Androulakis et al.3 using a distributed implementation
of the GOP algorithm.3

Branch-and-bound methods for pooling and blending
problems have been suggested by many authors. These
methods differ in the relaxations used to provide valid
lower bounds to the global optimum. The procedure used
by Foulds et al.14 involves replacing the bilinear terms
in the pooling problem by their concave and convex
envelopes. These envelopes are defined over the hyper-
cube derived from the bounds on the variables in the
bilinear terms. The concave and convex envelopes are
provided by a set of linear constraints proposed by
McCormick.27,28 The nonlinear pooling problem can then
be relaxed to a linear-programming problem, the solu-
tion to which provides a lower bound on the global
optimal solution. The branch-and-bound procedure pro-
ceeds by partitioning the problem and relaxing each
partition in the way described in the Introduction. On
the basis of the fact that the error introduced by

Table 2. Summary of Work on the Pooling Problem

authors qualities optimum comments

Recursive Methods
Haverly18,19 single local recursion
Baker and Lasdon4 single local successive linear programming (SLP)
Lasdon et al.23 single local generalized reduced gradient and SLP
Fieldhouse11 single local distributed recursion
Main26 single local stability analysis

Sensitivity and Feasibility Analysis
Lodwick25 multiple N/A interval analysis
Greenberg17 multiple N/A computational geometry

Decomposition Methods
Floudas and Aggarwal13 single local benders decomposition based
Floudas and co-workers3,40,41 multiple global GOP algorithm

Branch-and-Bound Methods
Foulds et al.14 single global convex approximations of bilinear terms
Ben-Tal et al.7 multiple global Lagrangian duality
Quesada and Grossman31 single global reformulation-linearization
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replacing each bilinear term by its concave or convex
envelope tends to zero as the partitions get finer, the
algorithm converges to the global optimal solution as
has been proved by Al-Khayyal and Falk.1 Using this
approach, Foulds et al.14 were able to solve single-
quality problems, with the largest problem having eight
pools and 16 products.

The linear constraints which provide the convex and
concave envelopes of the problem at some node of the
branch-and-bound tree are not in general valid for other
nodes of the tree. Thus, the convex and concave enve-
lopes have to be freshly generated at every node of the
branch-and-bound tree. Further, this approach requires
four linear constraints to provide the envelopes for each
bilinear term in the problem. Therefore, as the number
of pools, products, or component qualities increase, the
size of the linear program to be solved at each node of
the branch-and-bound tree can become quite large.

Ben-Tal et al.7 describe a lower bounding procedure
based on the Lagrangian dual for the q-formulation of
the pooling problem. They provide a branch-and-bound
algorithm which partitions the feasible set of the pooling
problem and show that such partitioning of the feasible
set can reduce the duality gap between a nonconvex
problem and its Lagrangian dual. Dür and Horst9 show
that when the branch-and-bound procedure is applied
to partly convex problems like the pooling problem,
under certain regularity conditions, branching on the
space of nonconvex variables can reduce the duality gap
between the primal and the Lagrangian dual to zero.

The nonlinear formulation of general process net-
works can be based on individual flows of each compo-
nent or the total flows for each stream as proposed by
Quesada and Grossmann.31 The authors establish a
relationship between the total flow formulation and the
individual component formulation based on the refor-
mulation and linearization technique of Sherali and
Alameddine39 and devise a reformulated model for
general process networks which avoids nonlinear terms
in the constraint set. The reformulated model is used
to obtain lower bounds on the global optimum within a
spatial branch-and-bound algorithm.

Table 9 provides a summary of existing approaches
to the pooling problem.

4. Lagrangian Lower Bounding

We introduce a Lagrangian relaxation procedure for
the pooling problem. Consider the following Lagrangian
relaxation of problem (P), denoted by (LRP), obtained
by dualizing (9)-(12).

where the Lagrangian subproblem LSP is defined as

(LRP) involves a maximization problem over the set of
Lagrange multipliers vj, v′jw, uk, and u′kw and a mini-
mization problem, denoted by (LSP), over the set of
variables of the pooling problem fij, qjw, and xjk. (LSP),
when solved to optimality for any given set of feasible
values of the Lagrange multipliers, provides a lower
bound to (P). Consequently, we are interested in a
procedure to solve (LSP) to optimality.

Consider (LSP1) below, which is obtained from (LSP)
by a rearrangement of terms.

Since the Lagrange multipliers vj, v′jw, uk, and u′kw in
problem (LSP1) are known, we can reduce (LSP1) to
the following by an appropriate definition of constants
γij, âjk, Rjkw, and δk.

where

Problem (MLSP) can be decomposed into p + 1
subproblemssa single problem, (F), for optimizing over

(LRP)

max θ(v,v′,u,u′)
s.t. uk g 0 k ) 1, ..., r

u′kw g 0 k ) 1, ..., r; w ) 1, ..., l

vj unrestricted j ) 1, ..., p

v′jw unrestricted j ) 1, ..., p; w ) 1, ..., l

(LSP)

θ(v,v′,u,u′) ) min ∑
j)1

p

∑
i ) 1

nj

cijfij - ∑
k)1

r

dk∑
j)1

p

xjk +

∑
j)1

p

vj(∑
i)1

nj

fij - ∑
k)1

r

xjk) + ∑
j)1

p

∑
w)1

l

v′jw(qjw∑
k)1

r

xjk - ∑
i)1

nj

λijwfij) +

∑
k)1

r

uk(∑
j)1

p

xjk - Sk) + ∑
k)1

r

∑
w)1

l

u′kw(∑
j)1

p

qjwxjk - Zkw∑
j)1

p

xjk)

s.t. (13)-(15)

(LSP1)

min ∑
j)1

p

∑
i)1

nj

fij(cij + vj - ∑
w)1

l

v′jwλijw) + ∑
j)1

p

∑
k)1

r

xjk(-dk -

vj - ∑
w)1

l

Zkwu′kw + uk + ∑
w)1

l

(v′jw + u′kw)qjw) - ∑
k)1

r

ukSk

(16)

s.t. (13)-(15)

(MLSP)

min ∑
j
∑

i

γijfij + ∑
j
∑

k

xjk(âjk + ∑
w)1

l

Rjkwqjw) - ∑
k

δk

s.t. (13)-(15)

γij ) cij + vj - ∑
w)1

l

v′jwλijw

âjk ) -dk - vj - ∑
w)1

l

Zkwu′kw + uk

Rjkw ) v′jw + u′kw

δk ) ukSk
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the variables fij, and p subproblems, (XQ(j)), for j ) 1,
..., p, as follows:

Proposition 4.1. LSP1 can be decomposed into p +
1 separate subproblems, each of which can be solved
independently of the others.

Thus, instead of solving the bigger problem (LSP1),
we can solve a single subproblem (F), to get the optimal
fij’s, and p subproblems of the type (XQ(j)), to get the
optimal xjk’s and qjw’s. These results can be combined
to obtain the optimal solution for (LSP1). The decom-
position into p subproblems of the type (XQ(j)) for j )
1, ..., p is possible because of the absence of coupling of
variables of a certain pool with variables of another pool
in any of the constraints. The absence of coupling of
variables of one pool with another allows us to solve for
variables associated with each pool j as an optimization
problem (XQ(j)).

The following propositions characterize an optimal
solution to problem (LSP1).

Proposition 4.2. There exists an optimal solution to
(XQ(j)) that has every variable xjk and qjw at one of its
bounds. Similarly, every fij in (F) will also be at one of
its bounds.

Proof. Consider any given solution vector (xij, qjw) to
the problem (XQ(j)). We can then construct a solution
(xjjk, qjw), which is at least as good as (xjk, qjw), where

Thus, there exists an optimal solution where each xjk
will be at one of its bounds.

Replacing (17) in problem XQ(j) leads to the following
problem:

The above problem now has only l variables of the
type qjw and is a linear program. As all the extreme
points of this linear program have the qjw’s at one of its
bounds, qjw

L or qjw
U , there exists an optimal solution to

the above problem having every qjw at one of its bounds.
Thus, given any solution vector (xjk, qjw), we can

construct by the method above a solution (xjjk, qjjw), which
is at least as good as (xjk, qjw) and where each xjjk and

each qjjw is at some bound. There exists therefore an
optimal solution of (XQ(j)) having this property.

Problem F is also a linear program in fij with all
extreme points being the bounds of fij and will have an
optimal solution at one of the bounds of fij by a similar
argument. 0

Corollary 4.3. There exists an optimal solution to
(LSP1), which has every variable at one of its bounds.

The separability of (LSP1) into p + 1 subproblems
and the characterization of an optimal solution for
problems XQ(j) and F imply that problem (LSP1) can
be solved to optimality if we can solve each (XQ(j)) and
(F) to optimality. (F) is a linear program defined over a
rectangular region and is therefore easy to solve. Each
(XQ(j)) is of the same form; hence, we denote a generic
problem of the type (XQ(j)) as (XQ). We are interested
in solving problems of the type (XQ):

We now reformulate (XQ) into a mixed integer pro-
gram, (XQYR), by defining binary variables yw and
variables úkw as follows:

Variables yw replace qw in (XQ), while those of úkw
replace the resulting bilinear terms. Equations 20-23
in problem (XQYR) below are obtained by replacing the
bilinear term in (19) by the epigraph and hypograph of
their convex and concave envelopes, respectively, pro-
vided by the McCormick over- and underestimators:27

Theorem 4.4. (XQYR) is equivalent to (XQ).
Proof. The proof has two parts. In the first part (W),

we show that an optimal solution to (XQ) is feasible to

(F)

min ∑
j
∑

i

γijfij

s.t. fij
L e fij e fij

U i ) 1, ..., nj; j ) 1, ..., p

(XQ(j))

min ∑
k)1

r

xjk(âjk + ∑
w)1

l

Rjkwqjw)

s.t. xjk
L e xjk e xjk

U k ) 1, ..., r

qjw
L e qjw e qjw

U w ) 1, ..., l

xjjk ) {xjk
L if âjk + ∑wRjkwqjw g 0

xjk
U if âjk + ∑wRjkwqjw < 0

(17)

min ∑
k)1

r

xjjk(âjk + ∑
w

Rjkwqjw)

s.t. qjw
L e qjw e qjw

U w ) 1, ..., l

(XQ)

min ∑
k)1

r

xk(âk + ∑
w)1

l

Rkwqw)

s.t. xk
L e xk e xk

U k ) 1, ..., r

qw
L e qw e qw

U w ) 1, ..., l

qw ) qw
L + (qw

U - qw
L)yw w ) 1, ..., l (18)

úkw ) xkyw w ) 1, ..., l (19)

yw ∈ {0, 1} w ) 1, ..., l

(XQYR)

min ∑
k

(âk + ∑
w

Rkwqw
L)xk + ∑

w

((qw
U - qw

L)∑
k

Rkwúkw)

s.t. úkw - yw
Lxk - xk

Lyw g -yw
L xk

L k ) 1, ..., r;
w ) 1, ..., l (20)

úkw - yw
Uxk - xk

Uyw g -yw
U xk

U

k ) 1, ..., r; w ) 1, ..., l (21)

úkw - yw
Uxk - xk

Lyw e -yw
U xk

L

k ) 1, ..., r; w ) 1, ..., l (22)

úkw - yw
Lxk - xk

Uyw e -yw
L xk

U

k ) 1, ..., r; w ) 1, ..., l (23)

xk
L e xk e xk

U k ) 1, ..., r

yw ∈ {0, 1} w ) 1, ..., l
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(XQYR) with the same objective function value. In the
second part (w), we show that an optimal solution to
(XQYR) is feasible to (XQ) with the same objective
function value.

W From proposition 4.2, it follows that there exists
an optimal solution to (XQ) which has xk, k ) 1, ..., r,
and qw, w ) 1, ..., l, at one of their bounds. Let us denote
such an optimal solution of (XQ) by (xjk, qjw).

We proceed to construct a feasible solution (xk, yw, úkw)
to (XQYR) from (xjk, qjw). We assign to yw the following
binary values based on qjw as follows:

Equation 24 follows directly from (18).
Setting xk ) xjk for (XQYR) makes xk feasible to

(XQYR). We let úkw ) xjkyjw. (úkw, xjk, yjw) is feasible to
(20)-(23).

The solution (xk, yw, úkw) is thus feasible to (XQYR).
We now prove that the solution (xk, yw, úkw) also has the
same objective function value as the optimal solution
for (XQ).

Let ϑ(‚) and ϑopt(‚) denote the objective function value
and optimal objective function value of a given problem
(‚). Then,

It follows then from (25) that

w We now prove that, given an optimal solution (xk, yw,
úkw) to (XQYR), we can construct a solution (xjk, qjw)
feasible to (XQ).

Consider an optimal solution of (XQYR). Note yw ∈
{0, 1} implies yw

L ) 0 and yw
U ) 1. Substituting these

values of yw in eqs 20-23 leads to the following:

Thus, given any optimal solution to (XQYR), one can
determine úkw from (27). Replacing úkw in (XQYR) by the
corresponding quantities in (27) and given that yw are
known reduces (XQYR) to a linear program in variables
xk. As seen from (27) the effect of constraints (20)-(23)
is to fix the value of úkw in any optimal solution. Thus,
once úkw is fixed to one of the two values, depending on
the value of yw, constraints 20-23 are not explicitly
required, and (XQYR) becomes a linear program over

variables xk. This linear program has all its extreme
points at the bounds of xk and, consequently, has an
optimal solution where xk is at its bounds. We denote
such an optimal solution to (XQYR) as (xjk, yjw, úkw). In
such an optimal solution, xjk is at some bound, yjw has
binary values, and úkw is defined as in (27).

We can now construct qjw from the optimal solution
of (XQYR) by a procedure similar to that given in (18).
Since yw is binary, it follows that qjw will be at one of its
bounds.

The solution xjk and qw constructed above is feasible
to (XQ) since (xjk, qjw) has xk and qw at some bound.

Thus, any optimal solution of (XQYR) can be trans-
formed into a feasible solution of (XQ), by the transfor-
mation defined above. We now prove that this trans-
formation leaves the objective function value of (XQYR)
and (XQ) the same. For this, we only need to replace
úkw in (XQYR) by (27). We can use the transformation
úkw ) xkyw which is identical to (27) when yw is binary.
The optimal solution (xjk, yjw, úkw) to (XQYR) and a
corresponding feasible solution, (xjk, qjw), to (XQ) have
the same objective function value. The proof of this is
very similar to that provided in (25).

It follows then that

Combining (26) and (28), it follows that

0
Theorem 4.4 suggests a method for solving the

Lagrangian subproblem (LSP1). For each pool j, we can
solve a mixed integer program (XQYR) instead of (XQ(j))
as (XQYR) has the same optimal solution as (XQ(j)).
Problem F can be solved as a linear program. Thus, the
solution of each Lagrangian subproblem is obtained by
solving p mixed integer programs and a linear program.

5. Properties of the Lagrangian Subproblem

We now consider some properties of the Lagrangian
subproblem (LSP1), which relate to the use of the
Lagrangian procedure for the pooling problem.

We first state the following result which is well-
known:6

Lemma 5.1. Let X be a given set, not necessarily
convex, and let c be a vector of coefficients. Then,

where

The following theorem states an important property
of the Lagrangian relaxation procedure.

Theorem 5.2. Solving the Lagrangian subproblem
(XQ) to optimality is equivalent to convexifying ∑k)1

r

∑w)1
l Rkwxkqw over the hypercube {xk

L e xk e xk
U; k ) 1,

..., r, qw
L e qw e qw

U; w ) 1, ..., l}.
Proof. (XQ) can be solved to optimality by solving a

problem of the type (XQYR), as shown in Section 4. By
a redefinition of terms, it can be easily seen that (XQ)
is exactly the same as the following problem (XQL) and

yw ) yjw ) {0 if qjw ) qw
L

1 if qjw ) qw
U (24)

ϑ(XQYR) ) ∑
k

(âk + ∑
w

Rkwqw
L)xk +

∑
w

(qw
U - qw

L)∑
k

Rkwúkw

) ∑
k

(âk + ∑
w

Rkwqw
L)xjk +

∑
w

(qw
U - qw

L)∑
k

Rkwxjkyjw

) ∑
k

xjk(âk + ∑
w

Rkw(qw
L + (qw

U - qw
L)yjw))

) ∑
k

xjk(âk + ∑
w

Rkwqjw)

) ϑopt(XQ) (25)

ϑopt(XQYR) e ϑ(XQYR) e ϑopt(XQ) (26)

úkw ) {0 if yw ) yw
L ) 0

xk if yw ) yw
U ) 1

(27)

ϑopt(XQYR) g ϑ(XQ) g ϑopt(XQ) (28)

ϑopt(XQYR) ) ϑopt(XQ)

min{cx: x ∈ X} ) min{cx: x ∈ conv(X)}

conv(X) refers to the convex hull of X
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therefore has the same optimal solution and optimal
objective function value.

Problem XQL has a linear objective function and
therefore the results of lemma 5.1 hold for this case.
Consequently, (XQL) can be transformed into problem
XQL2, given below, having the same optimal objective
function value as (XQ).

If ϑ(‚) denotes the optimal objective function value of
problem (‚), it follows from the above that

Consequently, solving (XQ) to optimality is equivalent
to convexifying η over a hypercube. 0

The above theorem and proposition 4.1 have the
following implication. Consider the Lagrangian sub-
problem (LSP1). Theorem 5.2 implies that the
Lagrangian procedure convexifies the bilinear term
∑j ∑k ∑w(v′jw + u′kw)xjkqjw in (LSP1) over the hypercube
defined by the bounds on the variables xjk and qjw.

For the special case when l ) 1, there exists just a
single variable q1 and therefore η(x1,...,xr,q1) ) ∑k)1

r

Rkxkq1. Solving (XQ) for this special case is then,
according to theorem 5.2, equivalent to convexifying η
over a hypercube defined by variable bounds. We state
without proof the following lemma that appeared in
Rikun:33

Lemma 5.3. Let P be a Cartesian product of polytopes,
P ) P0 × P1 × ... Pr, Pk ∈ Rnk, and let gk(x0, xk) be a
continuous function defined on P0 × Pk, k ) 1, ..., r. If
each gk(x0, xk) is a concave function of x0 when xk is fixed
and P0 is a simplex, then

where convP refers to the convex envelope over the region
P.

Theorem 5.4. For the case l ) 1, the McCormick over-
and underestimators for the terms q1xk, k ) 1, ..., r,

convexify the term η(x1,...,xr,q1) ) ∑k)1
r Rkxkq1, over the

hypercube

Proof. We define

The preceding definitions satisfy the conditions of
lemma 5.3. Note that the polytope P0 stated in lemma
5.3 is given by the bounds on q1, while each polytope
Pk, k ) 1, ..., r, is defined by the bounds on variable xk.
The following result follows directly from lemma 5.3:

By the definition of η,

It is wellknown28 that the epigraph and hypograph
of the convex and concave envelopes of bilinear terms
of the form Rkq1xk over the hypercube HP are provided
by the McCormick over- and underestimators of q1xk.
We define a new variable êk, where

The epigraph of the convex envelope of êk over HP is
provided by the following polyhedral set:

Similarly, the hypograph of the concave envelope of
êk over HP is provided by the following:

Depending on whether Rk is greater/lesser than zero,
the convex/concave envelope of êk is used to construct
the envelopes of Rkq1xk over the HP. The epigraph of
the convex envelope of zk ) Rkq1xk over HP is

For the rest of this article, we refer to the set of three
equations in CE1 as the convex envelope of the term
zk.

(XQL)

min ∑
k)1

r

âkxk + η(x1,...,xr,q1,...,ql)

s.t. η(x1,...,xr,q1,...,ql) ) ∑
k)1

r

∑
w)1

l

Rkwxkqw

xk
L e xk e xk

U k ) 1, ..., r

qw
L e qw e qw

U w ) 1, ..., l

(XQL2)

min ∑
k)1

r

xkâk + η(x1,...,xr,q1,...,ql)

s.t. (x, η) ∈ conv

{η(x1,...,xr,q1,...,ql) ) ∑k)1
r ∑w)1

l Rkwxkqw

xk
L e xk e xk

U k ) 1, ..., r
qw

L e qw e qw
U w ) 1, ..., l }
ϑ(XQL2) ) ϑ(XQL) ) ϑ(XQ)

convP(∑
m

gk(x0,xk)) ) ∑m conv gk(x0, xk) (29)

HP ) {xk
L e xk e xk

U k ) 1, ..., r
q1

L e q1 e q1
U }

gk(x0,xk) ) gk(q1,xk) ) Rkxkq1 (30)

convP ∑
k

Rkxkq1 ) ∑k convP Rkxkq1 (31)

convP η(x1,...,xr,q1) ) ∑k convP Rkxkq1 (32)

êk ) q1xk (33)

êk - q1
Lxk - xk

Lq1 g -q1
L xk

L

êk - q1
Uxk - xk

Uq1 g -q1
U xk

U

êk - q1
Uxk - xk

Lq1 e -q1
U xk

L

êk - q1
Lxk - xk

Uq1 e -q1
L xk

U

(CE1)

zk ) Rkêx

êk - q1
Lxk - xk

Lq1 g -q1
L xk

L Rk > 0

êk - q1
Uxk - xk

Uq1 g -q1
U xk

U Rk > 0

êk - q1
Uxk - xk

Lq1 e -q1
U xk

L Rk < 0

êk - q1
Lxk - xk

Uq1 e -q1
L xk

U Rk < 0

Ind. Eng. Chem. Res., Vol. 38, No. 5, 1999 1963



From lemma 5.3 and eq 32 it follows that the epigraph
of the convex envelope of η for the case l ) 1 is a
superset of CE below.

Theorem 5.5. If l )1, (XQ) and, therefore, (XQYR)
can be solved as a linear program.

For the special case of l ) 1, problem XQ reduces to
the following problem:

Defining η(x1,...,xr,q1) ) ∑k)1
r Rkxkq1, it follows from

theorem 5.2 that the solution of (XQ1) would be the
same as that obtained by convexifying η over the
hypercube HP. As seen from theorem 5.4, the epigraph
of the convex envelope of η is given by CE, which has
only linear constraints. Thus, for the case of a single
quality, problem XQ1 can be solved by solving the
following linear program:

(XQ1), which is a special case of (XQ) for l ) 1, can
therefore be solved as a linear program (LPXQ1). From
theorem 4.4, it follows that (XQYR) can also be solved
as a linear program. 0

6. Comparisons of Bounds

We now apply the properties and results obtained in
section 5 to the case of the pooling problem. We consider
separately the single-component quality case and the
multiple-quality case. In each case, we compare the
lower bound obtained by the Lagrangian relaxation,

(LRP), with the McCormick underestimating linear
program, (MCP), defined below. We first let

Then

6.1. Single-Quality Pooling Problems. Theorem
6.1. For cases of pooling problems with a single-
component quality, the lower bound provided by (MCP),
is exactly the same as the lower bound obtained by
Lagrangian relaxation (LRP) of problem P.

Proof. The proof follows directly from theorem 5.5 and
proposition 4.1. 0

Corollary 6.2. For the case of the pooling problem
with a single-component quality, the Lagrangian sub-
problem (LSP1) can be solved by a sequence of linear
programs.

Proof. From theorem 5.5 it follows that, for this case,
(XQ) can be solved as a linear program. From proposi-
tion 4.1 it follows that the optimal solution to (LSP1)
can be obtained by solving p problems of the type (XQ)
and a single problem (F). 0

From theorem 6.1 it is clear that, for the single-
component quality case, a Lagrangian approach such
as (LRP) does not provide stronger lower bounds than
the McCormick underestimating linear program.

6.2. Multiple-Quality Case. Theorem 6.3. For the
multiple-quality pooling problem, the Lagrangian re-

(CE)

η ) ∑
k)1

r

Rkêk

êk - q1
Lxk - xk

Lq1 g -q1
L xk

L k ) 1, ..., r

êk - q1
Uxk - xk

Uq1 g -q1
U xk

U k ) 1, ..., r

êk - q1
Uxk - xk

Lq1 e -q1
U xk

L k ) 1, ..., r

êk - q1
Lxk - xk

Uq1 e -q1
L xk

U k ) 1, ..., r 0

(XQ1)

min ∑
k

xk(âk + Rkq1)

s.t. xk
L e xk e xk

U k ) 1, ..., r

q1
L e q1 e q1

U

(LPXQ1)

min ∑
k

âkxk + Rkêk

s.t. êk - q1
Lxk - xk

Lq1 g -q1
L xk

L k ) 1, ..., r (34)

êk - q1
Uxk - xk

Uq1 g -q1
U xk

U k ) 1, ..., r (35)

êk - q1
Uxk - xk

Lq1 e -q1
U xk

L k ) 1, ..., r (36)

êk - q1
Lxk - xk

Uq1 e -q1
L xk

U k ) 1, ..., r (37)

xk
L e xk e xk

U k ) 1, ..., r

q1
L e q1 e q1

U

êjkw ) qjwxjk (38)

(MCP)

min ∑
j)1

p

∑
i)1

nj

cijfij - ∑
k)1

r

dk∑
j)1

p

xjk

s.t. ∑
i)1

nj

fij - ∑
k)1

r

xjk ) 0 j ) 1, ..., p

∑
k)1

r

êjkw - ∑
i)1

nj

λijfij ) 0 j ) 1, ..., p; w ) 1, ..., l

∑
j ) 1

p

xjk - Sk e 0 k ) 1, ..., r

∑
j)1

p

êjkw - Zkw∑
j)1

p

xjk e 0 k ) 1, ..., r; w ) 1, ..., l

êjkw - qjw
l xjk - xjk

l qjw g -qjw
l xjk

l j ) 1, ..., p;
k ) 1, ..., r; w ) 1, ..., l (39)

êjkw - qjw
u xjk - xjk

u qjw g -qjw
u xjk

u j ) 1, ..., p;
k ) 1, ..., r; w ) 1, ..., l (40)

êjkw - qjw
u xjk - xjk

l qjw e -qw
u xjk

l j ) 1, ..., p;
k ) 1, ..., r; w ) 1, ..., l (41)

êjkw - qjw
l xjk - xjk

u qjw e -qjw
l xjk

u j ) 1, ..., p;
k ) 1, ..., r; w ) 1, ..., l (42)

f ij
l e fij e fij

u i ) 1, ..., nj; j ) 1, ..., p

qjw
l e qjw e qjw

u j ) 1, ..., p; w ) 1, ..., l

xjk
l e xjk e xjk

u j ) 1, ..., p; k ) 1, ..., r
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laxation (LRP) of problem P provides at least as strong
a lower bound as the McCormick underestimating linear
program, (MCP).

Proof. We have seen from section 4 that the
Lagrangian subproblem, (LSP1), can be solved through
a series of mixed integer programs, (XQYR). This was
possible as a consequence of proposition 4.1. The Mc-
Cormick underestimating linear program, (MCP), can
in theory also be solved by a Lagrangian relaxation
procedure by dualizing every constraint other than the
McCormick bounds and the variable bounds. As (MCP)
is a linear program, there is no duality gap between the
optimal solution of (MCP) and a Lagrangian relaxation
of it. It can be shown, by arguments similar to those in
proposition 4.1, that the Lagrangian relaxation of (MCP)
is also separable by pools and can be solved as a single
problem (F) and p problems of the kind (XQ(j)) with the
bilinear terms xjkqjw in (XQ(j)) being replaced by êjkw and
the corresponding McCormick over- and underestima-
tors. We denote these problems as (MCXQ(j)):

By following a procedure similar to the one followed
in section 4 to transform (XQ(j)) to (XQYR), we trans-
form each problem (MCXQ(j)) to an equivalent problem
(MCXQYR):

We observe that (MCXQYR) is just a relaxed version
of (XQYR), with yw now being continuous variables.
Thus, the McCormick underestimating linear program,
(MCP), can be solved by a Lagrangian relaxation
procedure similar to (LRP) by solving the Lagrangian
subproblem using (MCXQYR). As (MCXQYR) is just a
relaxation of (XQYR), the lower bounds obtained by
solving (XQYR) are at least as good as those obtained
from (MCXQYR). Consequently, the Lagrangian relax-
ation, (LRP), provides at least as good a lower bound
as the McCormick underestimating linear program,
(MCP). 0

Figure 9 describes a pooling problem (Example 1)
having two pools, four end-products and four quality
components. For each stream entering a pool, we
provide, in order, the unit purchase cost of that stream
and the four quality parameters corresponding to that
stream. Similarly, for each end-product, we provide its
unit selling price, the maximum demand possible, and
the requirements for each of its four quality components.
We apply the Lagrangian relaxation procedure to obtain
a lower bound on the global optimum of this problem.
A lower bound can also be obtained by replacing the
bilinear terms in the problem by their McCormick over-
and underestimators, which provides a linear-program-
ming relaxation to the problem.

Example 1 above provides a case where the Lagrangian
relaxation provides a tighter lower bound, -939.29, than
the conventional linear-programming bound, -999.31,
obtained by the McCormick relaxation of bilinear terms.
Hence, theorem 6.4.

Theorem 6.4. For the multiple-quality pooling prob-
lem, the Lagrangian relaxation (LRP) of problem P may
provide a strictly stronger lower bound than the McCor-
mick underestimating linear program, (MCP).

7. Computational Results

Computations were carried out for a total of 13
pooling problems, some with single and some with
multiple qualities. The number of pools and streams
involved in each of these problems is shown in Table 3.
The three Haverly problems, the four Foulds problems,
and Ben-Tal four are all single-quality problems. All
other problems involve multiple qualities.

Examples 1-4 were constructed in the course of this
study. All other problems were collected from the
literature. In particular, problems Haverly 1, 2, and 3
are from Haverly,18,19 problems Foulds 2, 3, 4, and 5
are from Foulds et al.,14 and problems Ben-Tal 4 and 5
are from Ben-Tal et al.7 The flowcharts and data for all
the test problems are provided in Figures 3-12 and
Tables 4-6.

(MCXQ(j))

min ∑
k)1

r

âjkxjk + ∑
w)1

l

Rjkwêjkw

s.t. êjkw - qjw
l xjk - xjk

l qjw g -qjw
l xjk

l k ) 1, ..., r;
w ) 1, ..., l

êjkw - qjw
u xjk - xjk

u qjw g -qjw
u xjk

u k ) 1, ..., r;
w ) 1, ..., l

êjkw - qjw
u xjk - xjk

l qjw e -qjw
u xjk

l k ) 1, ..., r;
w ) 1, ..., l

êjkw - qjw
l xjk - xjk

u qjw e -qjw
l xjk

u k ) 1, ..., r;
w ) 1, ..., l

xjk
L e xjk e xjk

U k ) 1, ..., r

qjw
L e qjw e qjw

U w ) 1, ..., l

(MCXQYR)

min ∑
k

(âk + ∑
w

Rkwqw
L)xk + ∑

w

(qw
U - qw

L)∑
k

Rkwúkw

s.t. úkw - yw
Lxk - xk

Lyw g -yw
L xk

L k ) 1, ..., r;
w ) 1, ..., l

úkw - yw
Uxk - xk

Uyw g -yw
U xk

U k ) 1, ..., r;
w ) 1, ..., l

úkw - yw
Uxk - xk

Lyw e -yw
U xk

L k ) 1, ..., r;
w ) 1, ..., l

úkw - yw
Lxk - xk

Uyw e -yw
L xk

U k ) 1, ..., r;
w ) 1, ..., l

xk
L e xk e xk

U k ) 1, ..., r

yw ∈ [0, 1] w ) 1, ..., l

Table 3. Characteristics of Test Problems

number of

problem raw materials pools qualities final products

Haverly 1 3 1 1 2
Haverly 2 3 1 1 2
Haverly 3 3 1 1 2
Foulds 2 6 2 1 4
Foulds 4 11 8 1 16
Foulds 5 11 4 1 16
Ben-Tal 4 4 1 1 2
Ben-Tal 5 5 3 2 5
example 1 5 2 4 4
example 2 5 2 5 4
example 3 8 3 5 4
example 4 8 2 4 5
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We first performed 100 iterations of a local search on
each problem. The popular nonlinear-programming code
MINOS30 was used for this purpose. Table 7 shows the
CPU requirements for these local searches on an IBM
RS/6000 model 43P. The times shown are the total CPU
times for all 100 local searches. Also shown is the
number of different solutions (presumably local minima)
identified for each problem during the process. The local
searches were performed with and without the aid of
range contraction techniques that are implemented in
the global optimization system BARON.15,36 These range
contraction techniques involve a combination of feasibil-
ity-based and optimality-based arguments that are used
to restrict ranges of variables. Feasibility-based tech-
niques involve the approximate solution of linear pro-
grams to minimize and maximize individual problem
variables over the linear set of constraints of the
problem.34,35,38 The optimality-based techniques make
use of feasible solutions encountered during the search
in conjunction with nonlinear-programming duality
arguments in order to restrict ranges of variables.34,35

In some instances, range contraction increases the CPU
requirements of the local search. Apparently, as a result
of range contraction, the search space becomes smaller

and makes it more difficult for MINOS to identify
feasible solutions.

Tables 8-11 provide the values of various local
solutions encountered and the percentage of times these
local solution values were identified by the nonlinear-
programming solver. The four problems we constructed
(examples 1-4) appear to be the hardest of all test
problems as MINOS failed to identify any good local
solutions in the majority of the runs. The effect of range
contraction is also shown in these tables. It is clear that
range contraction is beneficial as it increases the likeli-
hood that a local search will identify better solutions.

Tables 12 and 13 provide a comparison between the
lower bounds obtained by solving the Lagrangian ap-
proach (LRP) and those obtained by solving the stan-
dard linear-programming relaxation, (MCP). The com-
parisons for the single-quality case and for the multiple-
quality case are made separately.

Tables 12 and 13 indicate that the Lagrangian
relaxation procedure produces at least as strong a lower
bound as the linear-programming relaxation using

Figure 3. Flowchart for Haverly 1.

Figure 4. Flowchart for Haverly 2.

Figure 5. Flowchart for Haverly 3.

Figure 6. Flowchart for Foulds 2.
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McCormick over- and underestimators. For the case of
pooling problems with a single-component quality, we
find that the lower bounds are the same, as was proved
theoretically in section 6.1. For the case of multiple
qualities, Table 13 provides four cases where the
Lagrangian relaxation procedure produces stronger
bounds than the standard underestimating linear pro-
gram linear program (LP).

The globally optimal solutions presented in Table 12
were obtained by BARON.15,36 The software implements
a branch-and-bound global optimization algorithm where
lower and upper bounds are obtained through the
McCormick underestimating LP and local search using
MINOS, respectively. In addition to the range contrac-
tion techniques described above, the implementation
involves a number of branching techniques that expedite
convergence.24,38 Table 14 presents comparative results
with this global optimization approach and prior ap-
proaches to the same set of pooling problems. Clearly,
our branch-and-bound algorithm presents a superior
performance. Our approach requires fewer branch-and-
bound nodes than the branch-and-bound approach used

by Foulds et al.14 The same observation holds for Ben-
Tal’s test problems when our approach is compared to
that of Ben-Tal et al.7 Our algorithm also requires a
much smaller number of iterations than the earlier
approaches of Floudas and co-workers.40,41 This results
in significantly smaller CPU times despite the fact that
our computations were carried out on a much slower
computer with a much stricter termination condition.
The main conclusion by looking at Table 14 is that all
pooling problems currently in the open literature are
easy problems as far as our branch-and-reduce algo-
rithm is concerned. The problems we generated (ex-

Figure 7. Flowchart for Ben-Tal 4.

Figure 8. Flowchart for Ben-Tal 5.

Figure 9. Flowchart for example 1.

Figure 10. Flowchart for example 2.
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amples 1-4), on the other hand, are much more
challenging. Referring to Table 3, we note that these
problems possess many more qualities than all other
problems. This provides evidence that multiple-quality
requirements make the pooling problem harder. The
Lagrangian relaxation introduced in this paper provides
stronger bounds precisely for this class of pooling
problems.

8. Lagrangian Relaxation and
Branch-and-Bound

We shall use an example to demonstrate a branch-
and-bound procedure using the Lagrangian relaxation

procedure for lower bounding. At each node of the
branch-and-bound tree, a lower bound on the pooling
problem is obtained by solving the Lagrangian dual
problem (LRP) using a cutting plane approach, as
described by Bazaraa et al.6 In this approach, the
Lagrangian dual is solved by an iterative procedure

Figure 11. Flowchart for example 3.

Figure 12. Flowchart for example 4.

Table 4. Data for Foulds 3

input parameters end-product parameters

c11 ) 20 λ111 ) 1.0 Z11 ) 1.05 S1 ) 1
c21 ) 19 λ211 ) 1.1 Z21 ) 1.10 S2 ) 1
c31 ) 18 λ311 ) 1.2 Z31 ) 1.15 S3 ) 1
c41 ) 17 λ411 ) 1.3 Z41 ) 1.20 S4 ) 1
c12 ) 19 λ121 ) 1.1 Z51 ) 1.25 S5 ) 1
c22 ) 18 λ221 ) 1.2 Z61 ) 1.30 S6 ) 1
c32 ) 17 λ321 ) 1.3 Z71 ) 1.35 S7 ) 1
c42 ) 16 λ421 ) 1.4 Z81 ) 1.40 S8 ) 1
c13 ) 18 λ131 ) 1.2 Z91 ) 1.45 S9 ) 1
c23 ) 17 λ231 ) 1.3 Z101 ) 1.50 S10 ) 1
c33 ) 16 λ331 ) 1.4 Z111 ) 1.55 S11 ) 1
c43 ) 15 λ431 ) 1.5 Z121 ) 1.60 S12 ) 1
c14 ) 17 λ141 ) 1.3 Z131 ) 1.65 S13 ) 1
c24 ) 16 λ241 ) 1.4 Z141 ) 1.70 S14 ) 1
c34 ) 15 λ341 ) 1.5 Z151 ) 1.75 S15 ) 1
c44 ) 14 λ441 ) 1.6 Z161 ) 1.80 S16 ) 1
c15 ) 16 λ151 ) 1.4 d1 ) 20
c25 ) 15 λ251 ) 1.5 d2 ) 19.5
c35 ) 14 λ351 ) 1.6 d3 ) 19
c45 ) 13 λ451 ) 1.7 d4 ) 18.5
c16 ) 15 λ161 ) 1.5 d5 ) 18
c26 ) 14 λ261 ) 1.6 d6 ) 17.5
c36 ) 13 λ361 ) 1.7 d7 ) 17
c46 ) 12 λ461 ) 1.8 d8 ) 16.5
c17 ) 14 λ171 ) 1.6 d9 ) 16
c27 ) 13 λ271 ) 1.7 d10 ) 15.5
c37 ) 12 λ371 ) 1.8 d11 ) 15
c47 ) 11 λ471 ) 1.9 d12 ) 14.5
c18 ) 13 λ181 ) 1.7 d13 ) 14
c28 ) 12 λ281 ) 1.8 d14 ) 13.5
c38 ) 11 λ381 ) 1.9 d15 ) 13
c48 ) 10 λ481 ) 2.0 d16 ) 12.5

Table 5. Data for Foulds 4

input parameters end-product parameters

c11 ) 20 λ111 ) 1.0 Z11 ) 1.05 S1 ) 1
c21 ) 17 λ211 ) 1.3 Z21 ) 1.10 S2 ) 1
c31 ) 14 λ311 ) 1.6 Z31 ) 1.15 S3 ) 1
c41 ) 11 λ411 ) 1.9 Z41 ) 1.20 S4 ) 1
c12 ) 19 λ121 ) 1.1 Z51 ) 1.25 S5 ) 1
c22 ) 16 λ221 ) 1.4 Z61 ) 1.30 S6 ) 1
c32 ) 13 λ321 ) 1.7 Z71 ) 1.35 S7 ) 1
c42 ) 10 λ421 ) 2.0 Z81 ) 1.40 S8 ) 1
c13 ) 18 λ131 ) 1.2 Z91 ) 1.45 S9 ) 1
c23 ) 19 λ231 ) 1.1 Z101 ) 1.50 S10 ) 1
c33 ) 16 λ331 ) 1.4 Z111 ) 1.55 S11 ) 1
c43 ) 15 λ431 ) 1.5 Z121 ) 1.60 S12 ) 1
c14 ) 17 λ141 ) 1.3 Z131 ) 1.65 S13 ) 1
c24 ) 18 λ241 ) 1.2 Z141 ) 1.70 S14 ) 1
c34 ) 15 λ341 ) 1.5 Z151 ) 1.75 S15 ) 1
c44 ) 14 λ441 ) 1.6 Z161 ) 1.80 S16 ) 1
c15 ) 16 λ151 ) 1.4 d1 ) 20
c25 ) 15 λ251 ) 1.5 d2 ) 19.5
c35 ) 18 λ351 ) 1.2 d3 ) 19
c45 ) 13 λ451 ) 1.7 d4 ) 18.5
c16 ) 15 λ161 ) 1.5 d5 ) 18
c26 ) 14 λ261 ) 1.6 d6 ) 17.5
c36 ) 17 λ361 ) 1.3 d7 ) 17
c46 ) 12 λ461 ) 1.8 d8 ) 16.5
c17 ) 14 λ171 ) 1.6 d9 ) 16
c27 ) 13 λ271 ) 1.7 d10 ) 15.5
c37 ) 12 λ371 ) 1.8 d11 ) 15
c47 ) 17 λ471 ) 1.3 d12 ) 14.5
c18 ) 13 λ181 ) 1.7 d13 ) 14
c28 ) 12 λ281 ) 1.8 d14 ) 13.5
c38 ) 11 λ381 ) 1.9 d15 ) 13
c48 ) 16 λ481 ) 1.4 d16 ) 12.5
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consisting of a sequence of master problems and
Lagrangian subproblemssthe master problems provid-
ing the Lagrange multipliers, and the Lagrangian
subproblem, (LSP), generating cuts which are added to
the master problem. The optimal solutions to the master
problem form a nonincreasing sequence and provide an
upper bound to the optimal value of the Lagrangian
dual. The optimal solution of the Lagrangian subprob-
lem provides a lower bound on the optimal dual solution.
Consequently, the iterative procedure for generating the

lower bound at any node can be terminated when the
solution to the master problem is within a specified
tolerance of the highest Lagrangian subproblem solution
obtained.

Consider Figure 13 which provides an example of a
small pooling problem with a single pool, four end-
products, and four quality components.

Table 6. Data for Foulds 5

input parameters end-product parameters

c11 ) 20 λ111 ) 1.0 Z11 ) 1.05 S1 ) 1
c21 ) 19 λ211 ) 1.1 Z21 ) 1.10 S2 ) 1
c31 ) 18 λ311 ) 1.2 Z31 ) 1.15 S3 ) 1
c41 ) 17 λ411 ) 1.3 Z41 ) 1.20 S4 ) 1
c51 ) 13 λ511 ) 1.7 Z51 ) 1.25 S5 ) 1
c61 ) 12 λ611 ) 1.8 Z61 ) 1.30 S6 ) 1
c71 ) 11 λ711 ) 1.9 Z71 ) 1.35 S7 ) 1
c81 ) 10 λ811 ) 2.0 Z81 ) 1.40 S8 ) 1
c12 ) 19 λ121 ) 1.1 Z91 ) 1.45 S9 ) 1
c22 ) 18 λ221 ) 1.2 Z101 ) 1.50 S10 ) 1
c32 ) 17 λ321 ) 1.3 Z111 ) 1.55 S11 ) 1
c42 ) 16 λ421 ) 1.4 Z121 ) 1.60 S12 ) 1
c52 ) 14 λ521 ) 1.6 Z131 ) 1.65 S13 ) 1
c62 ) 13 λ621 ) 1.7 Z141 ) 1.70 S14 ) 1
c72 ) 12 λ721 ) 1.8 Z151 ) 1.75 S15 ) 1
c82 ) 11 λ821 ) 1.9 Z161 ) 1.80 S16 ) 1
c13 ) 17 λ131 ) 1.3 d1 ) 20
c23 ) 16 λ231 ) 1.4 d2 ) 19.5
c33 ) 15 λ331 ) 1.5 d3 ) 19
c43 ) 14 λ431 ) 1.6 d4 ) 18.5
c53 ) 13 λ531 ) 1.7 d5 ) 18
c63 ) 12 λ631 ) 1.8 d6 ) 17.5
c73 ) 11 λ731 ) 1.9 d7 ) 17
c83 ) 10 λ831 ) 2.0 d8 ) 16.5
c14 ) 20 λ141 ) 1.0 d9 ) 16
c24 ) 19 λ241 ) 1.1 d10 ) 15.5
c34 ) 18 λ341 ) 1.2 d11 ) 15
c44 ) 17 λ441 ) 1.3 d12 ) 14.5
c54 ) 16 λ541 ) 1.4 d13 ) 14
c64 ) 15 λ641 ) 1.5 d14 ) 13.5
c74 ) 14 λ741 ) 1.9 d15 ) 13
c84 ) 13 λ841 ) 1.7 d16 ) 12.5

Table 7. Local Search Results

without reduction with reduction

problem time (s) solutions time (s) solutions

Haverly 1 2 3 2 3
Haverly 2 2 3 2 3
Haverly 3 3 3 3 3
Foulds 2 15 7 21 6
Foulds 3 923 3 997 3
Foulds 4 2099 4 1891 5
Foulds 5 692 7 928 6
Ben-Tal 4 2 3 3 3
Ben-Tal 5 246 6 219 5
example 1 18 7 18 6
example 2 12 3 14 3
example 3 59 8 83 10
example 4 59 12 115 13

Table 8. Local Search Results for Haverly’s Problems

values of local solutions obtained (% occurrence)

Haverly 1 Haverly 2 Haverly 3

Without Reduction
0 (24) 0 (37) 0 (8)

-100 (20) -400 (45) -125 (29)
-400 (56) -600 (18) -750 (63)

With Reduction
0 (21) 0 (37) 0 (5)

-100 (16) -400 (44) -125 (23)
-400 (63) -600 (19) -750 (72)

Table 9. Local Search Results for Fould’s Problems

values of local optima obtained (% occurrence)

Foulds 2 Foulds 3 Foulds 4 Foulds 5

Without Reduction
∞ (2) -7 (2) -4 (2) ∞ (2)

-600 (19) -7.5 (10) -6.5 (3) -1 (1)
-674 (1) -8 (88) -7.5 (34) -3 (2)
-699 (1) -8 (61) -3.5 (1)

-700 (13) -7 (1)
-1000 (44) -7.5 (5)
-1100 (20) -8 (88)

With Reduction
∞ (3) -7 (2) ∞ (2) ∞ (1)

-600 (13) -7.5 (7) -4 (2) -1 (1)
-700 (8) -8 (91) -6.5 (1) -3 (2)
-840 (1) -7.5 (33) -3.5 (1)

-1000 (56) -8 (62) -7.5 (4)
-1100 (19) -8 (92)

Table 10. Local Search Results for Ben-Tal’s Problems

values of local optima obtained (% occurrence)

Ben-Tal 4 Ben-Tal 5

Without Reduction
0 (9) ∞ (3)

-100 (29) -900 (2)
-450 (62) -1900 (6)

-2700 (1)
-2700 (8)
-3500 (80)

With Reduction
0 (8) ∞ (3)

-100 (21) -900 (2)
-450 (71) -2700 (1)

-2900 (10)
-3500 (84)

Table 11. Local Search Results for Example Problems

values of local optima obtained (% occurrence)

example 1 example 2 example 3 example 4

Without Reduction
0 (84) 0 (98) 0 (85) ∞ (3)

-46 (1) -33 (1) -33 (2) 0 (47)
-57 (4) -549.8 (1) -57 (3) -86 (1)
-64 (5) -364 (1) -88 (1)
-69 (1) -412 (4) -90 (5)

-341 (2) -510 (2) -93 (1)
-549.8 (3) -550 (2) -105 (14)

-559.6 (1) -281 (1)
-365 (11)
-373 (2)
-471 (11)
-877.6 (4)

With Reduction
0 (84) 0 (97) ∞ (1) ∞ (19)

-56.7 (6) -33.3 (1) 0 (86) 0 (9)
-63.9 (4) -549.8 (2) -33 (1) -105 (3)

-340.9 (2) -57 (2) -313 (1)
-509.7 (2) -364 (1) -365 (2)
-549.8 (2) -397 (1) -471 (6)

-412 (2) -506 (1)
-500 (2) -518 (1)
-503 (1) -525 (1)
-549.8 (3) -533 (1)

-545 (10)
-851 (1)
-877.6 (45)
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Figure 14 depicts the lower bounding and branching
part of the branch-and-bound solution to the example
in Figure 13. For each node, the lower bound obtained
is displayed either above or below the node. Branching
was performed only on the pool quality variables qjw.
The branching variable is noted over each arc of the
graph whereas the corresponding range of the branching
variable is shown below the arc. For example, at the
root node, we branch on variable q12 and generate two
descendant nodes, one with q12 ∈ [1, 3.5] and another
with q12 ∈ [3.5, 6].

The global optimum for the problem in Figure 13 has
a value of -260. After evaluating 23 nodes in the
branch-and-bound tree, we obtained a lower bound on
the pooling problem corresponding to the global opti-
mum.

Table 15 shows the number of cuts required in the
master problem to get the lower bound for each node in
the branch-and-bound tree, if we do not use cuts from
any previous node but generate all the cuts at a given
node. Note that the problem has 16 bilinear terms and
a linear-programming relaxation based on the McCor-
mick under- and overestimators would require 64 ad-
ditional constraints at every node to provide the under-
and overestimators for the bilinear terms.

Table 15 indicates that the number of cuts required
in the master problem for each node of the branch-and-
bound tree does not differ significantly from the number
of cuts required at the root node, when the cuts from

previous nodes are not used. The only exception is
terminal nodes in the tree; these nodes typically require
only a few cuts to be eliminated. The results of Table
15 suggest that if we could use the cuts generated at
the parent node for all subsequent children nodes, then
the additional cuts required at each child node would
be very small, if any. The cuts generated at a given node
are, in general, not valid for its children nodes as
variable bounds change as a result of branching. We
provide below a procedure to make these cuts valid.

The cuts that are generated at any node of the branch-
and-bound procedure can be reused for all subsequent
nodes by making a minor modification. From proposition
4.3, we know that there exists an optimal solution to
the Lagrangian subproblem, (LSP), which has every
variable at some bound. Considering the previous result,
and the fact that every cut in the master problem is
generated from an optimal solution to the Lagrangian

Table 12. Comparison of Lower Bounds for Single
Quality

problem LP Lagrangian global optimum

Haverly 1 -500 -500 -400
Haverly 2 -1000 -1000 -600
Haverly 3 -800 -800 -750
Foulds 2 -1100 -1100 -1100
Foulds 3 -8.00 -8.00 -8.00
Foulds 4 -8.00 -8.00 -8.00
Foulds 5 -8.00 -8.00 -8.00
Ben-Tal 4 -550 -550 -450

Table 13. Comparison of Lower Bounds for Multiple
Qualities

problem LP Lagrangian global optimum

Ben-Tal 5 -3500 -3500 -3500
Example 1 -999.31 -939.29 -549.80
Example 2 -854.10 -825.59 -549.80
Example 3 -882.84 -864.81 -561.05
Example 4 -1012.50 -988.50 -877.65

Table 14. Comparative Computational Results for Test Problems

algorithm Foulds’9214 Ben-Tal’947 Floudas’9341 Floudas’9640 BARON’99

computera CDC 4340 HP9000/730 HP9000/730b RS6000/43P
tolerancea 10-6

problem iter CPU (s) iter iter CPU (s) iter CPU (s) iter CPU (s)

Haverly 1 5 0.7 3 7 0.95 12 0.22 3 0.09
Haverly 2 3 19 3.19 12 0.21 9 0.09
Haverly 3 3 14 0.26 5 0.13
Foulds 2 9 3 1 0.10
Foulds 3 1 10.5 1 2.33
Foulds 4 25 125 1 2.59
Foulds 5 125 163.6 1 0.86
Ben-Tal 4 25 47 44.54 7 0.95 3 0.11
Ben-Tal 5 283 42 40.31 41 5.80 1 1.12
example 1 6174 425
example 2 10743 1115
example 3 79944 19314
example 4 1980 182
a Blank entries in this table indicate that data were not provided or problems were not solved by prior approaches.7,14,40,41 b Tolerances

used in ref 41 were 0.05% for Haverly 1, 2, and 3, 0.5% for Ben-Tal 4, and 1% for Ben-Tal 5.

Figure 13. Example to demonstrate branch-and-bound for
Lagrangian approach.
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subproblem, it follows that any cut in the master
problem can be indexed by the variable bounds which
generates that cut. Indexing cuts based on variable
bounds allows us to use the new bounds on the branch-
ing variable to transform cuts belonging to the parent
node into valid cuts that belong to the child node. Thus,
theoretically we could retain every cut from a parent
node for all subsequent nodes if we follow the procedure
for indexing cuts described above.

9. Conclusions

This paper introduced a Lagrangian relaxation ap-
proach for pooling and blending problems. The

Lagrangian subproblem has a bilinear objective function
defined over a hypercube. We provided a procedure for
solving the Lagrangian subproblem to optimality and
were able to derive lower bounds on the pooling problem.
We discussed some theoretical properties of the
Lagrangian relaxation and compared the lower bounds
obtained by this approach to those obtained from the
more traditional linear-programming approach based on
McCormick estimators. Computational results indicate
that the Lagrangian relaxation procedure provides
stronger bounds than the linear-programming approach,
for problems with multiple-quality parameters.

The proposed Lagrangian relaxation can be solved by
a cutting plane method. We provided a procedure by
which the cutting planes at any node of the branch-and-
bound tree can be re-used at successor nodes. While the
emphasis of the current paper is on theoretical aspects,
we conjecture, on the basis of an example in the paper,
that the strategy to re-use cutting planes would result
in very few, if any, additional cutting planes being
required at successor nodes. Further computational
testing is required to validate our conjecture. Such
testing will require one to resolve several implementa-
tion issues as the lower bounding procedure described
here is drastically different than those used in currently
existing branch-and-bound implementations.

Figure 14. Branch-and-bound tree for illustrative example.

Table 15. Number of Cuts Required

node number cuts required node number cuts required

1 28 14 38
2 26 15 1
3 27 16 41
4 1 17 1
5 26 18 39
6 43 19 1
7 14 20 1
8 1 21 32
9 31 22 1

10 37 23 1
11 30
12 1
13 1
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Finally, the computational results clearly demon-
strate the importance of using global optimization
methods for solving pooling and blending problems.
Given the scale of operations in a petrochemical refin-
ery, even minor improvements in solutions could lead
to enormous savings in costs. As examples 1-4 show,
the best local optimum obtained by a popular nonlinear-
programming solver may still be very far from the global
optimum. Thus, it is essential that the focus of any
optimization procedure for the pooling problem should
be on global optimization.
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