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Abstract. Quantum stabilizer states over Fm can be represented as self-dual
additive codes over Fm2 . These codes can be represented as weighted graphs,

and orbits of graphs under the generalized local complementation operation
correspond to equivalence classes of codes. We have previously used this fact
to classify self-dual additive codes over F4. In this paper we classify self-

dual additive codes over F9, F16, and F25. Assuming that the classical MDS
conjecture holds, we are able to classify all self-dual additive MDS codes over
F9 by using an extension technique. We prove that the minimum distance

of a self-dual additive code is related to the minimum vertex degree in the
associated graph orbit. Circulant graph codes are introduced, and a computer
search reveals that this set contains many strong codes. We show that some of

these codes have highly regular graph representations.

1. Introduction

It is well-known that self-orthogonal additive codes over F4 can be used to
represent a class of quantum error-correcting codes known as binary stabilizer codes [4].
Although the binary stabilizer codes have been studied most, several authors have
considered nonbinary stabilizer codes over finite fields [1, 11, 12, 16, 22, 25], cyclic
groups [14], and Abelian groups in general [26]. We will focus mainly on codes
over finite fields, and exploit the fact that a stabilizer code over Fm corresponds
to a self-orthogonal additive code over Fm2 . Quantum codes of dimension zero are
known as stabilizer states, which are entangled quantum states with several possible
applications. Stabilizer states correspond to self-dual additive codes. It is known
that such codes can be represented as graphs [12, 26]. It is also known that two
self-dual additive codes over F4 are equivalent if and only if their corresponding
graphs are equivalent, up to isomorphism, with respect to a sequence of local
complementations [3, 9, 20, 21]. We have previously used this fact to devise a
graph-based algorithm with which we classified all self-dual additive codes over F4 of
length up to 12 [7]. Recently, the representation of equivalence classes as graph orbits
was generalized to self-dual additive codes over any finite field [2]. In this paper we
use graph-based algorithms to classify all self-dual additive codes over F9, F16, and
F25 up to lengths 8, 6, and 6, respectively. We also give upper bounds on the number
of codes, derived from mass formulas. By using a graph extension technique we find
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that there are only three non-trivial self-dual additive MDS codes over F9, assuming
that the classical MDS conjecture holds. We prove that the minimum distance of a
self-dual additive code is related to the minimum vertex degree in the associated
graph orbit. Finally, we perform a search of circulant graph codes, a subclass of the
self-dual additive codes, which is shown to contain many codes with high minimum
distance. The highly regular graph structures of some of these codes are described.

2. Stabilizer states

Data in a classical computer are typically stored in bits that have values either
0 or 1. Similarly, we can envisage a quantum computer where data are stored in
quantum bits, also known as qubits, i.e., two-level quantum systems. One qubit
can then be described by a vector |x〉 =

(
α
β

)
∈ C2, where |α|2 is the probability

of observing the value 0 when we measure the qubit, and |β|2 is the probability
of observing the value 1. More generally, data could be stored in m-level qudits,
described by vectors from Cm. Measuring such a qudit would give a result from
an alphabet with m symbols. In general, this alphabet could be any finite Abelian
group, but we will focus on the case where the alphabet is a finite field. The m
vectors |x〉, x ∈ Fm, form an orthonormal basis of Cm.

An error operator that can affect a single qudit is represented by a complex
unitary m×m matrix, i.e., a matrix U such that UU† = I, where † means conjugate
transpose. A state of n qudits is represented by a vector from Cmn

= Cm⊗· · ·⊗Cm.
Assuming that errors act independently on each qubit, this state is affected by error
operators described by n-fold tensor products of unitary m×m matrices. In the
case of qubits (m = 2), we only need to consider errors from the Pauli group,

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y = iXZ =

(
0 −i
i 0

)
, I =

(
1 0
0 1

)
,

due to the fact that these matrices form a basis of all unitary 2× 2 matrices. The
error X is called a bit-flip, since X |x〉 = |x+ 1〉. The error Z is known as a phase-
flip, since Z |x〉 = (−1)x |x〉. For general qudits that take their values from Fm, we
consider the generalized Pauli group, Pm, also known as the discrete Heisenberg-Weyl
group. When our alphabet is a finite field, we must have m = pr, where p is a prime
and r ≥ 1. The errors contained in the generalized Pauli group are shift errors,
X(a) |x〉 = |x+ a〉, and phase errors, Z(b) |x〉 = ωtrm/p(bx) |x〉, where a, b ∈ Fm,
ω is a complex p-th root of unity, and trm/p : Fm → Fp is the trace function,
trm/p(c) =

∑r−1
i=0 c

pi

. If m = p is a prime, i.e., r = 1, the generalized Pauli group is
generated by

〈
X(1) =


0
... Im−1

0
1 0 · · · 0

 , Z(1) =


1 0

ω
ω2

. . .
0 ωn−1


〉
,

where ω is a complex p-th root of unity, and I is the identity matrix of specified
dimension.1 The operators X(a) and Z(b) are obtained by taking the a-th and b-th
powers of X(1) and Z(1), respectively. Even if m is not prime, we can still define

1The set of generators also contains the scalar ω, except for the case m = 2, where it contains i,
a 4-th root of unity. This overall phase factor can be ignored for our purposes.
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qudits that take values from the cyclic group Zm, and use the same error operators
as defined above. However, when m is a prime power, we get much better codes
by using a finite field as our alphabet. When we work with qudits that take values
from Fpr , where r > 1, we use the error group {

⊗r
i=1Ei | Ei ∈ Pp} [16], i.e., the

operators are r-fold tensor products of Pauli matrices from the group Pp. The error
bases that we use are examples of nice error bases [17].

Quantum codes are designed to add redundancy in order to protect quantum
states against errors due to interference from the environment. A code of length n
and dimension k adds redundancy by encoding k qudits using n qudits. One type
of code that exploits the fact that the generalized Pauli group forms a basis for all
possible errors is the stabilizer code [10]. A stabilizer is an Abelian group generated
by a set of n − k commuting error operators. An error is detected by measuring
the eigenvalues of these operators. If a state is a valid codeword that has not been
affected by error, we will observe the eigenvalue +1 for all operators. The quantum
code, i.e., the set of all valid codewords, is therefore a joint eigenspace of the stabilizer.
If there is a detectable error, some eigenvalues would be different from +1, due
to the commutativity properties of the generalized Pauli matrices. A stabilizer
generated by a set of n error operators defines a zero-dimensional quantum code, also
known as a stabilizer state.2 The minimum distance of a zero-dimensional stabilizer
code is simply the minimum nonzero weight of all error operators in the stabilizer.
The weight of an error operator is the number of m×m tensor components that
are different from the identity matrix. A quantum code of length n, dimension k,
and minimum distance d, over the alphabet Fm, is denoted an [[n, k, d]]m code.
Stabilizer states are therefore [[n, 0, d]]m codes. If the minimum distance, d, is
high, the stabilizer state is robust against error, which indicates that it is highly
entangled. Entangled quantum states have many potential applications, for instance
in cryptographic protocols, or as graph states [23] which can be used as a resource
for quantum computations. In the next section we will also see that zero-dimensional
stabilizer codes correspond to an interesting class of classical codes, known as self-dual
additive codes.

Example 1. A [[4, 0, 3]]3 stabilizer state is obtained from the stabilizer generated
by the following error operators.

X(1) ⊗X(1)Z(2)⊗ I ⊗X(1),

X(1)Z(1)⊗X(2) ⊗X(1)Z(1)⊗X(1),

I ⊗X(2)Z(2)⊗X(1)Z(1)⊗ Z(2),

X(1) ⊗X(2)Z(2)⊗X(2) ⊗X(2)Z(2).

3. Self-dual additive codes

We can represent a stabilizer state over Fm by an n× 2n matrix (A | B) [1]. The
submatrix A represents shift errors, such that A(i,j) = a if X(a) occurs in the j-th
tensor component of the i-th error operator in the set of generators. Similarly, the
submatrix B represents phase errors.

2Stabilizer states could also be called one-dimensional quantum codes, since they are one-

dimensional Hilbert subspaces. We use the term dimension to mean the number of qudits the code
can encode.
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Example 2. The matrix corresponding to the stabilizer state in Example 1 is

(A | B) =


1 1 0 1 0 2 0 0
1 2 1 1 1 0 1 0
0 2 1 0 0 2 1 2
1 2 2 2 0 2 0 2

 .

The matrix (A | B) generates a code C, and this code is a representation of a
stabilizer state. The fact that a stabilizer is an Abelian group translates into the
requirement that C must be self-dual with respect to a symplectic inner product, i.e.,

(a | b) ∗ (a′ | b′) = trm/p(b · a′ − b′ · a) = 0, ∀(a | b), (a′ | b′) ∈ C.
We define the symplectic weight of a codeword (a | b) ∈ C as the number of positions i
where ai, bi, or both are nonzero. (This is the same as the weight of the corresponding
Pauli error operator.)

We can also map the linear code of length 2n defined above to an additive code over
Fm2 of length n. The representation of binary stabilizer codes as self-dual additive
codes over F4 was first demonstrated by Calderbank et al. [4], and generalized to
qudits by Ashikhmin and Knill [1], and by Ketkar et al. [16]. An additive code, C,
over Fm2 of length n is defined as an Fm-linear subgroup of Fnm2 . The code C contains
mn codewords, and can be defined by an n×n generator matrix, C, with entries from
Fm2 , such that any Fm-linear combination of rows from C is a codeword.3 To get
from the stabilizer representation (A | B) to the generator matrix C, we simply take
C = A+ ωB, where ω is a primitive element of Fm2 . The code C will be self-dual,
C = C⊥, where the dual is defined with respect to the Hermitian trace inner product,
C⊥ = {u ∈ Fnm2 | u ∗ c = 0 for all c ∈ C}. When m = p is prime, the Hermitian
trace inner product of two vectors over Fp2 of length n, u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn), is given by

u ∗ v = trp2/p(u · vp) = u · vp − up · v =
n∑
i=1

(uiv
p
i − u

p
i vi),

When m = pr is not a prime, we use a modification of the Hermitian trace inner
product [16],

u ∗ v = trm/p

(
u · vm − um · v

ω − ωm

)
,

where ω is a primitive element of Fm2 .
The Hamming weight of a codeword u ∈ C, denoted wt(u), is the number of

nonzero components of u. The Hamming distance between u and v is wt(u− v).
The minimum distance of the code C is the minimal Hamming distance between any
two distinct codewords of C. Since C is an additive code, the minimum distance is
also given by the smallest nonzero weight of any codeword in C. A code over Fm2

with minimum distance d is called an (n,mn, d) code. The weight distribution of
the code C is the sequence (A0, A1, . . . , An), where Ai is the number of codewords
of weight i. The weight enumerator of C is the polynomial

W (x, y) =
n∑
i=0

Aix
n−iyi

For an additive code over Fm2 , all Ai must be divisible by m− 1.

3For additive codes over F4, each codeword is a sum of rows of the generator matrix. However,
we also use the name “additive code” in this more general case.
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Example 3. The stabilizer state in Example 1 corresponds to the following generator
matrix of a self-dual additive (4, 34, 3) code.

C =


1 1 + 2ω 0 1

1 + ω 2 1 + ω 1
0 2 + 2ω 1 + ω 2ω
1 2 + 2ω 2 2 + 2ω

 .

We define two self-dual additive codes, C and C′ over Fm2 , to be equivalent if the
codewords of C can be mapped onto the codewords of C′ by a map that preserves
the properties of the code, including self-duality. A permutation of coordinates, or
columns of a generator matrix, is such a map. Other operations can also be applied
to the coordinates of C. Let each element a+ ωb ∈ Fm2 be represented as

(
a
b

)
∈ F2

m.
We can then premultiply this element by a 2×2 matrix. (We could equivalently have
applied transformations to pairwise columns of the 2n× n matrix (A | B).) It was
shown by Rains [22] that by applying matrices from the symplectic group Sp2(m) to
each coordinate, we preserve the properties of the code. (This group contains all 2×2
matrices with elements in Fm and determinant one.) For self-dual additive codes over
F4, these symplectic operations can be represented more simply as multiplication by
nonzero elements from F4 and conjugation of coordinates. (Conjugation of elements
in Fp2 maps x to xp.) Combined, there are six possible transformations that are
equivalent to the six permutations of the elements {1, ω, ω2} in the coordinate. The
corresponding symplectic group is

Sp2(2) =
〈
A1 =

(
0 1
1 1

)
, A2 =

(
1 1
0 1

)〉
,

where A1 represents multiplication by ω and A2 represents conjugation. Including
coordinate permutations, there are a total of 6nn! maps for a code of length n.

For codes over F9, we observe that Sp2(3) is a group of order 24 generated by

Sp2(3) =
〈
A1 =

(
1 1
1 2

)
, A2 =

(
1 1
0 1

)〉
,

where A1 represents multiplication by ω2 and A2 represents the map a + ωb 7→
a + b + ωb. By taking powers of A1, we see that we are allowed to multiply a
coordinate by x ∈ F9 only if xx = 1. However, if we also conjugate the coordinate,
we may multiply by x ∈ F9 where xx = 2. Note that conjugation on its own is
not allowed. The 8 operations just described may be combined with the operations
represented by A2 and A2

2 to give a total of 24 operations. In all there are 24nn!
maps that take a self-dual additive code over F9 to an equivalent code. In general,
for codes over Fm2 , the number of maps is |Sp2(m)|nn!.

A transformation that maps C to itself is called an automorphism of C. All
automorphisms of C make up an automorphism group, denoted Aut(C). The number
of distinct codes equivalent to a self-dual additive code over Fm2 , C, is then given by
| Sp2(m)|nn!
|Aut(C)| . The equivalence class of C contains all codes that are equivalent to C.

By adding the sizes of all equivalence classes of codes of length n, we find the total
number of distinct codes of length n, denoted Tn. The number Tn is also given by a
mass formula. The mass formula for self-dual additive codes over F4 was found by
Höhn [15]. This result is easily generalized to Fm2 .
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Theorem 3.1.

Tn =
n∏
i=1

(mi + 1) =
tn∑
j=1

|Sp2(m)|nn!
|Aut(Cj)|

,

where tn is the number of equivalence classes of codes of length n, and Cj is a
representative from each equivalence class.

Proof. Let M(n, k) be the total number of self-orthogonal (n,mk) codes. One such
code, C, can be extended to a self-orthogonal (n,mk+1) code in m2(n−k)− 1 ways by
adding an extra codeword from C⊥. Each (n,mk+1) code can be obtained in this
way from m2(k+1) − 1 different (n,mk) codes. It follows that

M(n, k + 1) = M(n, k)
m2(n−k) − 1
m2(k+1) − 1

.

Starting with M(n, 0) = 1, the recursion gives us the number of self-dual (n,mn)
codes,

M(n, n) =
n−1∏
i=0

m2(n−k) − 1
m2(k+1) − 1

=
n∏
i=1

(mi + 1).

By assuming that all codes of length n have a trivial automorphism group, we get
the following lower bound on tn, the total number of inequivalent codes. Note that
when n is large, most codes have a trivial automorphism group, so the tightness of
the bound increases with n. Also note that this bound is much tighter than a bound
that was derived from results in graph theory by Bahramgiri and Beigi [2].

Theorem 3.2.

tn ≥
⌈
c
∏n
i=1(mi + 1)
|Sp2(m)|nn!

⌉
,

where c = 1 if m is even, and c = 2 if m is odd.

Proof. When m is even, the trivial automorphism group includes only the identity
permutation, and the result follows from Theorem 3.1. When m = pr is odd, where
p is a prime, the trivial automorphism group also contains the transformation that

applies the symplectic operation
(
p− 1 0

0 p− 1

)
to all coordinates. This operation

is equivalent to multiplying each codeword by p − 1, and will therefore map an
additive code to itself.

It follows from the quantum singleton bound [18, 22] that any self-dual additive
code must satisfy 2d ≤ n + 2. A tighter bound for codes over F4 was given
by Calderbank et al. [4]. Codes that satisfy the singleton bound with equality
are known as maximum distance separable (MDS) codes. Self-dual MDS codes
must have even length, and MDS codes of length two are trivial and exist for all
alphabets. The only non-trivial MDS code over F4 is the (6, 26, 4) Hexacode. Ketkar
et al. [16, Thm. 63] proved that a self-dual additive (n,mn, d) MDS code must satisfy
n ≤ m2 + d− 2 ≤ 2m2 − 2. If the famous MDS conjecture holds, then n ≤ m2 + 1,
or n ≤ m2 + 2 when m is even and d = 4 or d = m2. Grassl, Rötteler, and Beth [24]
showed that MDS codes of length n ≤ m+ 1 always exist.

Self-dual linear codes over Fm2 are a subset of the self-dual additive codes. Only
additive codes that satisfy certain constraints can be linear. Such constraints for
codes over F4 were described by Van den Nest [20] and by Glynn et al. [9]. An
obvious constraint is that all coefficients of the weight enumerator, except A0, of



Classification of self-dual additive codes 7

a linear code must be divisible by m2 − 1, whereas for an additive code they need
only be divisible by m− 1.

4. Correspondence to weighted graphs

A graph is a pair G = (V,E) where V is a set of vertices and E ⊆ V × V
is a set of edges. Let an m-weighted graph be a triple G = (V,E,W ) where W
is a set of weights from Fm. Each edge has an associated non-zero weight. (An
edge with weight zero is the same as a non-edge.) An m-weighted graph with n
vertices can be represented by an n × n adjacency matrix Γ, where the element
Γ(i,j) = W ({i, j}) if {i, j} ∈ E, and Γ(i,j) = 0 otherwise. We will only consider
simple undirected graphs whose adjacency matrices are symmetric with all diagonal
elements being 0. The neighbourhood of v ∈ V , denoted Nv ⊂ V , is the set of
vertices connected to v by an edge. The number of vertices adjacent to v, |Nv|,
is called the degree of v. The induced subgraph of G on U ⊆ V contains vertices
U and all edges from E whose endpoints are both in U . The complement of a
2-weighted graph G is found by replacing E with V × V −E, i.e., the edges in E
are changed to non-edges, and the non-edges to edges. Two graphs G = (V,E) and
G′ = (V,E′) are isomorphic if and only if there exists a permutation π of V such
that {u, v} ∈ E ⇐⇒ {π(u), π(v)} ∈ E′. We also require that weights are preserved,
i.e., W{u,v} = W{π(u),π(v)}. A path is a sequence of vertices, (v1, v2, . . . , vi), such
that {v1, v2}, {v2, v3}, . . . , {vi−1, vi} ∈ E. A graph is connected if there is a path
from any vertex to any other vertex in the graph. A complete graph is a graph where
all pairs of vertices are connected by an edge. A clique is a complete subgraph.

Definition 4.1. A graph code is an additive code over Fm2 that has a generator
matrix of the form C = Γ + ωI, where I is the identity matrix, ω is a primitive
element of Fm2 , and Γ is the adjacency matrix of a simple undirected m-weighted
graph.

Theorem 4.2. Every self-dual additive code over Fm2 is equivalent to a graph code.

Proof. The generator matrix, C, of a self-dual additive code over Fm2 corresponds
to an n× 2n matrix (A | B) with elements from Fm, such that C = A+ ωB. We
must prove that an equivalent code is generated by (Γ | I), where I is the identity
matrix and Γ is the adjacency matrix of a simple undirected m-weighted graph. A
basis change can be accomplished by (A′ | B′) = M(A | B), where M is an n× n
invertible matrix with elements from Fm. If B has full rank, the solution is simple,
since B−1(A | B) = (Γ′ | I). We obtain (Γ | I) after changing the diagonal elements
of Γ′ to 0, by appropriate symplectic transformations. Any two rows of (Γ | I)
will be orthogonal with respect to the symplectic inner product, which means that
ΓIT− IΓT = 0, and it follows that Γ will always be a symmetric matrix. In the case
where B has rank k < n, we can perform a basis change to get

(A′ | B′) =
(
A1 B1

A2 0

)
,

where B1 is a k× n matrix with full rank, and A1 also has size k× n. Since the row-
space of (A′ | B′) defines a self-dual code, and B′ contains an all-zero row, it must be
true that A2B

T
1 = 0. A2 must have full rank, and the row space of B1 must be the

orthogonal complement of the row space of A2. We assume that B1 = (B11 | B12)
where B11 is a k × k invertible matrix. We also write A2 = (A21 | A22) where
A22 has size (n − k) × (n − k). Assume that there exists an x ∈ Fn−km such that
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2

1 1

1

Figure 1: Graph Representation of the (4, 34, 3) Code

A22x
T = 0. Then the vector v = (0, . . . , 0,x) of length n satisfies A2v

T = 0. Since
the row space of B1 is the orthogonal complement of the row space of A2, we can
write v = yB1 for some y ∈ Fkm. We see that yB11 = 0, and since B11 has full rank,
it must therefore be true that y = 0. This means that x = 0, which proves that
A22 is an invertible matrix. Two of the symplectic operations that we can apply to

columns of a generator matrix are
(

0 m− 1
1 0

)
and

(
0 1

m− 1 0

)
. This means that

we can interchange column i of A′ and column i of B′ if we also multiply one of the
columns by m− 1. In this way we swap the i-th columns of A′ and B′ for k < i ≤ n
to get (A′′ | B′′). Since B11 and A22 are invertible, B′′ must also be an invertible
matrix. We then find B′′−1(A′′ | B′′) = (Γ | I), and set all diagonal elements of Γ
to 0 by symplectic transformations.

Example 4. The matrix from Example 2 can be transformed into the following
matrix, using the method given in the proof of Theorem 4.2.

(Γ | I) =


0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 2 0 0 1 0
0 1 2 0 0 0 0 1

 .

This means that the stabilizer state from Example 1 is equivalent to the graph code
generated by C = Γ + ωI. The graph defined by Γ is depicted in Fig. 1.

Note that Theorem 4.2 is a generalization of the same theorem for codes over
F4 [7], which was proved by Van den Nest et al. [21]. The fact that stabilizer codes
can be represented by graphs was also shown by Schlingemann and Werner [26] and
by Grassl, Klappenecker, and Rötteler [12].

We have seen that every m-weighted graph represents a self-dual additive code
over Fm2 , and that every self-dual additive code over Fm2 can be represented by an
m-weighted graph. It follows that we can, without loss of generality, restrict our
study to codes with generator matrices of the form Γ + ωI, where Γ is an adjacency
matrix of an unlabeled simple undirected m-weighed graph.

5. Graph equivalence and code equivalence

Swapping vertex i and vertex j of a graph with adjacency matrix Γ can be
accomplished by exchanging column i and column j of Γ and then exchanging row i
and row j of Γ. We call the resulting matrix Γ′. Exactly the same column and row
operations map Γ +ωI to Γ′+ωI, which are generator matrices for equivalent codes.
It follows that two codes are equivalent if their corresponding graphs are isomorphic.
However, the symplectic transformations that map a code to an equivalent code do
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3 4
(a) The Graph G

21

3 4
(b) The Graph G ∗ 1

Figure 2: Example of Local Complementation

not in general produce isomorphic graphs, but we will see that they can be described
as graph operations.

It is known that two self-dual additive codes over F4 are equivalent if and only
if their corresponding graphs are equivalent, up to isomorphism, with respect to
a sequence of local complementations [3, 9, 20, 21]. We have previously used this
fact to devise a graph-based algorithm with which we classified all self-dual additive
codes over F4 of length up to 12 [7].

Definition 5.1 ([3]). Given a graph G = (V,E) and a vertex v ∈ V , let Nv ⊂ V be
the neighbourhood of v. Local complementation (LC) on v transforms G into G ∗ v
by replacing the induced subgraph of G on Nv by its complement.

Theorem 5.2 ([3, 9, 20, 21]). Two self-dual additive codes over F4, C and C′, with
graph representations G and G′, are equivalent if and only if there is a finite sequence
of not necessarily distinct vertices (v1, v2, . . . , vi), such that G ∗ v1 ∗ v2 ∗ · · · ∗ vi is
isomorphic to G′.

The LC operation can be generalized to weighted graphs, and it was first shown
by Bahramgiri and Beigi [2] that the equivalence of nonbinary stabilizer states
over Fm, i.e., self-dual additive codes over Fm2 , can be described in terms of graph
operations.4

Definition 5.3 ([2]). Given an m-weighted graph G = (V,E,W ) and a vertex
v ∈ V , weight shifting on v by a ∈ Fm \ {0} transforms G into G ◦a v by multiplying
the weight of each edge incident on v by a.

Definition 5.4 ([2]). Given an m-weighted graph G = (V,E,W ) and a vertex
v ∈ V , generalized local complementation on v by a ∈ Fm \ {0} transforms G into
G ∗a v. Let Γ and Γ′ be the adjacency matrices of G and G ∗a v, respectively. Then
Γ′(i,j) = Γ(i,j) + aΓ(v,i)Γ(v,j), for all i 6= j, and Γ′(i,i) = 0 for all i.

Theorem 5.5 ([2]). Two self-dual additive codes over Fm2 , C and C′, with graph
representations G and G′, are equivalent if and only if we get a graph isomor-
phic to G′ by applying some finite sequence of weight shifts and generalized local
complementations to G.

4Bahramgiri and Beigi [2] only state their theorem for Fm where m is prime, but the result
holds for any finite field, as their proof does not depend on m being prime.
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Figure 3: Example of Weight Shifting
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Figure 4: Example of Generalized Local Complementation

A proof of Theorem 5.5 was given by by Bahramgiri and Beigi [2], as a gener-
alization of the proof given by Van den Nest et al. [21] for self-dual additive codes
over F4.

Definition 5.6. The LC orbit of a weighted graph G is the set of all non-isomorphic
graphs that can be obtained by performing any sequence of weight shifts and
generalized LC operations on G.

Theorem 5.7. The minimum distance of a self-dual additive (n,mn, d) code is
equal to δ+ 1, where δ is the minimum vertex degree over all graphs in the associated
LC orbit.

Proof. A vertex with degree d − 1 in the LC orbit corresponds to a codeword of
weight d, and we will now show that such a vertex always exists. Choose any graph
representation of the code and let G = (Γ | I) be the corresponding generator matrix.
Find a codeword c of weight d generated by G. Let the i-th row of G be one of
the rows that c is linearly dependent on. Apply symplectic transformations to the
coordinates of the code such that c is mapped to c′ with 1 in coordinate n+ i, and
with 0 in all other of the last n coordinates. Since we do not care about changes
in the corresponding first n coordinates, as long as the symplectic weight of c is
preserved, there will always be transformations that achieve this. Apply the same
transformations to the columns of G, and then replace the i-th row with c′, to get G′.
Note that the right half of G′ still has full rank, so we can transform G′ into a
matrix of the form (Γ′ | I) by Gaussian elimination, where the symplectic weight of
the i-th row is d. Finally, we set all diagonal elements of Γ′ to zero by appropriate
symplectic transformations. Vertex i of the graph with adjacency matrix Γ′ has
degree d− 1.
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6. Classification

It follows from Theorem 5.5 that two self-dual additive codes over Fm2 are
equivalent if and only if their graph representations are in the same LC orbit. The
LC orbit of a graph can easily be generated by a recursive algorithm. We have used
the program nauty [19] to check for graph isomorphism.

Let Gn,m be the set consisting of all non-isomorphic simple undirected connected
m-weighted graphs on n vertices. Note that connected graphs correspond to inde-
composable codes. A code is decomposable if it can be written as the direct sum of
two smaller codes. For example, let C be an (n,mn, d) code and C′ an (n′,mn′ , d′)
code. The direct sum, C ⊕ C′ = {u||v | u ∈ C, v ∈ C′}, where || means concatenation,
is an (n+ n′,mn+n′ ,min{d, d′}) code. It follows that all decomposable codes of
length n can be classified easily once all indecomposable codes of length less than n
are known.

The set of all distinct LC orbits of connected m-weighted graphs on n vertices is a
partitioning of Gn,m into in,m disjoint sets. in,m is also the number of indecomposable
self-dual additive codes over Fm2 of length n, up to equivalence. Let Ln,m be a set
containing one representative from each LC orbit of connected m-weighted graphs on
n vertices. The simplest algorithm for finding such sets of representatives is to start
with the set Gn,m and generate LC orbits of its members until we have a partitioning
of Gn,m. The following more efficient technique is based on a method described by
Glynn et al. [9]. Let the mn − 1 extensions of an m-weighted graph on n vertices
be formed by adding a new vertex and joining it to all possible combinations of at
least one of the old vertices, using all possible combinations of edge weights. The
set En,m, containing in−1,m(mn−1 − 1) graphs, is formed by making all possible
extensions of all graphs in Ln−1,m.

Theorem 6.1. Ln,m ⊂ En,m, i.e., the set En,m will contain at least one represen-
tative from each LC orbit of connected m-weighted graphs on n vertices.

Proof. Let G = (V,E,W ) ∈ Gn,m, and choose any subset U ⊂ V of n− 1 vertices.
By doing weight shifts and generalized LC operations on vertices in U , we can
transform the induced subgraph of G on U into one of the graphs in Ln−1,m that
were extended when En,m was constructed. It follows that for all G ∈ Gn,m, some
graph in the LC orbit of G must be part of En,m.

The set En,m will be much smaller than Gn,m, so it will be more efficient to search
for a set of LC orbit representatives within En,m. Another fact that simplifies our
classification algorithm is that weight shifting and generalized local complementation
commute. This means that to generate the LC orbit of a weighted graph, we may
first generate the orbit with respect to generalized local complementation only, and
then apply weight shifting to the resulting set of graphs.

Using the described techniques, we were able to classify all self-dual additive codes
over F9, F16, and F25 up to lengths 8, 6, and 6, respectively. Table 1 gives the values
of in,m, the number of distinct LC orbits of connected m-weighted graphs on n
vertices, which is also the number of inequivalent indecomposable self-dual additive
codes over Fm2 of length n. The total number of inequivalent codes of length n, tn,
is shown in Table 2 together with lower bounds derived from Theorem 3.2. The
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Table 1: Number (in,m) of Indecomposable Codes of Length n over Fm2

n in,2 in,3 in,4 in,5

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 2 3 3 3
5 4 5 6 7
6 11 21 25 38
7 26 73
8 101 659
9 440
10 3,132
11 40,457
12 1,274,068

numbers tn are easily derived from the numbers in by using the Euler transform [27],

cn =
∑
d|n

did

t1 = c1

tn =
1
n

(
cn +

n−1∑
k=1

cktn−k

)
.

Tables 3, 4, and 5 list by minimum distance the numbers of indecomposable codes
over F9, F16, and F25. A database containing one representative from each equiv-
alence class is available at http://www.ii.uib.no/~larsed/nonbinary/. For the
classification of self-dual additive codes over F4, we refer to previous work [7], and
the web page http://www.ii.uib.no/~larsed/vncorbits/.

Note that applying the graph extension technique described previously is equivalent
to lengthening [8] a self-dual additive code. Given an (n,mn, d) code, we add a
row and column to its generator matrix to obtain an (n+ 1,mn+1, d′) code, where
d′ ≤ d+ 1. If follows that given a classification of all codes of length n and minimum
distance d, we can classify all codes of length n+ 1 and minimum distance d+ 1.
All length 8 codes over F9 have been classified as described above. By extending
the 77 (8, 38, 4) codes, we found 4 (9, 39, 5) codes, and from those we obtained a
single (10, 310, 6) code. Assuming that the MDS conjecture holds, there are no
self-dual additive MDS codes over F9 with length above 10. This would mean that
the three MDS codes with parameters (4, 34, 3), (6, 36, 4), and (10, 310, 6) are the
only non-trivial self-dual additive MDS codes over F9. The (6, 36, 4) and (10, 310, 6)
are constructed as circulant codes in Section 7. A generator matrix for the (4, 34, 3)
code is given in Example 4. In fact, a (4,m4, 3) code, for any m ≥ 3, is generated by

ω 1 1 0
1 ω 0 1
1 0 ω α
0 1 α ω

 ,

http://www.ii.uib.no/~larsed/nonbinary/
http://www.ii.uib.no/~larsed/vncorbits/
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Table 2: Total Number (tn,m) of Codes of Length n over Fm2

n tn,2 tn,3 tn,4 tn,5

1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 6 7 7 7
5 11 13 14 15
6 26 39 44 58
7 59 121 ? ?
8 182 817 ≥ 946 ≥ 21,161
9 675 ≥ 9,646 ≥ 458,993 ≥ 38,267,406
10 3,990 ≥ 2,373,100
11 45,144
12 1,323,363
13 ≥ 72,573,549

Table 3: Number of Indecomposable Codes of Length n and Distance d over F9

d\n 2 3 4 5 6 7 8 9 10

2 1 1 2 4 15 51 388 ? ?
3 1 1 5 20 194 ? ?
4 1 2 77 ? ?
5 4 ?
6 1

All 1 1 3 5 21 73 659 ? ?

Table 4: Number of Indecomposable Codes of Length n and Distance d over F16

d\n 2 3 4 5 6

2 1 1 2 4 16
3 1 2 6
4 3
5
6

All 1 1 3 6 25

where α ∈ Fm \ {0, 1}. This code has weight enumerator W (1, y) = 1 + 4(m2 −
1)y3 + (m2 − 3)(m2 − 1)y4.

There are four (9, 39, 5) codes, all with weight enumerator W (1, y) = 1 + 252y5 +
1176y6 + 3672y7 + 7794y8 + 6788y9. None of these are equivalent to circulant graph
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Table 5: Number of Indecomposable Codes of Length n and Distance d over F25

d\n 2 3 4 5 6

2 1 1 2 4 21
3 1 3 11
4 6
5
6

All 1 1 3 7 38

codes. The generator matrices are:

ω 2 2 1 0 0 0 2 2
2 ω 1 0 0 0 1 2 1
2 1 ω 0 0 2 2 1 1
1 0 0 ω 2 1 0 0 1
0 0 0 2 ω 2 1 1 1
0 0 2 1 2 ω 1 1 0
0 1 2 0 1 1 ω 0 2
2 2 1 0 1 1 0 ω 2
2 1 1 1 1 0 2 2 ω


,



ω 2 2 2 2 2 2 2 1
2 ω 0 0 0 0 2 1 2
2 0 ω 0 2 0 1 0 2
2 0 0 ω 1 0 1 2 0
2 0 2 1 ω 1 2 2 1
2 0 0 0 1 ω 0 1 1
2 2 1 1 2 0 ω 2 1
2 1 0 2 2 1 2 ω 1
1 2 2 0 1 1 1 1 ω


,



ω 2 0 0 0 2 1 2 1
2 ω 0 2 1 2 0 1 0
0 0 ω 0 1 2 0 1 1
0 2 0 ω 0 1 0 1 1
0 1 1 0 ω 1 2 2 1
2 2 2 1 1 ω 1 2 1
1 0 0 0 2 1 ω 1 1
2 1 1 1 2 2 1 ω 1
1 0 1 1 1 1 1 1 ω


,



ω 0 2 0 2 2 0 2 2
0 ω 2 2 0 0 2 0 1
2 2 ω 0 0 1 0 2 0
0 2 0 ω 0 0 1 2 1
2 0 0 0 ω 0 2 1 1
2 0 1 0 0 ω 1 1 2
0 2 0 1 2 1 ω 1 0
2 0 2 2 1 1 1 ω 1
2 1 0 1 1 2 0 1 ω


.

The two (7, 37, 4) codes, the three (6, 46, 4), and five of the six (6, 56, 4) codes are
equivalent to circulant graph codes generated in Section 7. The last (6, 56, 4) code
has weight enumerator W (1, y) = 1+360y4 +3024y5 +12240y6 and generator matrix

ω 2 2 1 0 0
2 ω 0 1 4 1
2 0 ω 0 1 1
1 1 0 ω 3 4
0 4 1 3 ω 3
0 1 1 4 3 ω

 .

7. Circulant graph codes

It is clearly infeasible to study all self-dual additive codes of lengths much higher
than those classified in the previous section. We therefore restrict our search space
to the md

n−1
2 e codes over Fm2 of length n corresponding to graphs with circulant

adjacency matrices. A matrix is circulant if the i-th row is equal to the first row,
cyclically shifted i− 1 times to the right. We have performed an exhaustive search
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Table 6: Highest Found Minimum Distance of Codes over Fm2 of Length n

n\m 2 3 4 5

2 2 2 2 2
3 2 2 2 2
4 2 3∗ 3∗ 3∗

5 3 3 3 3
6 4 4 4 4
7 3 4 4 4
8 4 4 4 4
9 4 5s 5 5
10 4 6 6 6
11 5s 5 6 6
12 6 6 6 6
13 5 6 6 7
14 6 6 7 8
15 6 6 7 7
16 6 6 8 8
17 7 7 8 9
18 8∗ 8 8 10
19 7 8
20 8 8
21 8∗ 8
22 8 9
23 8 9
24 8 9
25 8
26 8
27 9s

28 10
29 11
30 12

of such graphs, the result of which is summarized in Table 6. This table shows the
highest found minimum distance of self-dual additive codes over various alphabets.
A code with the given minimum distance has been found in our search, except for the
cases marked ∗, where a better code is obtained in some other way and does not have
a circulant graph representation,5 and cases marked s, which are not circulant, but
obtained by a trivial shortening [8] of a longer circulant code. Minimum distances
printed in bold font are optimal according to the quantum singleton bound. If n is
even and the quantum singleton bound is satisfied with equality, we have an MDS
code.

We here give the first row of a circulant generator matrix for those codes classified
in Section 6 that are equivalent to circulant graph codes. There is a unique (6, 36, 4)
code with weight enumerator W (1, y) = 1 + 120y4 + 240y5 + 368y6 generated by

5See the web page http://www.codetables.de/ for details on how codes over F4 of length 18
and 21 can be obtained.

http://www.codetables.de/
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(ω01110). There are two inequivalent (7, 37, 4) codes generated by (ω110011) and
(ω022220), both with weight enumerator W (1, y) = 1+70y4 +336y5 +812y6 +968y7.
There is a unique (10, 310, 6) code with weight enumerator W (1, y) = 1 + 1680y6 +
2880y7 + 14040y8 + 22160y9 + 18288y10 generated by (ω012111210). There are
three inequivalent (6, 46, 4) codes with weight enumerator W (1, y) = 1 + 225y4 +
1080y5 + 2790y6 generated by (ω01110), (ω01α10), and (ω01α210), where α = ω5

is a primitive element of F4. There are five inequivalent (6, 56, 4) codes generated by
(ω01110), (ω01210), (ω02220), (ω10201), and (ω12221), all with weight enumerator
W (1, y) = 1 + 360y4 + 3024y5 + 12240y6.

For circulant graph codes of higher length that are optimal according to the
quantum singleton bound, we find that all codes of the same length have the same
weight enumerator. In the list below, we give the first row of one generator matrix
for each weight enumerator.
• (7, 47, 4), (ω11αα11),

W (1, y) = 1 + 105y4 + 1008y5 + 4830y6 + 10440y7.

• (9, 49, 5), (ω001αα100),

W (1, y) = 1 + 378y5 + 3780y6 + 23220y7 + 88155y8 + 146610y9.

• (10, 410, 6), (ω010α1α010),

W (1, y) = 1 + 3150y6 + 18000y7 + 111375y8 + 366000y9 + 550050y10.

• (11, 411, 6), (ω00α1111α00),

W (1, y) = 1 + 1386y6 + 13860y7 + 99495y8 + 505560y9 + 1511598y10

+ 2062404y11.

• (7, 57, 4), (ω011110),

W (1, y) = 1 + 140y4 + 2184y5 + 17080y6 + 58720y7.

• (9, 59, 5), (ω00211200),

W (1, y) = 1 + 504y5 + 8400y6 + 84240y7 + 507420y8 + 1352560y9.

• (10, 510, 6), (ω001222100),

W (1, y) = 1 + 5040y6 + 54720y7 + 508680y8 + 2704560y9 + 6492624y10.

• (11, 511, 6), (ω0012222100),

W (1, y) = 1 + 1848y6 + 31680y7 + 370260y8 + 2977480y9

+ 14282664y10 + 31164192y11.

• (13, 513, 7), (ω010011110010),

W (1, y) = 1 + 6864y7 + 118404y8 + 1538680y9 + 14867424y10

+ 97222320y11 + 388930776y12 + 718018656y13.

• (14, 514, 8), (ω1011331331101),

W (1, y) = 1 + 72072y8 + 816816y9 + 10474464y10 + 90679680y11

+ 544536720y12 + 2010441888y13 + 3446493984y14.
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• (17, 517, 9), (ω0010111001110100),

W (1, y) = 1 + 97240y9 + 1633632y10 + 24504480y11 + 296652720y12

+ 2733620400y13 + 18749403360y14 + 89994568992y15

+ 269984494620y16 + 381154477680y17.

• (18, 518, 10), (ω12134242124243121),

W (1, y) = 1 + 1050192y10 + 11456640y11 + 180442080y12

+ 1964813760y13 + 16877613600y14 + 107991522432y15

+ 485972877960y16 + 1372155934320y17 + 1829541554640y18.

As mentioned in the introduction, stabilizer codes can be defined over any Abelian
group, not only finite fields. For comparison, we also generated circulant codes over
Z2

4. As expected, the minimum distance of these codes are much worse than for
codes over F16. We found a (7, 47, 4)-code over Z2

4, but for all other lengths up to
16, the best minimum distance was equal to the best minimum distance of codes
over F4 of the same length.

Gulliver and Kim [13] performed a computer search of circulant self-dual additive
codes over F4 of length up to 30. Their search was not restricted to graph codes,
so our search space is a subset of theirs. It is interesting to note that for every
length, the highest minimum distance found was the same in both searches. This
suggests that the circulant graph code construction can produce codes as strong as
the more general circulant code construction. Besides a smaller search space, the
special form of the generator matrix of a graph code makes it easier to find the
minimum distance, since any codeword obtained as a linear combination of i rows
of the generator matrix must have weight at least i. If, for example, we want to
determine whether a code has minimum distance at least d, we only need to consider
combinations of d or fewer rows of its generator matrix.

Circulant graphs must be regular, i.e., all vertices must have the same number
of neighbours. We have previously discovered [5, 6] that many strong circulant
self-dual additive codes over F4 can be represented as highly structured nested clique
graphs. Some of these graphs are shown in Fig. 5. For instance, Fig. 5b shows a
graph representation of the (12, 212, 6) “Dodecacode” consisting of three 4-cliques.
The remaining edges form a Hamiltonian cycle, i.e., a cycle that visits every vertex
of the graph exactly once. Notice that all graphs shown in Fig. 5 have minimum
regular vertex degree, i.e., each vertex has d− 1 neighbours, where d is the minimum
distance of the corresponding code.

We have discovered some new highly structured weighted graph representations of
self-dual additive codes over F9 and F16. Fig. 6 shows two interconnected 5-cliques
where all edges have weight one, and a 10-cycle where all edges have weight two. The
sum of these two graphs, such that no edges overlap, corresponds to the (10, 310, 6)
code. Up to isomorphism, there is only one way to add a Hamiltonian cycle of weight
two edges to the double 5-clique, since there cannot be both weight one and weight
two edges between the same pair of vertices. The first row of a circulant generator
matrix corresponding to this graph is (ω012111210).

As a second example, Fig. 7 shows two pairs of 4-cliques, each of which is
connected by a length 8 cycle, and two 16-cycles where all edges have weight α and
α2, respectively, where α = ω5 is a primitive element of F4. The (16, 416, 8) code
generated by (ω0α21α100010001α1α2) corresponds to a sum of these three graphs.
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(a) (6, 26, 4) (b) (12, 212, 6)

(c) (20, 220, 8) (d) (25, 225, 8)

Figure 5: Examples of Nested Clique Graphs Corresponding to Codes over F4
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Figure 6: Two Graphs Whose Sum Corresponds to the (10, 310, 6) Code
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Figure 7: Three Graphs Whose Sum Corresponds to the (16, 416, 8) Code

Note that the vertices of the graphs corresponding to circulant (10, 310, 6) and
(16, 416, 8) graph codes have degree higher than d−1. We have tried to obtain similar
graph representations for other codes in Table 6, but without success. Many of the
circulant graph codes have vertex degree much higher than d− 1, for instance the
(14, 514, 8) code generated by (ω1221202021221), and the (18, 518, 10) code generated
by (ω12134242124243121).
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[17] A. Klappenecker and M. Rötteler, Beyond stabilizer codes I: Nice error bases, IEEE Trans.

Inform. Theory, 48 (2002), 2392–2395.
[18] E. Knill and R. Laflamme, Theory of quantum error-correcting codes, Phys. Rev. A, 55 (1997),

900–911.

[19] B. D. McKay, nauty User’s Guide, version 2.2 (2004), http://cs.anu.edu.au/~bdm/nauty/.
[20] M. Van den Nest, “Local Equivalence of Stabilizer States and Codes”, Ph.D. thesis, K. U. Leuven,

2005.

[21] M. Van den Nest, J. Dehaene and B. De Moor, Graphical description of the action of local
Clifford transformations on graph states, Phys. Rev. A, 69 (2004), 022316.

[22] E. M. Rains, Nonbinary quantum codes, IEEE Trans. Inform. Theory, 45 (1999), 1827–1832.
[23] R. Raussendorf, D. E. Browne and H. J. Briegel, Measurement-based quantum computation

on cluster states, Phys. Rev. A, 68 (2003), 022312.
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