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Abstract. We define and characterise selfnegadual generalised quadratic
Boolean functions by establishing a link, both to the multiplicative order
of symmetric binary matrices, and also to the Hermitian self-dual F4-
linear codes. This facilitates a novel way to classify Hermitian self-dual
F4-linear codes.
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1 Introduction

In this paper an n-variable generalised quadratic Boolean function refers to a
function in ZRM(2, n) (the quaternary Reed-Muller code). To be explicit, if
f : Fn2 → Z4 is of the form:

f(x) = 2(
∑
j<k

ajkxjxk) + 2(
∑
j

bjxj + c) +
∑
j

ajjxj + d (1)

where ajk, ajj , bj , c, d ∈ F2, then it is a function in ZRM(2, n). We consider f
and its phase representation, if , where i2 = −1, and if = (if(x), x ∈ Fn2 ), is
interpreted as a column vector of 2n elements. When ajj = d = 0, ∀j, then f/2
is a quadratic Boolean function. We consider a map from f to an n× n binary
symmetric matrix, Af = (aij), where the off-diagonal part refers to Boolean
quadratic terms, the diagonal part refers to Z4-linear terms, and the binary linear
coefficients, bi, together with the constant term, c, is called the binary affine
offset, and is ignored for the map to a matrix. To simplify notation, and without
loss of generality, we assume, throughout this paper, that c = d = 0.

Recent papers [4,8,11] have classified and constructed Boolean functions
that are selfdual, i.e. their phase representations are eigenvectors of the Walsh-
Hadamard transform - such functions are therefore bent. Another direction is
to classify and construct Boolean functions that are negabent or bent-negabent
(both bent and negabent) [15,16]. We show that a function in ZRM(2, n) can
never be both selfdual and negabent. Let a function be called selfnegadual if its
phase representation is an eigenvector of the negaHadamard transform - such

mailto:larsed@ii.uib.no
mailto:matthew@ii.uib.no
http://www.ii.uib.no/~larsed
http://www.ii.uib.no/~matthew


2

functions are therefore negabent and it turns out that they are also bent. We show
that there are no quadratic selfnegadual Boolean functions, but that there are
selfnegadual functions in ZRM(2, n). So, in this paper, we answer the following
question:

Question 1. Which functions in ZRM(2, n) are selfnegadual?

The main result of this paper is to characterise those functions in ZRM(2, n)
that are selfnegadual.

We came at this problem from an unusual direction. Our initial question was
in the context of the study of multiplicative orders of symmetric binary matrices.
Let A be such a matrix, and let it have order p if Ap = I, the identity, and
Aj 6= I, for 1 ≤ j < p. We say that ord(A) = p, where A can only have an order
if A has maximum rank. If f ∈ ZRM(2, n) is selfdual, then ord(Af ) = 2 [4]. If f
is negabent then Af + I has maximum rank [15]. However, if ord(Af ) = 2 then
Af + I cannot have maximum rank. This motivates the question:

Question 2. For which n×n symmetric binary matrices, A, is ord(A)
and ord(A+ I) jointly minimised to 3?

An n×n symmetric binary matrix, A, represents an n-vertex undirected graph
with possible loops. For ω primitive in F4, the rowspace of matrix A+wI is a
Hermitian selfdual F4-additive code of blocklength n. The graphical interpretation
has been used to aid in classifying all selfdual F4-additive codes up to blocklength
12 [7]. A small subset of these matrices, A+ ωI, generate selfdual F4-additive
codes that are also selfdual F4-linear of blocklength n - all selfdual F4-linear
codes can be represented in this way. So we have the question:

Question 3. For which n× n symmetric binary matrices, A, is the

F4-additive code generated by A+ wI also F4-linear?

Question 3 has been characterised by Van den Nest [17]. Our contribution
is to show that questions 2 and 3 are the same question, and also the same as
question 1 to within a binary affine offset.

In section 2 we characterise dualities of functions with respect to Walsh-
Hadamard and negaHadamard transforms. In section 3 we look at orders of
symmetric binary matrices, show how they relate to dualities of a function, and
show that order is preserved by action of the orthogonal group. In section 4
we show how selfduality and selfnegaduality relate to linear selfdual codes over
F2 and F4, respectively, and also, by interpreting the symmetric matrix as an
undirected graph, show how a modified form of local complementation [2] on the
graph preserves selfnegaduality. In section 5 we use graphical interpretation, and
orthogonal equivalence, to classify all Hermitian selfdual F4-linear codes up to
n = 18.
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2 Bentness and selfdualities of functions - definitions

For two length-n vectors, u = (u0, u1, . . . , un−1)T and v = (v0, v1, . . . , vn−1)T , let

u·v =
∑n−1
j=0 ujvj be the dot-product of u and v, and uv = (u0v0, u1v1, . . . , un−1vn−1)T .

Let w(x) be the Hamming weight of x.

For f : Fn2 → Z4 in ZRM(2, n), let H = 1√
2

(
1 1
1 −1

)
be the 2× 2 Hadamard

matrix, and N = 1√
2

(
1 i
1 −i

)
, i2 = −1, be the 2× 2 negaHadamard matrix. Let

‘⊗’ indicate the tensor product of matrices.

We define f to be a bent function in ZRM(2, n) if

Fk = 2−n/2
∑
j∈Fn

2

if(x)+2j·k,

satisfies |Fk| = 1, ∀k ∈ Fn2 . Alternatively we can write

F = H⊗nif .

In such a case we can define the dual of f by if̂ = F , where f̂ is also a bent
function in ZRM(2, n).

We define f to be a negabent function in ZRM(2, n) if

Fk = α2−n/2
∑
j∈Fn

2

if(x)+2j·k+w(j),

satisfies |Fk| = 1, ∀k ∈ Fn2 , where α is an arbitrary constant that satisfies |α| = 1.
Alternatively we can write

F = αN⊗nif .

In such a case we can define the negadual of f by if̃ = F , where f̃ is then a bent
function in ZRM(2, n).

We summarise the bent and negabent properties in Table 1, as well as the dualities
that we discuss in this paper, where s, r, r′ ∈ Fn2 . For brevity, except in the case
of selfdual and selfnegadual, we do not make explicit the global multiplicative
constants or eigenvalues in these expressions, using symbols α and α′ to indicate
arbitrary constants that need only satisfy |α| = |α′| = 1. In [4] the cases of
α = 1 and α = −1 were used to distinguish between selfdual and anti-selfdual,
respectively, but we refer, here to the union of these two simply as selfdual. For
selfnegadual, observe that N3 = eπi/4I. For some eigenvalue, α, and eigenvector,
v, of N⊗n, we have N⊗nv = αv. Therefore (N⊗n)3v = α3v = enπi/4v. Therefore
α ∈ {e(n+8k)πi/12, k = 0, 1, 2}. Choosing f from ZRM(2, n) and selfnegadual
restricts α to the alphabet {ehiπ/4}, for some integer, h. Theorem 2 and lemma
12 will show that, for such an f , then n must be even. It then follows, uniquely,
that α = e−niπ/4.

If f is bent then its dual, f̂ , is also bent. But if f is negabent, then its dual, f̃ ,
is only negabent if f is also bent. A selfdual function is bent and a selfnegadual
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Table 1: Spectral dualities

Property of f ∈ ZRM(2, n) equation satisfied by f

bent if̂ = H⊗nif

negabent if̃ = αN⊗nif

selfdual if = ±H⊗nif

selfnegadual if = e−niπ/4N⊗nif

P-dual if(x) = αH⊗nif(x+s)+2r·x

= α′H⊗nif(x)+2r′·x

P-negadual if(x) = αN⊗nif(x+s)+2r·x

= α′N⊗nif(x)+2r′·x

function is bent-negabent, where bentness of the selfnegadual function follows
because H⊗nif(x) = eniπ/4H⊗nN⊗nif(x) = eniπ/4if(x)+

∑
j xj .

Selfdual and selfnegadual are special cases of P-dual and P-negadual, respec-
tively. If f − f̂ or f − f̃ are of the form 2r · x+ c, for some r ∈ Fn2 , c ∈ F4, then f
is P-dual or P-negadual, respectively.

3 Matrix orders and function dualities

We wish to characterise the n× n binary symmetric matrices, A, such that both
ord(A) and ord(A+ I) are as small as possible. We call A a (p, q)-matrix if A has
order p and A+ I has order q, where p or q equals ‘−’ if A or A+ I, respectively,
does not have maximum rank. Trivially, if ord(A) = 1, then A = I and A+ I
cannot have maximum rank, in which case A is a (1,−)-matrix. Likewise, if
ord(A) = 2 then A+ I cannot have maximum rank, as (A+ I)2 = A2 + I = 0,
in which case A is a (2,−)-matrix. One can trivially obtain (−, 1) and (−, 2)
matrices by replacing A by A+ I in the above. So our first candidate of interest
is for A to be a (3, 3)-matrix and, indeed, such symmetric binary matrices do
exist. After some preliminary lemmas, we present, by considering the conditions
on f ∈ ZRM(2, n) for selfduality and selfnegaduality, two theorems for (2,−)
matrices (theorem 1), and (3, 3) matrices (theorem 2), respectively.

Let X =
(

0 1
1 0

)
and Z =

(
1 0
0 −1

)
. The following lemma is easily verified.

Lemma 1.
HX = ZH, HZ = XH,
NX = iZXN, NZ = XN.

For r ∈ Fn2 , U a 2 × 2 matrix, U0 = I, the identity, and U1 = U , let
Ur =

⊗
0≤j<n U

rj , be a 2n × 2n matrix constructed using the tensor product.

Lemma 2. For f bent,

H⊗nif(x+r) = if̂(x)+2r·x.
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Proof. By lemma 1 and Table 1,

H⊗nif(x+r) = H⊗nXri
f(x)

= ZrH
⊗nif(x) = Zri

f̂(x) = if̂(x)+2r·x.

�

Lemma 3. For f negabent,

N⊗nif(x+r) = αif̃(x+r)+2r·x+w(r),

and
N⊗nif(x)+2r·x = αif̃(x+r).

Proof. By lemma 1 and Table 1,

N⊗nif(x+r) = N⊗nXri
f(x)

= iw(r)ZrXrN
⊗nif(x) = αZrXri

f̃(x)+w(r) = αif̃(x+r)+2r·x+w(r).

For the second part,

N⊗nif(x)+2r·x = N⊗nZri
f(x) = XrN

⊗nif(x) = αXri
f̃(x) = αif̃(x+r).

�

Lemma 4. For f ∈ ZRM(2, n), and for any r ∈ Fn2 ,

f(x+ r) = f(x) + 2Afr · x+ f(r)− f(0).

Proof. From (1), f(x) = 2q(x) + 2b ·x+ a ·x+ f(0), where q is a homogeneous
quadratic, and b, a ∈ Fn2 . Then 2q(x+ r) = 2(q(x) +Aqr · x+ q(r)), 2b · (x+ r) =
2b·x+2b·r, and a·(x+r) = a·x+2ar·x+a·r. Therefore f(x+r) = 2q(x+r)+2b·(x+
r)+a·(x+r)+f(0) = (2q(x)+2b·x+a·x+f(0))+2(Aqr+ar)·x+(2q(r)+2b·r+a·r).
Observe that Afr = Aqr + ar. �

Theorem 1. If f is selfdual or anti-selfdual then Af is a (2,−)-matrix, and
f(r) = −f(Afr) + 2f(0), ∀r ∈ Fn2 . Conversely, if Af is a (2,−)-matrix, then

Af̂ = Af , i.e. f is P-dual, and f(r) = −f̂(Afr) + f(0) + f̂(0), ∀r ∈ Fn2 .

Proof. Using Table 1, lemmas 2 and 4, if f is selfdual or anti-selfdual,

H⊗nif(x+r) = H⊗nif(x)+2Afr·x+f(r)−f(0) = αif(x)+2r·x.

Similarly,

H⊗nif(x+Afr) = H⊗nif(x)+2A2
fr·x+f(Afr)−f(0) = αif(x)+2Afr·x, α ∈ ±1.
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Then, as H⊗n is self-inverse,

αif(x)+2r·x−f(r)+f(0) = α−1if(x)+2A2
fr·x+f(Afr)−f(0),

from which A2
f = I and f(r) = −f(Afr) + 2f(0). For the converse, we have that

H⊗nif(x+r) = H⊗nif(x)+2Afr·x+f(r)−f(0) = if̂(x)+2r·x,

and

H⊗nif̂(x+Afr) = H⊗nif̂(x)+2Af̂Afr·x+f̂(Afr)−f̂(0) = if(x)+2Afr·x.

Combining gives

if̂(x)+2r·x−f(r)+f(0) = if̂(x)+2Af̂Afr·x+f̂(Afr)−f̂(0).

�
Let Ef be the eigenspace of Af associated with the eigenvalue 1 (we are

working mod 2, so all eigenvectors have eigenvalue 1).

Lemma 5. If f is selfdual or anti-selfdual, and e ∈ Ef , then so is f + 2e · x.
Conversely, if both f and f + 2e · x are selfdual or anti-selfdual, then e ∈ Ef .
Consequently, if f is selfdual or anti-selfdual, then so are |Ef | binary linear offsets
of f .

Proof. Assume f(0) = 0. Then, from theorem 1, if f is selfdual or anti-selfdual,
then f(r) + f(Afr) = 0. For e ∈ Ef we have Afe = e, so (Af + I)e = 0, mod 2,
and 2(Af + I)e = 0, mod 4. Therefore f(r) + f(Afr) + 2(Af + I)e · r = 0. But
2(Af + I)e · r = 2(Af + I)r · e, so (f(r) + 2r · e) + (f(Afr) + 2Afr · e) = 0, so
f + 2e · x is selfdual. The converse is similarly proved, and the argument is easily
generalised to f(0) other than 0. �

Theorem 2. If f is selfnegadual then Af is a (3, 3)-matrix, and f(Afr) =
w(r) + f(0), ∀r ∈ Fn2 . Conversely, if Af is a (3, 3)-matrix then Af̃ = Af , f is

P-negadual, and f(r) = f̃(r)− f̃(Afr) + f(0) + w(r).

Proof. Using Table 1, lemmas 3 and 4, if f is selfnegadual,

N⊗nif(x)+2Afr·x = αif(x+Afr) = αif(x)+2A2
fr·x+f(Afr)−f(0),

and

N⊗nif(x+r)−f(r)+f(0) = αif(x+r)+2r·x+w(r)−f(r)+f(0) = αif(x)+2(Af+I)r·x+w(r).

But, by lemma 4, we can equate these equations. So, taking the righthand
expressions of both lines we get f(x) + 2A2

fr · x = f(x) + 2(Af + I)r · x and

f(Afr)− f(0) = w(r). Therefore A2
f = Af + I, mod 2, (implying that both Af



7

and Af + I have order 3), and f(Afr) = w(r) + f(0), and the first part of the
theorem follows. For the second part we obtain, in a similar fashion,

if̃(x)+2Af̃Afr·x+f̃(Afr)−f̃(0) = if̃(x)+2(Af̃+I)r·x+f̃(r)−f(r)+f̃(0)+f(0)+w(r),

leading to Af̃Af = Af̃+I and f(r) = f̃(r)−f̃(Afr)+f(0)+w(r). The argument is
completed by observing that Af a (3, 3) matrix implies that Af + I has maximum
rank, with inverse Af . So, as Af̃ (Af + I) = I, then Af̃ = Af . �

It is later shown in lemma 12 that, if Af is a (3, 3) matrix, then n must be
even.

From the equation f(Afr) = w(r) + f(0) of theorem 2, it is evident that, if
Af is a (3, 3) matrix then f is uniquely defined, to within a constant:

Corollary 1. If f is selfnegadual then f + 2e · x is not selfnegadual ∀e ∈ Fn2 ,
e 6= 0.

It remains to derive an expression for the binary vector b ∈ Fn2 of (1). Let
µ = (µ0, µ1, . . . , µn−1), where µi is the Hamming weight of column i of Af . Let
a ∈ Fn2 be the diagonal of Af , and let 1 be the all-ones vector of length-n.

Lemma 6. If f is selfnegadual, then

b =
1

2
〈µ+ a+ 1〉4,

where 〈∗〉4 means reduce, mod 4.

Proof. Wlog we can restrict to f(0) = 0. Then, from theorem 2, f(Afr) = w(r).
Therefore, as (Af + I)Af = I, then f(r) = w((Af + I)r). When r has Hamming
weight 1, then f(r) = (a + 2b) · r, and w((Af + I)r) = µ · r − 2a · r + 1. So
2b = µ+ a+ 1. �

Examples: Let g = 2x0x1 + x1, where n = 2. Then Ag is a (3, 3) matrix.
Moreover µ = (1, 2), and a = (0, 1). So 2b = (1, 2) + (0, 1) + (1, 1) = (2, 0) and,
from lemma 6, f = 2x0x1 + 2x0 + x1 is selfnegadual.

Now let g = 2(x0x1 +x0x2 +x0x5 +x1x3 +x1x5 +x2x4 +x2x5 +x3x4 +x3x5 +
x4x5) +x5, where n = 6. Then Ag is a (3, 3) matrix. Moreover µ = (3, 3, 3, 3, 3, 6),
and a = (0, 0, 0, 0, 0, 1). So 2b = (4, 4, 4, 4, 4, 8) = (0, 0, 0, 0, 0, 0) and f = g is
selfnegadual.

Before continuing, we summarise function dualities of f in terms of the
associated orders of Af . For instance, we indicate the property ‘Af has an order’
by the row ‘ord(Af )’, and indicate the property ‘f is bent’ by the column ‘f
bent’. There is a

√
(‘tick’) symbol at the intersection of this row and column to

indicate that one property implies the other. The − symbol indicates that the
row/column properties do not imply each other. The

√
symbol is replaced by a

number (2 or 3) if the order of Af or Af + I is known explicitly.
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property of: f f f f +
∑
j xj f

bent negabent P-dual P-dual P-negadual
ord(Af )

√
− 2 − 3

ord(Af + I) −
√

− 2 3

Remarks: The condition in the proof of theorem 2 that A+ I has maximum
rank is important, as both (3,−) and (−, 3) matrices exist. For A of order 3,
(A3 + I) = (A2 +A+ I)(A+ I), and the condition that (A+ I) has maximum
rank is equivalent to the condition that A2 +A+ I = 0.

Lemma 7. [1,13] An invertible binary symmetric matrix can be factored in the
form MMT iff it has at least one nonzero term on the main diagonal.

If f ∈ ZRM(2, n) is such that Af has zero diagonal, then f is a quadratic
Boolean function.

Lemma 8. If f is a bent quadratic Boolean function, then Af has even order.

Proof. If Af has odd order, p, then we can write Af = B2, where B = A
p+1
2

f .

But, B is symmetric as Af is symmetric so Af = BBT which, by lemma 7, is
impossible as Af has no ones on its diagonal. �

Lemma 9. There are no selfnegadual quadratic Boolean functions.

Proof. By theorem 2, Af has order 3 if f ∈ ZRM(2, n) is selfnegadual. There-
fore, by lemma 8, f cannot be a quadratic Boolean function. �

Remark: The result of lemma 9 can also be deduced from the thesis of Van
den Nest [17], in the context of F4-additive and F4-linear codes.

We identify an action which preserves the (p, q) property of a matrix. An
orthogonal matrix, U , satisfies UUT = I. The set of n × n binary orthogonal
matrices forms a group, On, under multiplication. Then it is trivial to show
that UAUT is a (p, q)-matrix iff A is a (p, q)-matrix, and corollary 2 follows
immediately from this observation.

Corollary 2. For U ∈ On and f(x) ∈ ZRM(2, n), and by theorems 1 and 2, if
f(x) is selfdual then so is f(Ux) and, if f(x) is selfnegadual then so is f(Ux).

4 Graphs and code dualities

Let A be an n× n symmetric binary matrix. Then A can be used to generate
codes, and can also be interpreted as an adjacency matrix for an undirected
graph, where the graph of A has loops if its diagonal is non-zero. The next lemma
is well-known.
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Lemma 10. If A has zero diagonal, and if A2 = I then the linear space generated
by the rows of A+I is a self-orthogonal binary linear code of dimension rank(A+I).
In particular, if A is the adjacency matrix for a bipartite graph with equal-size
partitions, then A+ I generates a selfdual binary linear code.

Proof. The rows of A are pairwise orthogonal as A2 = I. Therefore the rows
of A+ I are pairwise orthogonal as A is symmetric. The linear space generated
by A + I is self-orthogonal because (A + I)(A + I)T = 0. For the last part,

A =
(

0 P

PT 0

)
, P square, so A+ I spans a self-dual code. �

An additive code over F4 = {0, 1, ω, ω = ω + 1} of length n is a F2-linear
subgroup of Fn4 . We define the dual of the code C with respect to the trace inner
product as C⊥ = {u ∈ Fn4 |

∑n
i=1(uici + uici) = 0 for all c ∈ C}, and say that

it is selfdual if C = C⊥. A linear code over F4 which is selfdual with respect to
the Hermitian inner product, i.e., u · v, is also selfdual additive with respect to
the trace inner product. However, most selfdual additive codes are not F4-linear.
Two selfdual additive codes over F4 are equivalent if we can obtain one from
the other by permuting, scaling, and conjugating coordinates. Equivalence of
selfdual linear codes is defined similarly, with the exception that conjugating
single coordinates is not permitted.

It is known [17] that any selfdual additive code has a standard form n× n
generator matrix of the form A+ ωI, where I is the identity matrix and A is a
binary symmetric matrix. It is also known [17] that two codes are equivalent iff
the corresponding graphs are related via local complementation (LC) [2]. Given
a generator matrix of standard form, conjugating a coordinate is equivalent
to complementing a diagonal element in A. Hence, for selfdual additive codes
considered up to equivalence, this diagonal can always be set to zero. For selfdual
linear codes (represented by overdefined n× n generator matrices), the diagonal
is of importance and can in fact never be zero.

Lemma 11. [17] For A and B symmetric, a Hermitian selfdual F4-additive
code, generated by A+ωB, is F4-linear iff AAT +BBT +ABT = 0. Moreover, if
B = I, this condition reduces to A2 +A+ I = 0.

Corollary 3. A+ ωI is the codespace of a Hermitian selfdual F4-linear code iff
A is a (3, 3) matrix.

Proof. Follows from lemma 11 as the condition A2 +A+ I = 0 immediately
implies that both A and A+ I have order 3. �

Let GA be the n-vertex graph of A with an edge between i and j iff aij = 1,
and a loop at vertex j iff ajj = 1.

Lemma 12. If A is a (3, 3) matrix, then all vertices of GA have odd degree,
disregarding loops. In such a case, n, the number of vertices, must be even.

Proof. Since A is a (3, 3) function, A2 = A+ I. Hence the diagonal entries
in A2 must be the complements of the diagonal entries of A. This criterion is
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satisfied iff there is an odd number of 1s among the off-diagonal entries in each
row of A. The number of edges of a graph equals the sum of the vertex degrees
divided by 2. But, if all vertex degrees are odd, then n must be even. �
Remark: It is also a well-known fact that all codewords of selfdual F4-linear
codes have even weight, which amounts to the same thing.

It is known [7] that local complementation (LC) acting on GA, where loops are
ignored, preserves, to within equivalence, the F4 additive selfdual code generated
by A+ ωI. However, for those additive codes that are also linear codes, one has
to modify local complementation to take account of loops, so that the additive
code remains linear after local complementation. We first describe this modified
form of local complementation (LC*) and then prove that it preserves linearity
of the F4 codespace. Let Nj ⊂ {0, 1, . . . , n − 1} be the set of vertices that are
neighbours to vertex j in GA (not including j itself). Let LC* at vertex j of GA
produce the graph GA′ .

Modified local complementation (LC*):
LC* on GA at vertex j is realised by

a′ik = a′ki = aik + 1 i, k ∈ Nj ,
a′ik = a′ki = aik otherwise.
a′ii = aii + 1 i ∈ j

⋃
Nj ,

a′ii = aii otherwise.

Lemma 13. Let GA′ be the graph resulting from LC* on GA at some vertex. If
A is a (3, 3)-matrix, then A′ is also a (3, 3)-matrix.

Proof. Let LC* act on GA at vertex j. Let D = (dik) and V = (vik) be
n × n binary matrices such that djj = 1 and dik = 0 otherwise, and vik = 1,
∀i, k ∈ Nj , i 6= k, and vik = 0 otherwise. Then, by the LC* rule, one can see that
A′ = A+D+V . A′ is a (3, 3)-matrix iff A′2 = A′+ I. But A′2 = (A+D+V )2 =
(A2 +D2 + V 2) + (AD +DA) + (AV + V A) + (DV + V D). But A2 = A+ I as
A is a (3, 3)-matrix. Moreover it is easily verified that D2 = D. Using lemma
12, V 2 = V , and AD+DA = AV + V A. D and V are row/column disjoint, so
DV + V D = 0. Therefore, A′2 = A+ I +D + V = A′ + I, as required. �

The modified local complementation proposed in [3] differs crucially from ours
- when doing a local complementation at vertex j, they do not flip the diagonal
at j, whereas we do.

5 Code classification

Selfdual linear codes over F4 have been classified up to length 16 [5,14]. As a
consequence of lemma 11 and corollary 3, we can use the correspondence to (3,3)
matrices to devise a new algorithm and classify codes of length 18. During the
process of extending the result to length 20, we became aware that codes of length
18 and 20 have already been classified independently in two preprints recently
made available online [9,10]. However, we still give an overview of our approach,
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since it gives different theoretical insights and highlights the connection between
selfdual codes and selfnegadual Boolean functions.

Table 2: Number of selfdual linear codes over F4 of length n [5,9,10,14]

n 2 4 6 8 10 12 14 16 18 20

1 1 2 3 5 10 21 55 245 3427

It has been shown in theorem 3.1 of [11] that all (2,−) symmetric matrices
are orthogonally equivalent to one of a small set of canonical forms. We use a
similar proof method to obtain the following theorem.

Theorem 3. 1

Let A be a (3, 3) matrix of size n×n. Then A is orthogonally congruent to the
canonical form Cn =

(
0 1
1 1

)
⊗ In/2, where In/2 is the n/2× n/2 identity matrix,

i.e. there always exists an orthogonal matrix, U ∈ On, such that

A = U(
(

0 1
1 1

)
⊗ In/2)UT .

Proof. We make repeated use of the identity A2 + A + I = 0. Let v =
(1, 0, 0, . . . , 0) be of length n. Then vvT = 1. We aim to convert, in t steps, A to Cn
by successive actions of the form VtAV

T
t , where Vt ∈ On. Then U = Vt−1 . . . V1V0.

Moreover, wlog we consider only the case of A = (aij) where a00 = 0 because,
when a00 = 1 then we can orthogonally transform A2 = A+ I instead to obtain
Cn. Then Cn = UA2UT = U(A+I)UT = UAUT +I, and so (XU)A(UTX) = Cn.

Given the above we have that vAvT = 0 and vA2vT = 1. We create the n× n
matrix,

V =


v

vA = a0
v2
v3
. . .
vn−1

 ,

and we wish to choose vj so that vvTj = vAvTj = vkv
T
j = 0, 2 ≤ j, k < n, j 6= k,

in which case V ∈ On. If we can do this then

V TAV =
(

0 1
1 1

)
⊕B,

where B is a (3, 3) matrix of size (n− 2)× (n− 2). The proof follows by induction
on B, to obtain Cn.

It remains to show that we can always select the vj so that V ∈ On. Let
us further assume that a01 = 0. If this is not the case then it can always be

1 We thank Prof. Alexander Pott for suggesting the proof strategy used for this theorem.
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made so by the action PAPT , where P is a row/column permutation satisfying
PPT = I, iff a0 6= (011 . . . 11). Let us assume, for now, that a0 6= (011 . . . 11).
Then, by orthogonality, we require V to be of the form V = 1⊕R, where R is an
(n− 1)× (n− 1) orthogonal matrix. But non-trivial binary orthogonal matrices
are of even dimension so R is orthogonal iff R = Q(Ik ⊕R′)QT , where Ik is the
k×k identity, k odd, Q is some permutation, and R′ is an (n−1−k)× (n−1−k)
orthogonal matrix. For suitable k we can make R′ orthogonal by choosing it to be
R′ = Jn−1−k+In−1−k, were Jk is the all-ones matrix of dimension k, on condition
that a0 = (0, 0, a02, . . . , a0(n−1)) has odd weight, which it does by lemma 12.
Permutation Q always exists, so R can be made orthogonal, and therefore V can
be made orthogonal. We just need to show that a0 6= (011 . . . 11) can be avoided.
Imagine that A is such that a0 = (011 . . . 11). Then swap row and column 0 of A
with row and column j > 0, and call this D. This is an orthogonal conjugation
so D is also (3, 3). Then D = (dij) has d00 = 1 so now orthogonally conjugate
D2, as mentioned previously. Self-duality of the associated F4-additive code [7]
implies that w(d0 + dj) > 1, so the first row of D2 is never equal to (011 . . . 11).
�

Example (to illustrate proof of theorem 3) Let A =

 111111
100101
100011
110010
101100
111000

. Then A is a

(3, 3) matrix. As a00 = 1 we conjugate A2 =

 011111
110101
101011
110110
101110
111001

 instead. As a0 = (011111)

we swap a0 and, say, a2 to get D. As d00 = 1 we orthogonally conjugate

D2 =

 001011
001101
111111
011010
101100
111000

. Choose V =

 100000
001011
010000
000111
001101
001110

. Then V DV T =
(

01
11

)
⊕
(

0010
0001
1010
0101

)
. . . . and

so on . . . .

Corollary 4. (of theorem 3) Given two (3, 3) matrices, A and A′, of size n× n,
there always exists an orthogonal matrix U ∈ On such that A′ = UAUT .

By our classification, we verify theorem 3 numerically for n ≤ 18. Also
note that it has been shown by Janusz [12] that all selfdual binary codes of
length n are equivalent under the action of On. It is known [12] that On is
generated by all matrices of the form PM , where P is a permutation matrix

and M =
(
In−4 0
0 I4+J4

)
, where J4 is the 4 × 4 all-one matrix. As a canonical

representative for selfdual F4-linear codes of length n, we choose the matrix
Cn = ( 0 1

1 1 ) ⊗ In/2. Starting from Cn, we then apply orthogonal transforms
until one representative from each equivalence class has been found. (Which
is verified by checking the mass formula [14].) In practice, we achieve this by

generating C ′ = (PM)Cn(PM)T for all the
(
n/2
4

)
non-trivial permutations P .

Then C ′ is treated as a graph with loops and checked for isomorphism against all
previously seen graphs. If C ′ is new, the corresponding code is output, and the
complete LC*-orbit of C ′, using modified local complementation, is generated
and stored. (This is not strictly necessary, but speeds up the algorithm, since
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LC*-operations are faster than orthogonal transforms.) We proceed recursively,
generating matrices (PM)C ′(PM)T , and so on, until all codes are found. With
this algorithm, classifying all codes of length n ≤ 18 was achieved in about two
hours of CPU time on a standard desktop computer.

6 Discussion - further work

It is of interest to consider further how the order of a symmetric binary matrix
relates to its associated code and/or graph. We offer here one brief observation
that may be worth pursuing:

The optimal Hermitian selfdual additive code over F4 for n = 6 is the hexacode,
with distance 4. It can be generated by the matrix Af + ωI, with associated
function, f ∈ ZRM(2, 6) given by f = 2(x0x1 + x0x2 + x1x2 + x3x4 + x3x5 +
x4x5 + x0x3 + x1x4 + x2x5), where we zero the diagonal of Af . The graph, GAf

,
is in so-called ‘nested-clique’ form, specifically the ‘2-clique of 3-cliques’ graph
[6]. Let Ag = (Af + I)2. Then g = x0x1 + x0x2 + x1x2 + x3x4 + x3x5 + x4x5,
and GAg is the disjoint sum of two 3-cycles, C3 ⊕C3. Similarly, the dodecacode is
the optimal code for n = 12 with distance 6. It can be represented by a graph,
GAf

, which is a ‘3-clique of 4-cliques’ [6]. Let Ag = (Af + I)2. Then GAg
is the

disjoint sum of two 6-cycles, C6 ⊕ C6. A near-optimal code for n = 18, and with
distance 6, can be represented by a graph, GAf

, which is a ‘2-clique of 3-cliques
of 3-cliques’ [6] (the optimal code has distance 8). Let Ag = (Af + I)6. Then GAg

is the disjoint sum of two 9-cycles, C9 ⊕ C9. Moreover, for Ag′ = (Af + I)2, then
GAg′ is the disjoint sum of two ‘3-clique of 3-cliques’, which is an optimal code for
n = 9 with distance 4. These preliminary observations motivate a classification of
optimal (or near-optimal) codes and of nested-clique graphs that arise as ‘roots’
of the disjoint cycles.
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