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Abstract—In this paper, we extend our work on iterative soft-
input soft-output (SISO) decoding of high density parity check
(HDPC) codes. Edge-local complementation (ELC) is a graph
operation which can be used to give structural diversity during
decoding with the sum-product algorithm (SPA). We describe
the specific subgraphs required for ELC to not increase the
weight of the Tanner graph beyond a specified upper bound. We
call this controlled operation weight-bounding ELC (WBELC). A
generalized iterative SISO HDPC decoder based on SPA decoding
is described, which can be configured to employ our SPA-ELC
decoders, or iterative permutation decoding (SPA-PD). The latter
is a state-of-the-art decoding algorithm for HDPC codes, using
permutations from the automorphism group of the code. We
observe performance improvements over SPA-PD when the SISO
HDPC decoder is configured to use SPA-ELC in conjunction with
WBELC.

I. INTRODUCTION

Iterative soft decision decoding algorithms are known to

give results which approach the theoretical limits postulated

by Shannon [1]. Specifically, the use of such algorithms for

the decoding of random, sparse linear codes yields near-

optimum error-rate performance when the blocklength goes

to infinity. The best known instance is low density parity

check codes, decoded with the sum-product algorithm (SPA).

Inspired by these results, the aim of much research has been

to develop practical (non-asymptotic) codes and decoders ex-

hibiting comparable performance. Recently, iterative decoding

techniques have been adapted to classical linear codes, which

have strong structural properties (large minimum distance,

and small description complexity in hardware implementa-

tion), but are non-sparse. One state-of-the-art decoder for

such high density parity check (HDPC) codes [2] is the

iterative permutation decoder (SPA-PD) [3], which performs

very well on Bose-Chaudhuri-Hocquenghem codes, as well

as on quadratic residue codes [4, 5], over the additive white

Gaussian noise (AWGN) channel. Our paper is an extension

of our previous work on iterative, graph-local decoding of

HDPC codes using a graph operation known as edge-local

complementation (ELC) [5, 6]. The contribution of this work

is the description of subgraphs on which ELC will not increase

the number of edges in the graph beyond a desired threshold–

a trait we call weight-bounding ELC (WBELC). We describe

an SPA-WBELC algorithm – an instance of a generalized

soft-input soft-output (SISO) HDPC decoder – which gives

an improvement over our previous algorithm, SPA-ELC [5].

Fig. 1. ELC on edge (u, v) of a bipartite simple graph. Doubly slashed links
mean that the edges connecting the two sets have been complemented; edges
are replaced by non-edges, and vice versa. This graph may be a subgraph of
a larger graph.

We also extend our scope towards less structured HDPC codes

(i.e., smaller automorphism group), for which we also observe

an improvement over SPA-PD. Most significantly, we show a

gain when the size of the automorphism group is one–moving

towards random codes–in which case SPA-PD ‘reduces’ to

SPA.

A binary linear code C of length n and dimension k is

denoted by [n, k, dmin], and C⊥ is its dual. The autom-

porhism group is denoted by Aut(C), and if it consists of

the identity permutation alone, we say that Aut(C) is trivial.

The (n − k) × n parity check matrix and the corresponding

Tanner graph are denoted by H and TG(H), respectively.
All definitions regarding H have obvious equivalents for

TG(H), and vice versa, so we will use these representations

interchangeably. H is said to be systematic if its columns

can be reordered into the form [I P ], where I is the identity

matrix of size n − k. The transpose of H is written HT .

The weight of H , denoted by |H|, is the number of non-zero

entries in H , and the minimum weight of H is lower-bounded

by max(k(dmin(C) − 1) + n − k, (n − k)dmin(C⊥)). Ac-

cordingly, the number of edges of TG(H) is |H|. The local

neighborhood of a node v is the set of nodes adjacent to v, and
is denoted byNv , whileN

u
v is shorthand notation forNv\{u}.

|EA,B | denotes the number of edges in the subgraph induced

by the nodes in A∪B. Eu,v is shorthand notation for ENv
u

,Nu
v
,

the local neighborhood of the edge (u, v). ELC requires that

H is systematic, so, as a simplification, we may describe the

subgraphs on which ELC is WBELC using a simple bipartite

graph (undirected, no double edges) G =
(

0 P
P T 0

)

. By taking

the P -part as one of the two partitions, G is equivalent to

TG(H), and straight-forward mappings exist to implement

ELC operations directly on TG(H) [5]. The operation of ELC
on an edge (u, v) is to complement the edges of Eu,v , followed

by swapping the nodes u and v–see Fig. 1. In the following,



(a) Theorem 4 (b) Theorem 5

Fig. 2. Depth-2 WBELC. The dashed edge in Theorem 5 is a non-edge. The edges between sets in the (bipartite) subgraphs are not shown.

we will use boldface notation for vectors.

The following section describes WBELC. The remainder

of this article details the application of this controlled ELC

operation in a SISO HDPC decoding algorithm, in an exten-

sion of our previous work on the SPA-ELC decoder. Finally,

we present simulations results, and compare the decoding

algorithms.

II. WBELC

The effect of repeated random ELC is that the average

weight of H tends to
k(n−k)

2 + (n − k). In this section, we

introduce a restriction on the ELC operation, being that an

ELC on a certain edge in the graph is only allowed if |H|
remains below a given threshold, T . We give a complete

description of the conditions that are necessary and sufficient

in order to achieve this bound, both for a single ELC and for

two consecutive ELCs. Using these conditions, we improve

the perormance of the SISO HDPC decoder.

We begin by formalizing the notion of WBELC. If the

weight change due to the complementation caused by ELC

is bounded, then the weight of the entire graph is bounded,

and we say that the ELC is WBELC.

A. Depth 1

There is a simple condition for one ELC to be WBELC.

Theorem 1: ELC on (u, v) does not increase the weight of

the graph by more than a threshold T iff

|N v
u ||N

u
v | − 2|Eu,v| ≤ T.

B. Depth 2

For many graphs, it is simply not possible to bound the

weight increase by any reasonable threshold using only a

single ELC. The notion of WBELC can be extended to the

case of consecutive ELC operations. In this work, we will

completely characterize WBELC to within depth 2, where we

use the compact notation {(u, v), (u′, v′)} for an ordered pair

of edges. Incidentally, the search space can be significantly

reduced from checking all pairs of edges in the graph.

Theorem 2: ELC on {(u, v), (v, v′)}, where v′ ∈ N v
u , gives

the same graph as ELC on (u, v′). Consequently, depth-2

WBELC reduces in this case to depth-1 WBELC.

Note that, due to the swap of ELC on (u, v), (v, v′) and

(u, v′) refer to the same edge–see Fig. 1. From this theorem,

we see that we need only consider pairs of non-adjacent edges,

i.e., at a distance of at least one edge apart. However, it can be

shown that the search space can be further reduced by noting

that the distance can also not be greater than two edges.

Theorem 3: Let T ≥ −1. Any depth-2 WBELC where the

pair of edges are at a distance greater than two edges apart,

will always reduce to either one or two separate instances of

depth-1 WBELC.

One implication of Theorem 3 is that depth-2 WBELC, like

depth-1 WBELC, only acts locally on a graph. For T < −1,
there is an additional case (not discussed in this paper), not

covered by Theorem 3. Thus, the following three theorems

describe all possible depth-2 WBELC cases for T ≥ −1.
Let us first consider the case where the pair of edges are at

a distance of exactly two edges apart, Fig. 2(a). Given an edge

(u, v), let u′′, v′′ /∈ Nu∪Nv be such that G = N v
u ∩N v′′

u′′ 6= ∅,
and, similarily, G′ = N u′′

v′′ ∩N u
v 6= ∅.

Theorem 4: ELC on {(u, v), (u′′, v′′)} does not increase the
weight of the graph by more than a threshold T iff

|N v
u ||N

u
v | + |N v′′

u′′ ||N u′′

v′′ | − 2|Eu,v| +

4|EG,G′ | − 2|ENv′′

u′′
,Nu′′

v′′

| − 2|G||G′| ≤ T.

For the next theorem, given an edge (u, v) and two nodes

u′ and v′, we denote by B = Nu,u′

v ∩ Nu,u′

v′ , A = Nu,u′

v \ B,

C = Nv,v′

v′ \ B, E = Nv,v′

u ∩ Nv,v′

u′ , D = Nv,v′

u \ E, and

F = Nv,v′

u′ \ E, see Fig. 2(b).

We now consider the case where both u′ and v′ are in the

neighborhood of (u, v).
Theorem 5: ELC on {(u, v), (u′, v′)} does not increase the

weight of the graph by more than a threshold T iff

|F | − |E| − |B| − 2|EA,E∪F | − 2|EB,D∪E | − 2|EC,D∪F | +

|C| + |A|(|E| + |F |) + |B|(|D| + |E|) + |C|(|D| + |F |) ≤ T.

Note that the edge (u′, v′) is created by the first ELC. Last,

we consider the case where either u′ or v′ belong to N v
u ∪

N u
v , but not both. Without loss of generality, let v′ ∈ N v

u be

connected to u′ /∈ N u
v .

Theorem 6: ELC on {(u, v), (u′, v′)} gives the same graph

as ELC on {(u, v′), (u′, v)}.
Note that {(u, v′), (u′, v)} is covered by Theorem 5.

III. ITERATIVE SISO HDPC DECODING

We have previously described the SPA-ELC decoder, which,

essentially, consists of SPA iterations interspersed with random

ELC operations [5]. Since ELC complements edges, we avoid



loss of extrinsic information (on edges) by executing a flooding

scheduling SPA iteration in the order ‘functions, then vari-

ables.’ At this point, all messages, µ, have been accumulated

in variable nodes, making it safe to change the graph. A

generalized SISO HDPC decoder is listed in Algorithm 1,

which can be configured to perform the decoding algorithms

compared in this work–see Section IV.

Both SPA-PD and SPA-ELC suffer a performance loss

if the extrinsic contribution of the soft input vector, L, is

not scaled down (damped) in between iterations. For each

variable node, v, the SPA produces a decision based on

two pieces of information; the extrinsic information pro-

duced by the decoder, and the input to iteration j, Lv
j . L0

is the received noisy channel vector and τ is the maxi-

mum number of decoder iterations. The damping coefficient,

α0 ≤ α ≤ 1, represents the amount of ‘trust’ in the extrinsic

information versus the input after the current iteration [2],

Lv
j+1 := Lv

j + α(Σu∈Nv
µv←u

j ), ∀u ∈ Nv . As the decoder

converges, the information produced by the graph is assumed

to become more reliable (hopefully converging towards the

maximum-likelihood codeword), so our trust in the decoder

state may be increased accordingly. This is normally reflected

by incrementing α with iteration number j. A global damping

rule (GD) scales down all variable nodes, and re-initializes all

edges, µv→u
j+1 := Lv

j+1, ∀ v ∈ TG(H). We propose an edge-

local damping rule (LD), which restricts the application of

the damping-and-initialization rule to new edges due to ELC

on (u, v), µv′→u′

j+1 := Lv
j+1, ∀ (u′, v′) ∈ Eu,v . All other edges

retain messages computed in iteration j.
SPA-PD applies a random permutation (PD) Lj := σ(Lj),

σ ∈ Aut(C), before re-initializing TG(H) with global damp-

ing. SPA decoding on a fixed graph suffers a performance

loss when global damping is applied, which suggests that the

benefit of damping is to moderate the effects of modifications

(e.g., permutations, Gaussian elimination, ELC) to TG(H).
Note that damping is disabled by configuring α0 := 1.

A. SPA-WBELC

The SPA-WBELC algorithm uses the theorems in Section II

to determine a random WBELC operation on the current

TG(H), and applies the corresponding one or two ELC

operations, with edge-local damping. Let Hj denote the matrix

after j iterations of the SISO HDPC decoder. It is helpful to

reduce the weight of the initial matrix, H0, in a preprocessing

stage, as this has a positive effect on SPA decoding. This

can be done using repeated random WBELC with T = −1,
for non-increasing weight. A simple but effective heuristic,

if the preprocessing gets stuck, is to allow one random

(i.e., unbounded) ELC. Then, for SPA-WBELC decoding, a

threshold T ≥ −1 must be determined, such that WBELC

yields a sufficient number of distinct matrices of weight

|H| ≤ |H0| + T , to give structural diversity during decoding.

IV. RESULTS

The aim of this paper is to explore the effects of ELC decod-

ing, while maintaining a bound on the weight of TG(H). We

Algorithm 1 SISO-HDPC(p, I1, I2, I3, α0,OP,DR)
1: α = α0

2: for I3 times do

3: Restart decoder from channel vector

4: for I2 times do

5: Stop if syndrome check is satisfied

6: Apply damping rule, DR, with coefficient α
7: Apply at random p operations, OP
8: for I1 times do

9: Apply SPA iteration (‘flooding’ scheduling)

10: end for

11: end for

12: Increment α towards 1

13: end for

will show that the SPA-WBELC decoder outperforms SPA-

PD when Aut(C) is small. For this work, we chose the best

codes we could find at practical blocklengths: two extremal (in

terms of minimum distance) self-dual [36, 18, 8] and [38, 19, 8]
codes from [7], and an extremal double circulant self-dual

[68, 34, 12] code from [8]. We use the notation Cn to refer

to these codes, and we have that |Aut(Cn)| ≈ n, except C38

which has a trivial Aut(C).
The matrices used were optimized on weight, both in non-

systematic form (for SPA and SPA-PD), as well as systematic

form (for SPA-ELC and SPA-WBELC). For C36 and C38, we

were able to compute the entire ELC orbit of the codes, to find

optimal-weight matrices in systematic form to be |H36
0 | = 156

and |H38
0 | = 166. For C68, the orbit is infeasibly large,

yet, using WBELC preprocessing, we were able to find a

systematic matrix of weight |H68
0 | = 488. For non-systematic

form, minimum-weight codewords of C⊥ were combined to

assemble matrices of weight 152, 154, and 492, respectively,
which is very close to the lower bound based on dmin(C⊥).
The simulation results compare the pro-

posed SPA-WBELC(p, I1, I2, I3, α0, T ) = SISO-

HDPC(p, I1, I2, I3, α0,WBELC(T ),LD) decoder against

standard SPA(τ) = SISO-HDPC(0, 1, τ, 1, 1,−,−), where

we ensure that τ = I1I2I3; SPA-PD(I1, I2, I3, α0) =

SISO-HDPC(1, I1, I2, I3, α0,PD,GD); and our previous

ELC decoder, SPA-ELC(p, I1, I2, I3, α0) = SISO-

HDPC(p, I1, I2, I3, α0,ELC,LD). We compare frame-error

rate (FER) when signalling over the AWGN channel, and

measure complexity in SPA messages, 1
F

ΣF ΣJ≤τ
j=0 |Hj |,

where J is the number of iterations used for a frame, and

F the total number of frames simulated. For comparisons

between SPA-ELC and SPA-WBELC, we use a comparative

number, p, of ELC operations (one WBELC is one or

two ELC operations). The most significant result is that

SPA-WBELC outperforms SPA-PD in FER on C38 and C36,

even when Aut(C) is non-trivial. For C68, we approach the

performance of SPA-PD quite closely. In addition, we see that

SPA-WBELC will generally result in an improvement over

SPA-ELC. This gain is consistent for all codes attempted,

and is most significant at low signal-to-noise ratio (SNR). At



high SNR, the performance of SPA-WBELC will, in general,

approach that of SPA-ELC. This is assumed to be linked

to the average number of iterations per frame approaching

zero, such that the number of operations (ELC or WBELC)

also goes down, diminishing the difference between the

respective decoders. The point at which the performance of

SPA-WBELC ‘breaks off’ towards SPA-ELC is influenced

by the choice of T . By increasing T , the break occurs at

higher SNR. Yet, this is obviously at the expense of increased

average weight, such that, for some T sufficiently high,

SPA-WBELC equals SPA-ELC also at low SNR.
For C38, Aut(C) is trivial, such that SPA-PD ‘reduces’ to

SPA. In this extreme setting, ELC-based decoding has its

most interesting gain. The SISO HDPC decoder is sensitive to

choice of parameters, so various configurations (of T , I1, I2,

I3, and p) were systematically attempted in order to arrive at

the presented data.
For complexity, we observe the desired effect of bounding

the weight increase due to ELC. For SPA-ELC, the average

weight of H quickly settles around k(k + 2)/2 (the codes

are self-dual), whereas for SPA-WBELC, the average weight

is |H0| + T . The SPA-WBELC decoder has a uniform im-

provement in complexity over both SPA and SPA-ELC, and

can also be pushed down quite close to SPA-PD. We have

also simulated SPA and SPA-PD on systematic matrices (not

shown), to verify that FER performance is not significantly

sensitive to this.

V. CONCLUSION

We have developed a new algorithm for the decoding of

linear codes on graphs, which is particularly suited for HDPC

codes. The main idea of this work is to use a graph operation,

ELC, in a controlled manner. We described the necessary and

sufficient conditions for this operation to be weight-bounding,

and discuss its application in SPA decoding. The results show

a significant improvement over standard (flooding) SPA, our

previous algorithm SPA-ELC, as well as over SPA-PD in codes

with limited structure.
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(a) C36 = [36, 18, 8], with |Aut(C)| = 32
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(b) C38 = [38, 19, 8], with |Aut(C)| = 1
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(c) C68 = [68, 34, 12], with |Aut(C)| = 68

Fig. 3. Simulations results. Each SNR point is simulated until at least 100
frame-error events were observed (otherwise, error bars indicate significance).
The union bound is calculated based on the full weight enumerator of the code.


