
On the Classification of
Self-Dual Additive Codes over GF(9)

Lars Eirik Danielsen
Department of Informatics, University of Bergen, N-5020 Bergen, Norway

Email: larsed@ii.uib.no

Abstract—Additive codes over GF(9) that are self-dual with
respect to the Hermitian trace inner product have previously
been classified up to length 8. In this paper, all codes of length 9
and 10 are classified, using a new algorithm that combines two
graph representations of codes. First, the search space is reduced
by the fact that every self-dual additive code can be mapped
to a weighted graph. Then a different graph is described that
transforms the problem of code equivalence into a problem of
graph isomorphism.

I. INTRODUCTION

An additive code, C, over GF(9) of length n is a GF(3)-
linear subgroup of GF(9)n. C contains 3k codewords for
some 0 ≤ k ≤ 2n, and can be defined by a k × n
generator matrix, with entries from GF(9), whose rows span
C additively. C is called an (n, 3k) code. We denote GF(9) =
{0, 1, ω, ω2, . . . , ω7}, where ω2 = ω + 1 and ω4 = −1.
Conjugation of x ∈ GF(9) is defined by x = x3. The trace
map, Tr : GF(9)→ GF(3), is defined by Tr(x) = x+x. The
Hermitian trace inner product of two vectors u,v ∈ GF(9)n

is given by (u,v) = ω2(u · v − u · v) = Tr(ω2u · v), where
multiplication by ω2 ensures that the product takes values in
GF(3) [1]. We define the dual of the code C with respect
to the Hermitian trace inner product, C⊥ = {u ∈ GF(9)n |
(u, c) = 0 for all c ∈ C}. If C = C⊥, then C is self-dual
and must be an (n, 3n) code. The Hamming weight of u,
denoted wt(u), is the number of non-zero components of u.
The Hamming distance between u and v is wt(u− v). The
minimum distance of the code C is the minimal Hamming
distance between any two distinct codewords of C. Since C is
an additive code, the minimum distance is also given by the
smallest non-zero weight of any codeword in C. A code with
minimum distance d is called an (n, 3k, d) code. The weight
distribution of the code C is the sequence (A0, A1, . . . , An),
where Ai is the number of codewords of weight i. The weight
enumerator of C is the polynomial W (y) =

∑n
i=0Aiy

i. It
follows from the Singleton bound [2] that any self-dual additive
code must satisfy d ≤ bn

2 c+1. C is called extremal if it attains
the minimum distance d given by this bound, and near-extremal
if it has minimum distance d−1. If a code has highest possible
minimum distance for the given length, it is called optimal.

Two self-dual additive codes over GF(9) are equivalent if
the codewords of one can be mapped onto the codewords of
the other by a transformation that preserves the properties
of the code, i.e., weight enumerator, additivity, and self-
duality. It is known [2] that this group of transformations

is Sp2(3) o Sym(n), i.e., permutations of the coordinates
combined with operations from the symplectic group Sp2(3)
applied independently to each coordinate.1 Let an element
a + bω ∈ GF(9) be represented as

(
a
b

)
∈ GF(3)2. We can

then premultiply this element by a 2 × 2 matrix. The group

Sp2(3) =
〈(

1 1
1 −1

)
,

(
1 1
0 1

)〉
has order 24 and contains

all 2× 2 matrices with elements from GF(3) and determinant
one. The order of Sp2(3) o Sym(n) is 24nn!, and hence this
is the total number of maps that take a self-dual additive code
over GF(9) to an equivalent code. By translating the action of
Sp2(3) on

(
a
b

)
into operations on elements c = a+bω ∈ GF(9),

we find that the operations we can apply to all elements in
a coordinate of a code are c 7→ xc if x4 = 1, or c 7→ xc if
x4 = −1, given x ∈ GF(9), and a+ bω 7→ a+ yb+ bω, for
y ∈ GF(3).

A transformation that maps C to itself is called an automor-
phism of C. All automorphisms of C make up the automorphism
group of C, denoted Aut(C). The number of distinct codes
equivalent to C is then given by 24nn!

|Aut(C)| . The equivalence class
of C contains all distinct codes that are equivalent to C. By
adding the sizes of all equivalence classes of codes of length n,
we find the total number of distinct codes of length n, denoted
Tn. The number Tn is also given by a mass formula [1], [3]:

Tn =
n∏

i=1

(3i + 1) =
tn∑

j=1

24nn!
|Aut(Cj)|

, (1)

where tn is the number of equivalence classes of codes of
length n, and Cj is a representative from each equivalence
class. The smallest possible automorphism group, called the
trivial automorphism group, of a self-dual additive code over
GF(9) is {I,−I}, i.e., it consists of global multiplication of
coordinates by 1 or −1. By assuming that all codes of length
n have a trivial automorphism group, we obtain from the mass
formula a lower bound on tn:

tn ≥
⌈

2
∏n

i=1(3i + 1)
24nn!

⌉
. (2)

Note that when n is large, most codes have a trivial automor-
phism group, so the tightness of the bound increases with n. As
we will see in Section V, for n = 10, 80% of all codes have a

1Global conjugation of all coordinates will also preserve the properties of
the code. This weak equivalence [1] is not considered in this paper.



trivial automorphism group, and the bound (2) underestimates
t10 by just 19%.

Any linear code over GF(9) which is self-dual with respect
to the Hermitian inner product, (u,v) = u·v, is also a self-dual
additive code with respect to the Hermitian trace inner product.
The operations that map a self-dual linear code to an equivalent
code are more restrictive than for additive codes, since GF(9)-
linearity must now be preserved. Only coordinate permutations
and multiplication of single coordinates by x ∈ GF(9) where
x4 = 1 is allowed. It follows that only additive codes that
satisfy certain constraints can be equivalent to linear codes.2

Trace-Hermitian self-dual additive codes over GF(q) exist
for q = r2, where r is a prime power. The first case, GF(4),
has been studied in detail, in particular since an application to
quantum error-correction was discovered [4]. The next case,
GF(9), has received less attention, although these codes have
similar application in quantum error-correction [2].

In Section II we briefly review the connection between self-
dual additive codes and weighted graphs. The main contribution
of this paper is a new algorithm for checking equivalence of
self-dual additive codes over GF(9), described in Section III,
which is a generalization of a known algorithm for linear
codes [5]. Combining this algorithm with the weighted graph
representation, and some other optimizations, enables us to
classify all codes of length up to 10 in Section IV. In particular,
all near-extremal codes of length 9 and 10 are classified for
the first time. We also find the smallest codes with trivial
automorphism group.

II. CODES AND WEIGHTED GRAPHS

An m-weighted graph is a triple G = (V,E,W ), where V
is a set of vertices, E ⊆ V × V is a set of edges, and W
is a set of weights from GF(m), such that each edge has an
associated non-zero weight. In an unweighted graph, which
can simply be described by a pair G = (V,E), all edges have
weight one. A graph with n vertices can be represented by an
n×n adjacency matrix Γ, where the element Γi,j = W ({i, j})
if {i, j} ∈ E, and Γi,j = 0 otherwise. A loop-free undirected
graph has a symmetric adjacency matrix where all diagonal
elements are 0. In a directed graph, edges are ordered pairs, and
the adjacency matrix is not necessarily symmetric. In a colored
graph, the set of vertices has been partitioned into disjoint
subsets, and each subset has been assigned a color. Two graphs
G = (V,E) and G′ = (V,E′) are isomorphic if and only if
there exists a permutation π of V such that {u, v} ∈ E ⇐⇒
{π(u), π(v)} ∈ E′. We also require that edge weights are
preserved, i.e., W ({u, v}) = W ({π(u), π(v)}). In a colored
graph, we require the permutation to be color preserving. The
automorphism group of a graph is the set of vertex permutations
that map the graph to itself. A path is a sequence of vertices,
(v1, v2, . . . , vi), such that {v1, v2}, {v2, v3}, . . . , {vi−1, vi} ∈
E. A graph is connected if there is a path from any vertex to
any other vertex in the graph.

2The correspondence between the additive codes classified in this paper and
linear codes will be considered in future work.

1 1

−1

1

Fig. 1. Graph Representation of (4, 34, 3) Code

If an additive code over GF(9) has a generator matrix of
the form C = Γ + ωI , where I is the identity matrix, ω is
a primitive element of GF(9), and Γ is the adjacency matrix
of a loop-free undirected 3-weighted graph, we say that the
generator matrix is in standard form. A generator matrix in
standard form must generate a code that is self-dual with
respect to the Hermitian trace inner product, since it has full
rank over GF(3) and CC

T
= Γ2 + Γ− I only contains entries

from GF(3), and hence the traces of all elements of w2CC
T

will be zero.
It is known that every self-dual additive code is equivalent

to a code with a generator matrix in standard form [6], [7].
Write the generator matrix C = A+ ωB as an n× 2n matrix
(A | B) with elements from GF(3). If B has full rank, we
simply perform the basis change B−1(A | B) = (Γ | I).
Elements on the diagonal of Γ can be set to zero by operations
a+ bω 7→ a+ yb+ bω, for y ∈ GF(3). In the case where B
has rank k < n, we can assume, after a basis change, that the
first k rows and columns of B form a k × k invertible matrix.
By the operation c 7→ ωc, for c = a + bω, corresponding to

the symplectic matrix
(

0 −1
1 0

)
, we can replace column ai

by −bi and bi by ai. In this way, we “swap” the n− k last
columns of A and B. It can be shown, from the self-duality
of the code, that the new matrix B must have full rank [8],
[9], and the standard form is then obtained as above. It also
follows from self-duality that the obtained Γ will always be a
symmetric matrix.

As an example, consider the (4, 34, 3) code generated by C
which by the described method is transformed into the standard
form generator matrix C ′, corresponding to the weighted graph
depicted in Fig. 1:

C =


1 0 1 ω2

ω 0 ω ω3

0 1 ω2 1
0 ω ω3 ω

 C ′ =


ω −1 0 1
−1 ω 1 0
0 1 ω 1
1 0 1 ω


It is known that two self-dual additive codes over GF(4)

are equivalent if and only if their corresponding graphs
are related by a sequence of graph operations called local
complementations (LC) [8], [10] and a permutation of the
vertices. Equivalence classes of self-dual additive codes over
GF(9) can also be represented as orbits of weighted graphs
with respect to a generalization of LC [11]. We have previously
used LC to classify self-dual additive codes over GF(4) of
length up to 12 [12], but were only able to reach length 8 for
self-dual additive codes over GF(9) [9]. The main problem



is that the size of the LC orbits of weighted graphs quickly
get unmanageable as the number of vertices increase. We must
therefore use another method for checking code equivalence,
which is described in the next section. This algorithm uses a
graph representation of self-dual additive codes over GF(9)
that is not related to the representation described in this section,
and does not require the input to be in standard form. However,
the weighted graph representation will still be very useful in
reducing our search space.

III. EQUIVALENCE GRAPHS

To check whether two self-dual additive codes over GF(9)
are equivalent, we modify a known algorithm used for checking
equivalence of linear codes [5]. The idea is to map a code
to an unweighted, directed, colored equivalence graph such
that the automorphism groups of the code and the equivalence
graph coincide.

An important component of the algorithm is to find a suitable
coordinate graph. For self-dual additive codes over GF(9),
we need to construct a graph G on eight vertices, labeled
with the non-zero elements from GF(9), whose automorphism
group is Sp2(3). This graph, shown as a subgraph of Fig. 2,
was found by adding directed edges (σ1, σω) for all σ ∈
Sp2(3). This ensures that Sp2(3) ⊆ Aut(G). We then verify
that |Aut(G)| = 24 which implies that Aut(G) = Sp2(3).

Fig. 3 shows examples of coordinate graphs for some
other families of codes over GF(9). In the original algorithm
for checking equivalence of linear codes [5], the coordinate
graph shown in Fig. 3a would be used. This graph has an
automorphism group of size eight, corresponding to the fact
that multiplication of a coordinate by any non-zero element
from GF(9) preserves linearity. The more restrictive coordinate
graph for Hermitian self-dual linear codes over GF(9) is shown
in Fig. 3b. This graph has an automorphism group of size four,
since only multiplication by x ∈ GF(9) where x4 = 1 is
permitted in this case.

To construct the equivalence graph of a code, we add n
copies of the coordinate graph, each copy representing one
coordinate of the code. We then need to find a set of codewords
of some weights that generate the code. First, we check if the
set of all codewords of minimum weight d suffices. If it does
not, we add all codewords of weight d+ 1, then all codewords
of weight d + 2, etc, until we have a set of codewords that
generate the code. For each codeword ci in the resulting set,
we add a codeword vertex vi to the equivalence graph. Let
the codeword vertices have one color, and the other vertices
have a different color. Edges are added between vi and the
coordinate graphs according to the non-zero coordinates of
the codeword ci, e.g., if ci has ω in coordinate j, then there
is an edge between vi and the vertex labeled ω in the jth
coordinate graph. As an example, Fig. 2 shows the case where
c1 = (ω1 · · · 1). The resulting equivalence graph is finally
canonized, i.e., relabeled, but with coloring preserved, using
the nauty software [13]. If two graphs are isomorphic, their
canonical representations are guaranteed to be the same.

ω2

ω6

ω4

ω3ω

ω7 ω5

1

ω2

ω6

ω4

ω3ω

ω7 ω5

1

1

ω2

ω6

ω4

ω3ω

ω7 ω5

...

...

vm

v2

v1

Fig. 2. Example of Equivalence Graph

ω5

ω6

1

ω

ω2

ω3

ω4

ω7

(a) Linear

ω5

ω6

1

ω

ω2

ω3

ω4

ω7

(b) Hermitian Self-Dual Linear

Fig. 3. Coordinate Graphs for Other Codes over GF(9)

Applying a canonical permutation to the vertices of an
equivalence graph corresponds to permuting the coordinates of
the corresponding code, applying elements from Sp2(3) to each
coordinate, and sorting the codewords ci in some canonical
order. If two codes are equivalent, their canonical equivalence
graphs will be identical. Furthermore, the automorphism
group of a code is equivalent to the automorphism group
of its equivalence graph. This follows from the fact that
any automorphism of the equivalence graph must be one
out of 24nn! possibilities, i.e., the n! permutations of the
n coordinate subgraphs, and the 24 automorphisms of each
coordinate subgraph. No other automorphisms are possible. In
particular, permuting the codeword vertices will never be an
automorphism, since all codewords must be distinct. Since it



is known [2] that coordinate permutations and Sp2(3) applied
to the coordinates of a code preserve its weight enumerator,
additivity, and self-duality, this must also be true for any
automorphism of the equivalence graph.

IV. CLASSIFICATION

Since every weighted graph corresponds to a self-dual
additive code, and every self-dual additive code, up to equiv-
alence, can be represented as a weighted graph, we only
need to consider 3-weighted graphs to classify all self-dual
additive codes over GF(9). Permuting vertices of a graph
corresponds to permuting coordinates of the associated code,
which means that we only need to consider these graphs
up to isomorphism. Moreover, we can restrict our study to
connected graphs, since a disconnected graph represents a
decomposable code. A code is decomposable if it can be
written as the direct sum of two smaller codes. For example,
let C be an (n, 3n, d) code and C′ an (n′, 3n′ , d′) code. The
direct sum, C ⊕ C′ = {u||v | u ∈ C, v ∈ C′}, where ||
means concatenation, is an (n+ n′, 3n+n′ ,min{d, d′}) code.
All decomposable codes of length n can be generated easily
once all indecomposable codes of length less than n are known.

To classify codes of length n, we could take all non-
isomorphic connected 3-weighted graphs on n vertices, map
the corresponding codes to equivalence graphs, and canonize
these. All duplicates would then be removed to obtain one
representative code from each equivalence class. However, a
much smaller set of graphs is obtained by taking all possible
lengthenings [14] of all codes of length n − 1. A generator
matrix in standard form can be lengthened in 3n−1 − 1 ways,
by adding a vertex to the corresponding graph, and connecting
it to all possible combinations of at least one of the old
vertices, using all possible combinations of edge weights. This
corresponds to adding a new row r ∈ GF(3)n and column
rT to the adjacency matrix, with zero in the last coordinate.
Only half of the lengthenings need to be considered, since
adding the row −r is equivalent to adding r. This can be
verified by multiplying row and column n in the corresponding
generator matrix by −1. It has been shown [9], using the theory
of local complementation of weighted graphs, that the set of
in−1

3n−1−1
2 codes obtained by lengthening one representative

from each of the in−1 equivalence classes of indecomposable
codes of length n− 1 must contain at least one representative
from each equivalence class of the indecomposable codes of
length n.

Removing possible isomorphisms from the set of length-
ened graphs, using nauty [13], speeds up our classification
significantly. A set of non-isomorphic graphs that have already
been processed, as large as memory resources permit, can even
be stored between iterations, and new graphs can be checked
for isomorphism against this set. For each graph that is not
excluded by such an isomorphism check, the corresponding
code must be mapped to an equivalence graph which is
canonized and compared with all previously generated codes,
which are stored in memory. Since the equivalence graphs
will be large, typically containing thousands of vertices for

TABLE I
NUMBER OF INDECOMPOSABLE (in) AND TOTAL NUMBER (tn) OF

SELF-DUAL ADDITIVE CODES OVER GF(9) OF LENGTH n

n 1 2 3 4 5 6 7 8 9 10

in 1 1 1 3 5 21 73 659 17 589 2 803 404

tn 1 2 3 7 13 39 121 817 18 525 2 822 779

TABLE II
NUMBER OF INDECOMPOSABLE SELF-DUAL ADDITIVE CODES OVER

GF(9) OF LENGTH n AND MINIMUM DISTANCE d

d\n 2 3 4 5 6 7 8 9 10

2 1 1 2 4 15 51 388 6240 418 088

3 1 1 5 20 194 6975 893 422

4 1 2 77 4370 1 487 316

5 4 4577

6 1

All 1 1 3 5 21 73 659 17 589 2 803 404

n = 10, we map the equivalence graph to a canonical generator
matrix by taking the first n linearly independent codewords
corresponding to codeword vertices in their canonical ordering.
This generator matrix can further be mapped to a canonical
standard form, as described in Section II, which means that
only

(
n
2

)
ternary symbols need to be stored for each code.

The special form of a generator matrix in standard form
makes it easy to find all codewords of low weight, which is
necessary to construct the equivalence graph. If C is generated
by C = Γ + ωI , then any codeword formed by taking GF (3)-
linear combinations of i rows of C must have weight at least
i. This means that we can find all codewords of weight i by
only considering combinations of at most i rows of C.

V. CONCLUSION

Using the described approach, we have classified all codes
of length up to 10. Table I gives the values of in, the number of
inequivalent indecomposable codes of length n, and the values
of tn, the total number of inequivalent codes of length n.
Table II lists the numbers of indecomposable codes by length
and minimum distance. In Table III, we count the distinct
weight enumerators. There are obviously too many codes of
length 9 and 10 to list all of them here, so an on-line database
containing one representative from each equivalence class has
been made available at http://www.ii.uib.no/∼larsed/nonbinary/.
The extremal codes of length 9 and 10 have been described
before [9], but the classification of the 4370 near-extremal
(9, 39, 4) codes and 4577 near-extremal (10, 310, 5) codes is
new.

That our classification is correct has been verified by
the mass formula (1). This required us to also calculate
the sizes of the automorphism groups of all decomposable
codes, which was simplified by the observation that for a
code C = k1C1 ⊕ · · · ⊕ kmCm, where kjCj =

⊕kj

i=1 Cj ,
|Aut(C)| =

∏m
i=1 ki! |Aut(Ci)|ki .



TABLE III
NUMBER OF DISTINCT WEIGHT ENUMERATORS OF INDECOMPOSABLE

CODES OF LENGTH n AND MINIMUM DISTANCE d

d\n 2 3 4 5 6 7 8 9 10

2 1 1 2 4 14 42 202 1021 8396

3 1 1 3 9 33 170 1133

4 1 1 9 25 345

5 1 10

6 1

All 1 1 3 5 18 52 244 1217 9885

TABLE IV
NUMBER OF CODES OF LENGTH n AND MINIMUM DISTANCE d WITH

TRIVIAL AUTOMORPHISM GROUP

d\n ≤ 7 8 9 10

3 32 4518 832 878

4 3 3056 1 419 861

5 3795

All 0 35 7574 2 256 534

We find that the smallest codes with trivial automorphism
group are 35 codes of length 8.3 Generator matrices for
these codes can be obtained from http://www.ii.uib.no/∼larsed/
nonbinary/. Table IV gives the numbers of codes with trivial
automorphism group by length and minimum distance. It is
easy to show that codes with minimum distance d ≤ 2 will
always have nontrivial automorphisms. For d = 1, we can
assume that the first column of a standard form generator

matrix is (ω0 · · · 0)T. Then
(

1 0
1 1

)
∈ Sp2(3) applied to the

first coordinate of the code is an automorphism of order 3.
For d = 2, we can assume that the first column of a standard

form generator matrix is (ω10 · · · 0)T, then
(

1 0
1 1

)
∈ Sp2(3)

applied to the first coordinate and
(

1 1
0 1

)
∈ Sp2(3) applied

to the second coordinate of the code has the same effect as
adding the first row of the generator matrix to the second row,
and is hence an automorphism of order 3.

According to the mass formula bound (2), the total number
of codes of length 11 is t11 ≥ 1 592 385 579, which makes
a complete classification infeasible with our computational
resources. Running our algorithm on a typical desktop computer,
the classification of codes of length n was completed in less
than five minutes for n ≤ 8, about two hours for n = 9,
and about a week for n = 10. Most of this time is spent
canonizing the equivalence graphs with nauty, and far more
time is used on codes with large automorphism groups than
on codes with trivial or small automorphism groups. This
means that our previous classification algorithm [9], using
local complementation, might still be useful in some cases,
since we observe that graphs corresponding to codes with

3Automorphism group sizes were not calculated in the previous classification
of codes of length 8 [9].

large automorphism groups typically have small LC orbits. For
instance, we could speed up our classification algorithm by
not only removing isomorphisms from the set of lengthened
codes, but also generating and storing a limited number of LC
orbit members of each graph, and checking new graphs for
isomorphism against this set.

By lengthening an (n, 3n, d) code, we obtain an (n +
1, 3n+1, d′) code, where d′ ≤ d+1 [14]. It follows that given a
classification of all codes of length n and minimum distance at
least d, we can classify all codes of length n+1 and minimum
distance at least d + 1. There are no (11, 311, 6) codes, but
by lengthening the 1 491 894 (10, 310, d) codes for d ≥ 4, we
would obtain all optimal (11, 311, 5) codes. Preliminary results
show that there are several million inequivalent such codes. If
this classification can be completed, it should also be feasible,
and of greater interest, to find all all optimal (12, 312, 6) codes.

ACKNOWLEDGEMENT

The author would like to thank an anonymous reviewer for
providing useful suggestions and corrections. This research
was supported by the Research Council of Norway.

REFERENCES

[1] G. Nebe, E. M. Rains, and N. J. A. Sloane, Self-dual codes and invariant
theory, ser. Algorithms and Computation in Mathematics. Berlin:
Springer-Verlag, 2006, vol. 17.

[2] E. M. Rains, “Nonbinary quantum codes,” IEEE Trans. Inform. Theory,
vol. 45, no. 6, pp. 1827–1832, 1999.

[3] G. Höhn, “Self-dual codes over the Kleinian four group,” Math. Ann.,
vol. 327, no. 2, pp. 227–255, 2003.

[4] A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum
error correction via codes over GF(4),” IEEE Trans. Inform. Theory,
vol. 44, no. 4, pp. 1369–1387, 1998.

[5] P. R. J. Östergård, “Classifying subspaces of Hamming spaces,” Des.
Codes Cryptogr., vol. 27, no. 3, pp. 297–305, 2002.

[6] M. Grassl, A. Klappenecker, and M. Rötteler, “Graphs, quadratic forms,
and quantum codes,” in Proc. IEEE Int. Symp. Inform. Theory, 2002,
p. 45.

[7] D. Schlingemann, “Stabilizer codes can be realized as graph codes,”
Quantum Inf. Comput., vol. 2, no. 4, pp. 307–323, 2002.

[8] M. Van den Nest, J. Dehaene, and B. De Moor, “Graphical description
of the action of local Clifford transformations on graph states,” Phys.
Rev. A, vol. 69, no. 2, p. 022316, 2004.

[9] L. E. Danielsen, “Graph-based classification of self-dual additive codes
over finite fields,” Adv. Math. Commun., vol. 3, no. 4, pp. 329–348, 2009.

[10] A. Bouchet, “Graphic presentations of isotropic systems,” J. Combin.
Theory Ser. B, vol. 45, no. 1, pp. 58–76, 1988.

[11] M. Bahramgiri and S. Beigi, “Graph states under the action of local
Clifford group in non-binary case,” 2006, preprint. [Online]. Available:
http://arxiv.org/abs/quant-ph/0610267

[12] L. E. Danielsen and M. G. Parker, “On the classification of all self-dual
additive codes over GF(4) of length up to 12,” J. Combin. Theory Ser. A,
vol. 113, no. 7, pp. 1351–1367, 2006.

[13] B. D. McKay, nauty User’s Guide, Version 2.4, Nov. 2009. [Online].
Available: http://cs.anu.edu.au/∼bdm/nauty/nug.pdf

[14] P. Gaborit, W. C. Huffman, J.-L. Kim, and V. Pless, “On additive GF(4)
codes,” in Codes and Association Schemes, ser. DIMACS Ser. Discrete
Math. Theoret. Comput. Sci., vol. 56. Providence, RI: Amer. Math.
Soc., 2001, pp. 135–149.


