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Abstract—We describe the application of edge-local comple-
mentation (ELC) to a Tanner graph associated with a binary
linear code, C. Various properties of ELC are described, mainly
the special case of isomorphic ELC operations and the rela-
tionship to the automorphism group of the code, Aut(C), and
the generalization of ELC to weight-bounding ELC (WB-ELC)
operations under which the number of edges remains upper-
bounded. ELC generates all systematic parity-check matrices
(the orbit) of the code, so WB-ELC facilitates a restriction to
low-weight matrices of this orbit. We propose using ELC and WB-
ELC as a source of diversity, to improve iterative soft-input soft-
output decoding of high-density parity-check (HDPC) codes, with
the sum-product algorithm (SPA). A motivation of ELC-enhanced
SPA decoding is locality; that diversity is achieved by local graph
action, and is well-suited to the local actions that constitute the
SPA and allows for parallel software implementation. Simulation
data on the error-rate performance of the proposed SPA-ELC
and SPA-WBELC iterative decoding algorithms is shown for
several HDPC codes. A gain is reported over SPA decoding, and
over a recently proposed algorithm to decode HDPC codes using
permutations from Aut(C). ELC-enhanced decoding extends the
scope of iterative decoding to codes with trivial Aut(C).

Index Terms—Automorphism group, edge-local complementa-
tion (ELC), high-density parity-check (HDPC) codes, iterative
decoding, Tanner graph.

I. INTRODUCTION

Iterative soft decision decoding algorithms, applied to
suitably designed codes, have been shown to give results
which, asymptotically, closely approach the theoretical limits
established by Shannon. The advent of turbo codes in 1993
[1] and the rediscovery of low-density parity-check (LDPC)
codes at around the same time [2] (LDPC codes were actually
invented by Gallager in 1962 [3]) caused much attention to
be focused on iterative decoding of large, random or pseudo-
random, sparse linear block codes. The sum-product algorithm
(SPA) [4] is the standard soft decision iterative algorithm
for decoding of LDPC codes on Tanner graphs. The sparse,
random nature of these codes makes them well-suited for
SPA decoding, using efficient software implementations (factor
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Switzerland, March 2010.

J. Knudsen, L. E. Danielsen, C. Riera, and E. Rosnes were with the Selmer
Center, Department of Informatics, University of Bergen, N-5020 Bergen,
Norway. J. Knudsen and L. E. Danielsen are now with Webstep, Lars Hillesgate
20A, 5008 Bergen, Norway. C. Riera is with Bergen University College,
Postboks 7030, 5020 Bergen, Norway. E. Rosnes is with Ceragon Networks,
Kokstadveien 23, 5257 Kokstad, Norway. M. G. Parker is with the Selmer
Center. E-mail: {joakimk, larsed, eirik, matthew}@ii.uib.no, and csr@hib.no.

graphs). Asymptotically, optimum decoding performance is
approximated at a complexity linear in code length. However,
the large size and random nature of turbo and LDPC codes has
negative implications when these are to be used in practice.
This inspired researchers to adapt SPA decoding to small-size
linear block codes, with blocklengths in the hundreds of bits
or below. At small blocklengths, one has the benefit of using
strong, nonrandom codes – “classical codes” – for which useful
properties are known, such as large minimum distance and
nontrivial automorphism group. It is, however, known that
many families of codes – e.g., Bose-Chaudhuri-Hocquenghem
(BCH) and Reed-Solomon (RS) codes – do not have Tanner
graphs without cycles of length 4 [5]. Furthermore, these codes
typically do not have sparse duals (i.e., sparse parity-check
matrices) [6], so, when such codes are revisited from the
context of iterative soft decoding, these are commonly referred
to as high-density parity-check (HDPC) codes. Recently, the
adaptation of iterative soft-input soft-output (SISO) decoding
techniques to HDPC codes has received much attention [7]–
[13].

This paper describes the pseudorandom use of a simple-graph
operation known as edge-local complementation (ELC) [14],
[15] to improve the performance of SPA decoding. One advan-
tage of ELC-enhanced SPA decoding is the locality argument;
diversity is achieved by local graph action, and so is well-suited
to the local actions that constitute the SPA. Diversity stems
from the change in Tanner graph due to the complementation
of edges in a local subgraph. The locality also allows for
an efficient parallel software implementation of ELC, in a
similar way as for the SPA. The local complementations (which
correspond to row-additions on the associated parity-check
matrix) which comprise an ELC operation may be performed
in parallel. Also, we will show that disjoint ELC operations
are independent, and may be performed simultaneously. The
effect of ELC on a graph is explored, and we define a subset
of ELC operations under which the edge weight of the graph
remains upper-bounded (to within some threshold value). We
identify and describe all possible occurrences of single and
double application of ELC as weight-bounding ELC (WB-
ELC). We also present a further specialization of WB-ELC
to isomorphic ELC (iso-ELC), under which the structure of
the (simple) graph is invariant. We also propose a notion of
Tanner graph equivalence, and explore when ELC preserves
also the Tanner graph. These properties (weight and structure)
are important from an iterative decoding perspective, and are
targeted to improve the error-rate performance of a SISO HDPC
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decoder based on interleaving SPA iterations with random ELC
or WB-ELC operations, giving a novel SPA-ELC and a SPA-
WBELC decoding algorithm. ELC-enhanced decoding is a very
general technique, and may be applied to a wider range of
codes than other algorithms which rely on strong structural
properties of the code (e.g., a large automorphism group). For
other applications of WB-ELC, e.g., weight reduction, we refer
to [16].

A. Outline

This paper is organized as follows. The ELC operation,
which is typically defined for a simple graph, is described in
Section II. A discussion on the action of ELC, in terms of
the resulting graphs, focuses, firstly, on structurally distinct
graphs, and, secondly, on isomorphic graphs with a link to the
automorphism group of the code. Section III presents WB-ELC,
where the action of ELC is discussed in terms of a maximum
permitted weight of the resulting graphs. Finally, in Section IV,
the use of ELC and WB-ELC as sources of diversity during
SPA decoding is described. Two proposed decoding algorithms
– SPA-ELC and SPA-WBELC – are described, simulated, and
compared against other relevant decoding algorithms on several
HDPC codes.

B. Preliminaries

A binary linear code C of length n, dimension k, and
minimum distance dmin is denoted by [n, k, dmin], where dmin

is defined as the minimum Hamming weight of any nonzero
codeword. The dual code is C⊥, containing the codewords
orthogonal to C, and if C = C⊥ we say the code is self-dual.
Permutations are written in cycle notation, where we only
specify the indices of the affected positions. For example, given
a length-6 vector v and a permutation π = (0, 1, 2)(3, 4), then
u = π(v) means v0 → u1, v1 → u2, v2 → u0, v3 → u4,
and v4 → u3, while v5 → u5. Similarily, π(H) permutes the
columns of a matrix, H . The identity permutation, affecting
no positions, is, then, π = ∅. The automorphism group of
the code, Aut(C), is the group of permutations, σ, which
preserve the code, Aut(C) = {σ : σ(C) = C}. It is well-
known that Aut(C) = Aut(C⊥), and permutations are typically
applied to H (which generates C⊥) during decoding, or (more
conveniently) to the soft-input vector containing the a posteriori
probability (APP) values [9]. If Aut(C) consists of the identity
permutation alone, we say Aut(C) is trivial.

Let Ik be the identity matrix of size k, where we use the
shorthand notation I when the dimension is not important.
The generator matrix, G, generates C, which gives GHT = 0
where ( · )T denotes the transpose of its argument. H is said to
be systematic if its columns can be reordered into the standard
form,

π(H) = [ In−k | P ] (1)

by some column permutation π (not necessarily in Aut(C)).
The column indices 0, 1, . . . , n − 1 are referred to as the
coordinates of the code. An information set, I, of the code
corresponds to any set of k columns in G which can be reduced
to an identity submatrix by means of Gaussian elimination

(GE). The n−k columns at positions P := {0, 1, . . . , n−1}\I
form a parity set. Note that an information set corresponds to a
parity set of the dual code, such that I refers to the P -part of
H . In a systematic parity-check matrix, the columns indexed
by P are referred to as systematic (i.e., weight-1) columns,
while the remaining columns (of weight greater than 1) are
nonsystematic. The (row) index of the single nonzero entry of a
systematic column hi, i ∈ P , is denoted by row(i) ∈ [0, n−k).
In standard form (1), row(i) = i, 0 ≤ i < n− k. The weight
of a matrix, H , (i.e., the number of nonzero entries) is denoted
by |H|.

The Tanner graph, TG(H), associated with H is a (2n−k)-
node bipartite graph with adjacency matrix,

TG(H) =
[

0 H
HT 0

]
.

(At some abuse of notation, we denote both graph and adjacency
matrix by TG(H).) From now on we will assume that H is
systematic. We will also assume no pairwise identical columns,
i.e., dmin > 2. The n “variable” nodes, denoted by vi, 0 ≤
i < n and corresponding to columns of H , are partitioned
into |P| = n− k systematic and |I| = k nonsystematic nodes,
where the former have degree one. The n− k “check” nodes
of TG(H), denoted by fj , 0 ≤ j < n− k and corresponding
to rows of H , each have an associated (adjacent) systematic
variable node. By grouping each check node with its associated
systematic (variable) node, an n-node, (n − k, k)-bipartite,
simple (i.e., undirected, with no double edges or loops) graph
(BSG) is produced, with adjacency matrix,

G = (U ∪ V, E) = π−1
[

0 P
PT 0

]
where π−1 undoes the reordering in (1). E is the set of
edges. The bipartition (U , V) contains the n − k grouped
check/systematic variable nodes and the nonsystematic variable
nodes, respectively. Furthermore, a permutation (here, π−1)
acts on both columns and rows of G. By keeping a record
of the bipartition at all times, we have a one-to-one mapping
between a Tanner graph and a BSG. In summary, given a code
represented by some TG(H), we construct a BSG by ignoring
the systematic variable nodes – see Fig. 2. The number of
edges in G is |G| = |E| = |H| − (n− k) which we refer to as
the weight of G. If nodes in U and V have average degree ρ̄
and γ̄, respectively, we have that |G| = kγ̄ = (n− k)ρ̄. The
local neighborhood of a node v is the set of nodes adjacent to
v, and is denoted by Nv , while N u

v is shorthand notation for
Nv \ {u}. Let EA,B denote the subgraph induced by the nodes
in A ∪ B – i.e., a set of |EA,B | edges. Furthermore, Eu,v is
shorthand notation for ENv

u ,Nu
v

, the local neighborhood of the
edge (u, v). We use the notation {(u, v), . . . , (u′, v′)} for an
ordered list of edges. Define the distance between edges (or
nonedges) (u, v) and (u′, v′) as the shortest path between the
sets of nodes, {u, v} and {u′, v′}.

II. EDGE-LOCAL COMPLEMENTATION

ELC is defined on an edge of a simple graph, G [14]. We
consider only bipartite graphs in this work, which simplifies the
description. ELC on an edge (u, v) ∈ G will complement the
edges of Eu,v (replacing edges with nonedges and vice versa)
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Fig. 1. ELC on edge (u, v) of a BSG. Curved links indicate arbitrary
edges. Bold links mean that the edges connecting the two sets have been
complemented; edges are replaced by nonedges, and vice versa. This graph
may be a subgraph of a larger graph, in which case the rest of the graph
remains unchanged.
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Fig. 2. Example of ELC on a small [9, 4, 4] code, showing also the
corresponding Tanner graphs. White and grey nodes correspond to V and U ,
respectively.

followed by swapping the nodes u and v – see Fig. 1. In this
sense ELC is a local operation as it only affects edges within
distance 1 from the ELC edge, (u, v). The resulting graph,
after ELC, is denoted by G(u,v). ELC (on a simple graph) is a
self-invertible operation as two ELC operations on the same
edge is the identity operation, G{(u,v),(u,v)} = G. The number
of edges affected (inserted or removed) by the application of
ELC is, on average,

|N v
u ||N u

v | ≈ (γ̄ − 1)(ρ̄− 1). (2)

For decoding purposes it is convenient to interpret ELC as
an operation directly on TG(H), implicitly considering the
corresponding simple graph. From this perspective, it is easily
seen that one ELC operation implements the reduction stage of
GE (i.e., row additions) on a single column of H . On TG(H),
ELC is invertible but not self-invertible.

Example 1: Consider the optimal (in terms of dmin) [9, 4, 4]
code, and the Tanner graph shown in Fig. 2(a). Fig. 2(b) shows
the corresponding BSG. Fig. 2(d) shows G(0,5) after ELC on
(0, 5) ∈ G, with the resulting Tanner graph in Fig. 2(c). ELC

applied directly to edge (f0, v5) ∈ TG(H) amounts to adding
row 0 to rows 1, 2, and 3 of H , to get H ′:

H =

[
1 0 0 0 0 1 1 1 1
0 1 0 0 1 1 0 1 1
0 0 1 0 1 1 0 0 0
0 0 0 1 1 1 1 1 0

]
+
+
+

→
[
1 0 0 0 0 1 1 1 1
1 1 0 0 1 0 1 0 0
1 0 1 0 1 0 1 1 1
1 0 0 1 1 0 0 0 1

]
= H ′.

Column 5 has been reduced to systematic form, and row
additions have effectively swapped columns 0 and 5 between
I and P , giving a new information (and parity) set of the code.
The inverse of ELC on (f0, v5) is ELC on (f0, v0), due to the
changed bipartition. �

The link to GE emphasizes that ELC always preserves
the code (i.e., the null space of H). Implemented on the
Tanner graph, the inverse operation must reflect the changed
information set (bipartition), as shown in Fig. 2. In this
work, we refer to ELC on G and on TG(H) interchangeably,
using the simple graph definition to simplify descriptions and
proofs, whilst using the Tanner graph version for practical
implementation in software. We shall use the shorthand notation
(u, v) in the following also when referring to an edge in a
Tanner graph (omitting the notation ‘f ’ and ‘v’). From a
Tanner graph perspective, ELC can be implemented locally and
concurrently in software by letting each check node, u ∈ Nv ,
complement its subset of Eu,v .

A. Minimum-Length ELC Sequence Between Two Structures

The set of structurally distinct graphs which arise by
iteratively doing ELC on all edges of a BSG, G, pruning
the recursion tree on repeated graphs, is known as the orbit of
the graph. This orbit is the same for all graphs corresponding
to the same code, so we may refer to it as the orbit of the code.
Structural distinctness is with respect to graph isomorphism. By
using the software package Nauty [17], we obtain a canonical
form of a simple graph, denoted by N(G). Thus, for two simple
graphs G and G′, we have that G iso

= G′ ⇔ N(G) = N(G′). The
one-to-one relationship between a graph and a parity-check
matrix (up to node labelling) means that we may also speak
of the orbit as a set of parity-check matrices.

If a code has only one graph in its orbit, we say that it is
an ELC-preserved code (or, equivalently, since this graph is
unique, we may say that the graph is ELC-preserved) [18].

Theorem 1 (ELC sequence): A minimum-length ELC se-
quence e = {(u0, v0), . . . , (ul−1, vl−1)} can be found to
convert a systematic matrix H into another systematic matrix
H ′ (up to row permutations), where H and H ′ span the
same space (they are in the same orbit), by comparing the
corresponding bipartitions as represented by the parity sets
P and P ′. The length, l, of e is 0 ≤ l ≤ min(n − k, k).
Depending on H , the sequence e may not be unique, so
equivalent sequences may be derived from P and P ′.

Proof: ELC generates the entire orbit [15], and in particular
all systematic parity-check matrices for the corresponding code,
so such a sequence e must exist. Since a systematic basis for
a (dual) code is uniquely defined (up to row permutations) by
its parity set, the information set (i.e., the P -part of H) is a
function of the parity set. Thus, by comparing P and P ′, we
determine which coordinates are in opposite partitions, and shall
be swapped. Each ELC operation preserves the (dual) code, and
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Algorithm 1 MIN ELC(H, H ′)

1: L := P \ P ′, S := P ′ \ P , e := ∅
2: while S 6= ∅ do
3: choose and remove any s ∈ S , as well as any r ∈ L s.t.

(row(r), s) ∈ TG(H)
4: ELC on (row(r), s) on TG(H)
5: e := e ∪ (row(r), s)
6: end while

has the effect of swapping a pair of positions between I and P
(i.e., columns in H), along with some “residual” modifications
to H resulting from the row-additions. To modify H into
H ′, we may thus focus on swapping corresponding pairs of
columns (via ELC) from P into P ′, to give the I-part of H ′,
and the residual modifications must “resolve” into the required
P -part (since the P -part is unique given the I-part). Then, the
submatrices I and I ′ are equal, from which it follows that
P = P ′, such that H = H ′ (up to row permutations). Alg. 1
is a constructive proof of this theorem, showing how P and P ′
are used to determine a corresponding ELC sequence. ELC has
the effect of swapping exactly one pair of positions between
I and P , so the length of e must be exactly l = |P \ P ′|,
upper-bounded by min(n− k, k).

The difference (coordinates to swap) corresponds to the
sets L = P \ P ′ and S = P ′ \ P . As each position in the
identity (sub) matrix is unique, r ∈ L can be viewed as a
row-index, where r is chosen such that (row(r), s) ∈ TG(H),
given s ∈ S . Theorem 1 shows that at least one such (possibly
empty) sequence of valid choices must exist, if and only if
H and H ′ are in the same orbit. When several valid choices
of r exist, branch points arise in the algorithm which all lead
to equivalent ELC sequences; the resulting Tanner graphs are
exactly the same (although the matrices may be different, but
only in terms of row permutations) – see Section II-B for
further discussion.

Example 2: Consider the [14, 7, 3] doubly circulant
quadratic residue (QR) code. The orbit of this code consists of
11 graphs. Choosing two distinct graphs, G and G′, we must
have that N(G) 6= N(G′). Let H be a parity-check matrix
corresponding to G, and H ′ correspond to G′;

H = H ′ =
1 0 0 0 1 0 0 1 0 1 0 0 1 1
1 1 0 0 1 0 0 1 1 0 1 0 0 1
1 0 1 0 0 0 0 1 1 0 1 0 0 1
0 0 0 1 1 0 0 1 1 0 1 0 0 1
0 0 0 0 1 0 0 0 1 0 0 1 1 1
1 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 1 0 0 1

 ,


0 1 0 0 0 0 0 0 1 1 1 0 1 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 1 1 1 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 1 0 0 1

 .

It is easily seen that G and G′ are indeed nonisomorphic,
simply by verifying that |H| 6= |H ′|. The parity sets are
P = {1, 2, 3, 5, 6, 9, 11} and P ′ = {0, 2, 3, 5, 9, 11, 13}, and
Alg. 1 computes L = {1, 6} and S = {0, 13}. Choosing
(and removing) s = 13, we find that r = 1 gives the edge
(row(1), 13) = (1, 13) ∈ TG(H). Let H(1,13) be the resulting

matrix after ELC. Finally, the remaining value s = 0 gives
r = 6, where edge (row(6), 0) = (6, 0) ∈ TG(H(1,13));

H(1,13) = H{(1,13),(6,0)} =
0 1 0 0 0 0 0 0 1 1 1 0 1 0
1 1 0 0 1 0 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 1 0 0 1 1 1 0
1 0 0 0 1 1 0 0 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0

 ,


0 1 0 0 0 0 0 0 1 1 1 0 1 0
0 0 0 0 0 0 1 1 1 0 1 0 0 1
0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 1 1 1 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0

 .
By swapping rows 1 and 6, H{(1,13),(6,0)} equals H ′ so these
give the same Tanner graph. That the ELC sequence e =
{(1, 13), (6, 0)} is not unique is reflected by Alg. 1. Different
choices (of s) would result in the sequences {(1, 0), (6, 13)}
and {(6, 13), (1, 0)}, which both give the “target” matrix,
H ′ (up to row-equivalence). The sequence {(6, 0), (1, 13)},
however, is not possible, since the edge (6, 0) /∈ TG(H).1 �

B. Tanner Graph Invariants

In the context of graph-based, iterative decoding, we are
interested in discerning distinct Tanner graphs, when these may
correspond to isomorphic BSGs. A linear code is preserved
under elementary row operations (i.e., row additions and row
permutations) on the associated linear basis (parity-check
matrix). However, columns (code coordinates) correspond to
variable nodes in the Tanner graph, on which channel inputs
are attached. Column permutations which preserve the code,
comprise Aut(C).

We define two Tanner graphs TG(H) and TG(H ′) as
isomorphic if and only if the rows of H ′ can be permuted to
give the exact same matrix H . A parity-check matrix, H , can be
put in canonical form, denoted by R(H), by sorting its rows
in lexicographical order, TG(H) = TG(H ′) ⇔ R(H) =
R(H ′). Here, we define H and H ′ as row-equivalent. From
a decoding perspective, distinct Tanner graphs give increased
diversity. In the case where the BSGs are isomorphic, the
structural properties (e.g., matrix weight, and number and
length of short cycles, etc.) are also preserved. A sequence of
ELC operations connecting two parity-check matrices for the
same code, H 6= H ′, with isomorphic BSGs, N(G) = N(G′),
has previously been defined as an iso-ELC sequence [20]. (The
ELC operation is sometimes referred to as a pivot operation.)

Definition 1: A permutation θ ∈ Aut(C) is called trivial if
and only if TG(H) = TG(θ(H)) (i.e., H = θ(H) up to row
permutations).

Theorem 2 (ELC finds entire Aut(C)): Each nontrivial per-
mutation in Aut(C), for a given H , is associated with an
iso-ELC sequence of length l, for 1 ≤ l ≤ min(n−k, k). The
particular sequence depends on the parity set, P , (i.e., on H),
and is not unique.

Proof: For each nontrivial permutation σ ∈ Aut(C), H
and σ(H) are two (nonisomorphic) systematic parity-check
matrices for C, i.e., they both span the same space, and the
result follows from Theorem 1.

We will now explore the algebraic properties of Aut(C), as
a function of a specific parity-check matrix. Keep in mind the
relationship between Aut(C) and ELC operations derived in
Theorem 2. The “potential diversity” of a parity-check matrix,

1These equivalent ELC sequences also follow from [19].
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H , (i.e., number of distinct matrices attainable via permutations
or ELC, starting from H) can be used to assess the suitability of
C for diversity decoding, and to search for an optimal starting
matrix. We begin by formalizing which permutations do not
improve diversity (i.e., the Tanner graph does not change).

Proposition 1 (Trivial permutation): A permutation θ ∈
Aut(C) is trivial if and only if it permutes no positions between
I and P for the given H . Furthermore, the set of trivial
permutations forms a subgroup DH � Aut(C).

Proof: If a permutation θ is trivial for a given parity-check
matrix H , then (by definition) H and θ(H) are row-equivalent,
i.e., R(H) = R(θ(H)). Since H and θ(H) are row-equivalent,
θ is constrained to permute the columns from P (i.e., the I-part
of H) to indices from P , and thus permute the columns from
I (i.e., the P -part of H) to indices from I, and the result
follows.

Conversely, if a permutation θ permutes no positions between
I and P for the given H , then the resulting matrix θ(H) will
have weight-1 columns in exactly the same positions as H , i.e.,
in the positions in P . Permuting the rows of θ(H) such that
the I-parts of H and θ(H) become identical will also make
the P -parts identical (the P -part is a function of the I-part),
from which it follows that H and θ(H) are row-equivalent,
and the permutation θ is (by definition) trivial.

Finally, we need to prove that the set of trivial permutations
forms a subgroup of Aut(C). This follows directly from the
first result (i.e., that a permutation θ ∈ Aut(C) is trivial if and
only if it permutes no positions between I and P), since the
composition of two such permutations obviously permutes no
positions between I and P .

The subgroup DH is not a code property, but a property of
H . Furthermore, since DH is a subgroup, we can decompose
Aut(C) into a union of cosets of DH ,

Aut(C) = {DH ◦ σ0} ∪ {DH ◦ σ1}
∪ · · · ∪ {DH ◦ σ|Aut(C)|/|DH |−1}

where KH = {σ0, . . . , σ|Aut(C)|/|DH |−1} is a set of coset
leaders, given H , and σ0 is the identity permutation. We will
sometimes use the shorthand notation D and K when the
specific matrix, H , is not important.

Alg. 1 can be used to convert any σ ∈ Aut(C) into an
equivalent (iso-)ELC sequence, e, by taking as input H and
H ′ = σ(H). The corresponding iso-ELC sequence depends on
both σ and H , and we may emphasize this by the notation,
eσ,H . Then we have that R(σ(H)) = R(eσ,H(H)). For trivial
permutations, θ ∈ DH , R(H) = R(θ(H)) and eθ,H = ∅ (i.e.,
the same Tanner graph).

Proposition 2: Given a parity-check matrix H , eσ,H is an
iso-ELC sequence representation of all permutations in the
coset D ◦ σ, σ ∈ Aut(C).

Proof: The coset decomposition is in terms of row
equivalence, i.e., R(σ(H) = R(σ′(H)) for any σ′ ∈ D ◦ σ,
and the result follows.

Given H , the set KH \ {σ0} contains permutations from
Aut(C) which give a distinct parity-check matrix σ(H), where
σ ∈ KH \ {σ0}. Each coset leader σ corresponds to a
matrix R(σ(H)) representing the |D| row-equivalent matrices

θ(σ(H)), ∀ θ ∈ D. In other words, these all correspond to
the same Tanner graph. In this sense, the set of coset leaders
is not unique (any σ′ ∈ D ◦ σ, where σ 6= σ0, could be used
as a coset leader), which means that KH is not unique even
for a given H . Since σ0 is the identity mapping, KH can be a
group.

The set of (distinct) Tanner graphs resulting from
the permutations in KH comprise the iso-orbit of H ,2

{σ0(H), . . . , σ|K|−1(H)}. These Tanner graphs are all dis-
tinct, but correspond to isomorphic simple graphs, R(H) 6=
R(σ(H)), but N(G) = N(σ(G)), ∀ σ ∈ KH \ {σ0}. The iso-
orbit can be partitioned into disjoint subsets according to the
(minimal) length, 0 ≤ l ≤ min(n−k, k), of the corresponding
ELC sequences: KlH = {σ ∈ KH : |P \ σ(P)| = l}. In
particular, K0 = {σ0}. Thus, for l > 0, Kl is not a group since
it does not contain the identity permutation, σ0.

We shall now see how DH and KH relate to H .
Proposition 3: For any permutation α (not necessarily in

Aut(C)) the trivial subgroup Dα(H) = α ◦ DH ◦ α−1, for a
given H . Furthermore, Kα(H) = α ◦ KH ◦ α−1 and Klα(H) =

α ◦ KlH ◦ α−1, for all l, 0 ≤ l ≤ min(n− k, k).
Proof: Let σ = α◦θ◦α−1 where θ ∈ DH . After applying

α−1 to α(H), the original matrix H is reconstructed. Then, the
effect of applying θ to H is to permute the rows of H . Finally,
the columns are permuted according to α, and the resulting
matrix will be row-equivalent to α(H). Thus, σ is trivial with
respect to α(H), from which it follows that α ◦ DH ◦ α−1
is a subset of Dα(H). To prove equality, we use this result
with H ′ = α(H), from which it follows that κ ◦DH′ ◦ κ−1 ⊆
Dκ(H′), where κ is any permutation. Choosing κ = α−1,
we get α−1 ◦ Dα(H) ◦ α ⊆ DH , from which it follows that
Dα(H) ⊆ α ◦ DH ◦ α−1. Since Dα(H) is both a subset and a
super-set of α ◦ DH ◦ α−1, we have equality.

To prove the second part, i.e., to show that Kα(H) = α ◦
KH ◦ α−1, we use the fact that for any two permutations
σ1 = θ1◦σ ∈ Dα(H)◦σ and σ2 = θ2◦σ ∈ Dα(H)◦σ from the
same coset (based on Dα(H)), where σ denotes the coset leader
and θ1, θ2 ∈ Dα(H), we must have that σ1◦σ−12 = θ1◦σ◦σ−1◦
θ−12 = θ1 ◦θ−12 ∈ Dα(H). Thus, if for any two permutations σ1
and σ2 from Aut(C), the composition σ1 ◦σ−12 /∈ Dα(H), then
σ1 and σ2 belong to two different cosets (based on Dα(H)).
Now, let σ1 = α ◦ κ1 ◦ α−1 and σ2 = α ◦ κ2 ◦ α−1, where
κ1, κ2 ∈ KH , from which it follows that σ1 ◦ σ−12 = α ◦ κ1 ◦
α−1◦α◦κ−12 ◦α−1 = α◦(κ1◦κ−12 )◦α−1. Since κ1◦κ−12 /∈ DH
(κ1 and κ2 are from different cosets based on DH ), we must
have that σ1 ◦ σ−12 /∈ Dα(H), and it follows that σ1 and σ2
are from two different cosets based on Dα(H). The result now
follows since |KH | = |Aut(C)|/|DH | = |Aut(C)|/|Dα(H)| =
|Kα(H)|.

To prove the third part, i.e., to show that Klα(H) = α ◦KlH ◦
α−1 for all l, we use the fact that the depth of σ (i.e., the
length of the corresponding ELC sequence) based on H , is
the same as the depth of α ◦ σ ◦ α−1 based on α(H), for any

2The iso-orbit of H , containing Tanner graphs, should not be confused with
the orbit of C, which contains simple graphs.
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TABLE I
PAIRS OF PERMUTATIONS FROM Aut(C) WHICH GENERATE K FOR THE
[8, 4, 4] EXTENDED HAMMING CODE, SEE EXAMPLE 3. THESE 8 GROUPS

ARE ALL ISOMORPHIC TO ONE GROUP, WHICH IS UNIQUE.

〈(0,4,2,7,6,3,1), (0,6,7,4,5,2,3)〉 〈(0,1,3,6,5,7,2), (0,6,1,7,4,5,2)〉
〈(0,6,4,5,1,2,3), (0,7,5,2,1,4,3)〉 〈(0,6,7,4,2,3,1), (0,4,5,2,7,6,3)〉
〈(0,2,1,6,4,5,3), (0,6,7,5,4,2,1)〉 〈(0,6,2,1,5,7,3), (0,7,5,3,4,2,1)〉
〈(0,5,7,2,4,3,1), (0,2,6,4,7,5,3)〉 〈(0,4,5,1,2,7,3), (0,6,7,5,2,1,3)〉

σ in Aut(C). To show this, we write the depth of α ◦ σ ◦ α−1
based on α(H) as,

|{α ◦ σ ◦ α−1(Pα(H)) ∩ Iα(H)}|
=|{α ◦ σ ◦ α−1(α(PH)) ∩ α(IH)}|
=|{α ◦ σ(PH) ∩ α(IH)}|
=|{α(σ(PH) ∩ IH)}|
=|{σ(PH) ∩ IH}|.

Now, we can conclude that the depth of all coset leaders in
Klα(H) (based on Dα(H)) is the same and equal to the depth
of the coset leaders from KlH (based on DH ), from which the
result follows.

As discussed above, DH depends on H , so the iso-orbit is not
a code property. The partitioning of permutations in KH into
disjoint subsets according to the length of the corresponding
iso-ELC sequence may vary for each H ′ = σ(H), σ ∈ Aut(C).
Still, from Proposition 3, |KlH | = |Klσ(H)|, 0 ≤ l ≤ min(n−
k, k) and σ ∈ Aut(C), and we call the set {|KlH |}, 0 ≤ l ≤
min(n− k, k), the profile of the iso-orbit of H . This profile
varies with H , but is invariant over the iso-orbit of H (one
profile per graph in the orbit). Since the profile varies with
H , it may be desirable to search the orbit for a graph that has
certain properties with respect to the profile. We illustrate this
with some examples.

Example 3: For the [8, 4, 4] extended Hamming code, which
is ELC-preserved, the parity-check matrix,

H =

[
1 0 0 0 1 1 0 1
0 1 0 0 0 1 1 1
0 0 1 0 1 1 1 0
0 0 0 1 1 0 1 1

]
has the profile listed in Table II. For this code, there exists
only one conjugacy class of subgroups of Aut(C) of the
required size |K| = |Aut(C)|/|D| = 1344/24 = 56 (verified in
MAGMA). K can be any of the eight distinct (but isomorphic)
subgroups in this class. The eight subgroups may all be
generated by two permutations, as listed in Table I. This
shows that K can be a group, and the minimum number of
generators is 2 (i.e., K can not be a cyclic subgroup). DH is
〈(0, 2)(6, 7), (1, 3)(4, 5), (2, 3)(5, 7)〉.

Example 4: The [24, 12, 8] extended Golay code, where
|Aut(C)| = 244 823 040 is a rare [18] example of a code
with only two graphs in its orbit, corresponding to parity-check
matrices,

H0 =


1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1



H1 =


1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1
1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1
1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1

 .

The weight is 96 and 100, and |D| is 240 and 660, respectively.
The two profiles for K are listed in Table II. No subgroups of
Aut(C) exist of size |K| = |Aut(C)|/|D| for either of the two
graphs (verified in MAGMA), so K can not be a group.

III. WEIGHT-BOUNDING ELC

In the discussion on isomorphic ELC operations, a require-
ment is that the number of edges in the graph must be preserved
[20]. We generalize this, and introduce a notion of weight-
bounding ELC (WB-ELC) operations, in which the weight of
H after ELC, denoted by |H ′|, is upper-bounded by |H|+ T ,
where T is some threshold. We give necessary and sufficient
conditions to achieve this bound, both for single ELC and
for two consecutive ELCs. In this work, we restrict our focus
to depth-1 or 2, with respect to the locality argument of the
ELC operation (in the sense that many ELC operations amount
to a global graph operation). However, the concept of WB-
ELC extends to arbitrary depth. Note that the depth-i iso-ELC
sequences described previously are indeed depth-i WB-ELC for
T = 0, where 0 < i ≤ n−k is the length of the ELC-sequence.
The weight of H greatly affects its suitability for iterative
decoding. In the previous section, graph isomorphism (and
code automorphism) was discussed as a means for preserving
graph properties during decoding. In this section, we relax this
requirement, permitting a certain weight change in H under
ELC. The main motivation for this is to achieve a tradeoff
between graph diversity and weight.

Let A ∼ B be a shorthand notation for the edges in the
subgraph EA,B , i.e., those connecting nodes in A to nodes in B.
Also, ECA,B denotes the subgraph after complementing A ∼ B.
The net difference in edges before and after complementation
is ∆EA,B , |ECA,B | − |EA,B |.

Lemma 1: The number of edges complemented between
sets A and B can be expressed as,

∆EA,B , |ECA,B | − |EA,B | = |A||B| − 2|EA,B |.

Proof: The complete bipartite graph between A and B has
|A||B| edges. This means that, for any graph between A and
B, |EA,B |+ |ECA,B | = |A||B|, so ∆EA,B = |ECA,B | − |EA,B | =
|A||B| − |EA,B | − |EA,B |.

A. Depth-1, Single Edge WB-ELC

If the weight change due to the action of a single ELC is
upper-bounded, we say that the ELC is WB-ELC.

Theorem 3: The weight change of G under ELC on (u, v)
is upper-bounded by a threshold T iff,

∆Eu,v = |N v
u ||N u

v | − 2|Eu,v| ≤ T.
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TABLE II
PROFILES OF K AS SPLIT INTO SUBSETS ACCORDING TO THE LENGTH OF THE CORRESPONDING ELC SEQUENCE.

Code |H| 0 1 2 3 4 5 6 7 8 9 10 11 12
Ext. Hamming 16 1 12 30 12 1 - - - - - - - -
Ext. Golay 100 1 22 616 6 490 33 935 85 712 117 392 85 712 33 935 6 490 616 22 1

” 96 1 60 1 650 18 140 92 655 236 520 322 044 236 520 92 655 18 140 1 650 60 1

Proof: ELC on (u, v) complements edges between N v
u

and N u
v , and the inequality follows from Lemma 1. The weight

change of G under ELC on (u, v) is therefore ∆Eu,v .

B. Depth-2, Double Edge WB-ELC

For many graphs, it is difficult (or impossible) to upper-
bound the weight change by any reasonable threshold (i.e.,
small T ), using only a single ELC. We now determine the
WB-ELC operations which exist for double application of ELC
on a graph. Given a graph, G, and a threshold, T , the definition
of a depth-2 WB-ELC operation is an ordered sequence of two
ELC operations, where the first ELC operation must change
the weight of G by more than T (to a graph G?), whereupon
the second ELC must compensate by reducing the weight of
G? by at least |G?| − |G| − T . This amount is always positive,
as |G?| > T + |G|; otherwise the first ELC would change the
weight by an amount less than or equal to T . We emphasize that
if the first ELC did not exceed the weight-bounding threshold,
then it would, by itself, be a (depth-1) WB-ELC operation.

An important observation is that the search space for depth-2
WB-ELC can be significantly reduced from that of checking
all pairs of edges in G. First, ELC on two adjacent edges, i.e.,
at distance 0, reduces to a single ELC operation.

Lemma 2 (Adjacent edges [21], proof omitted): ELC on
{(u, v), (v, v′)}, where v′ ∈ N v

u , gives the same graph as
ELC on (u, v′).

From Lemma 2, we see that ELC on adjacent edges reduces
to a single ELC, which has already been covered by the
discussion of depth-1 WB-ELC. So, in order to find additional
WB-ELC instances at depth-2, we need not consider adjacent
pairs of edges. We now present an important novel result
regarding depth-2 WB-ELC; that the distance between a pair
of edges can not be greater than two, for T ≥ −1.3

Lemma 3 (Disjoint edges): Let T ≥ −1. Any depth-2 WB-
ELC where the two edges are separated by a distance greater
than two will always reduce to either one instance, or two
separate instances, of depth-1 WB-ELC.

Proof: Consider two disjoint subgraphs, Eu,v and Eu′,v′ ,
of the same graph. In this case, ELC on {(u, v), (u′, v′)}
gives the same graph as ELC on {(u′, v′), (u, v)}, since
the neighborhoods do not interact. Let T ≥ −1. The only
possibilities for WB-ELC are: Both ELC operations classify as
depth-1 WB-ELC operations (change weight by no more than
T ), or one ELC operation changes the weight by w, where
w > T , while the other ELC reduces weight by at least w−T .
Since they commute, we can assume without loss of generality
that ELC on (u, v) is the operation which reduces weight, but

3A special case exists for T < −1, which is accounted for in Proposition 4.

then this, by itself, classifies as a (depth-1) WB-ELC operation.

Theorem 4 (Reduced search space): Let T ≥ −1. All
depth-2 WB-ELC can be found by considering pairs of edges
spaced by a distance one or two.

Proof: The proof follows from Lemmas 2 and 3.
In this sense, we define WB-ELC (both depth-1 and depth-2)

as a local graph operation, in that its effect is confined to a
subgraph of diameter at most 4. The corresponding subgraphs
are shown in Figs. 3 and 4. We have restricted the search space
considerably, and shall now cover all possible cases for depth-2
WB-ELC, for T ≥ −1.

Let us first consider the case where the pair of edges are
at a distance of exactly two edges apart, see Fig. 3. Given an
edge (u, v), let u′, v′ /∈ Nu ∪ Nv be such that (u′, v′) ∈ G,
Q = N v

u ∩N v′

u′ 6= ∅, and, similarily, Q′ = N u′

v′ ∩N u
v 6= ∅.

Theorem 5 (Distance 2): The weight change of G under
ELC on {(u, v), (u′, v′)} is upper-bounded by a threshold T
iff,

∆Eu,v + ∆Eu′,v′ − 2∆EQ′,Q ≤ T.

This case covers all instances of depth-2 WB-ELC where the
edges are at a distance two apart.

Proof: See Fig. 3, and [16] for a detailed proof.
We now consider distance one. Given an edge (u, v) and

two nodes u′ and v′, we denote by B = N u,u′

v ∩N u,u′

v′ ,
A = N u,u′

v \B, C = N u,u′

v′ \B, E = N v,v′

u ∩N v,v′

u′ ,
D = N v,v′

u \ E, and F = N v,v′

u′ \ E, see Fig. 4. We consider
the case where both u′ and v′ are in the neighborhood of
(u, v), and where (u′, v′) /∈ G is created by the first ELC.

Theorem 6 (Distance 1): The weight change of G under
ELC on {(u, v), (u′, v′)} is upper-bounded by a threshold T
iff,

∆EA,E∪F +∆EB,D∪E +∆EC,D∪F +|C|+|F |−|B|−|E| ≤T.

This case covers all instances of depth-2 WB-ELC where the
edges are at distance one apart.

Proof: See Fig. 4, and [16] for a detailed proof.
We have shown that, for T ≥ −1, the depth-2 WB-ELC

cases must occur on pairs of edges spaced by distance at most
two. Let us now for completeness consider T < −1.

Proposition 4: Let T < −1. In this case a pair of edges
spaced by a distance of more than two may give depth-2 WB-
ELC that does not reduce to (neither a single, nor a double
instance of) depth-1 WB-ELC.

Proof: A small example proves the proposition. For
T = −2, two independent ELC operations may each reduce
the weight by −1.
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EL
C 
(u
,v)

ELC (u',v')

ELC (u',v') EL
C 
(u
,v)

Fig. 3. Proof of Theorem 5. Curved links indicate arbitrary edges; bold links indicate complemented edges. A special case of commutativity gives the
equivalent sequence, (u′, v′), (u, v); although the local subgraphs Eu,v , Eu′,v′ are not independent, the overlap is confined to Q,Q′ (which is complemented
twice) [19].

Fig. 4. Proof of Theorem 6 (using one of the three equivalent cases described in [16]) showing the complementations which give the expression.

IV. ELC-ENHANCED SISO HDPC DECODING

For this work, the most important application is the use
of WB-ELC operations during SISO HDPC decoding, where
the aim is to have increased diversity, i.e., more distinct
Tanner graphs for the same code which are all well-suited
for use in iterative decoding. Other applications are discussed
in [16]. Several parameters of a parity-check matrix affect its
suitability for decoding, where one of these is the weight, or
density, of the matrix. Let the received noisy channel vector
be y = (−1)x + n, where x is a codeword and n is additive
white Gaussian noise (AWGN). In the log-likelihood ratio
(LLR) domain, the initial LLR at position v is Lv0 ,

2
η2 yv,

where η is the standard deviation of the AWGN.

A. Generalized SISO HDPC Decoder

The idea of using permutations (from a cyclic subgroup of
Aut(C)) to gain diversity during iterative decoding originates
from [10]. This was recently generalized to using the full
Aut(C) (and for noncyclic codes) with the random redundant
iterative decoder (SPA-PD) in [9]. It consists of three nested
loops. After I1 SPA (flooding) iterations, a random permutation
from Aut(C) is applied (to the input vector, L) followed by
a damping stage [10]. This is repeated I2 times, before the
damping coefficient, α, is incremented and the decoder restarts
from y. This can be thought of as making I2 new attempts
at decoding y, with increased damping coefficient. This is
all repeated I3 times, and unless SPA converges to a valid
codeword within τ = I1I2I3 iterations, the decoder outputs a
failure.

Generalizing this algorithm, we propose a generalized SISO
HDPC decoder. The permutation may be replaced by any
operation to achieve diversity (e.g., random ELC or WB-ELC),
and we do p such operations at a time. Using this framework,
we propose the novel SPA-ELC and SPA-WBELC decoders.
While the SPA-ELC decoder may do ELC on any edge in
G, the SPA-WBELC decoder must search the graph during
decoding for a WB-ELC operation (which is either one or
two ELC operations). As we have discussed, the search space
is significantly reduced from searching all pairs of edges in
the graph. Further heuristics are used to improve search time,
and the search stops as soon as the first (random) WB-ELC
operation is found. We refer to [16] for a detailed description
and theoretical analysis of a search algorithm.

The most important difference between SPA-PD and ELC-
enhanced decoding (SPA-ELC and SPA-WBELC) is that ELC
does not require any specific structural properties of the code.
As n increases, the probability of a randomly chosen code of
blocklength n to have a nontrivial Aut(C) goes to zero (when
the rate is not too high, or too low) [22]. So among the main
contributions of this work is in this sense to extend the range
of SISO HDPC decoding to codes for which SPA-PD does
not work (“reduces” to SPA). Compared to other decoding
algorithms, we emphasize how SPA-ELC does not require
any preprocessing – not counting the search for a reduced
or minimum-weight initial graph/matrix, as this is a common
preprocessing stage and not part of the decoding algorithm. For
SPA-WBELC, an initial Tanner graph should also be verified
to have a sufficiently large (in terms of diversity) “sparse
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sub-orbit.” This sub-orbit is understood as an initial Tanner
graph, TG(H), and all distinct Tanner graphs reachable via
(repeated action of) WB-ELC, all within some threshold, T ,
i.e., graphs of weight upper-bounded by |H| + T . The size
of this sub-orbit will depend on TG(H) and T , so these are
determined in a preprocessing stage [16]. Both SPA-ELC and
SPA-WBELC are online algorithms, based on local decisions,
and no memory overhead is incurred (the graph is modified
in-place, as opposed to storing multiple redundant matrices,
e.g., as in multiple-bases belief propagation (MBBP) decoding
[23]).

B. Edge-Local Damping Rule

The purpose of damping is to scale down the extrinsic
contribution (i.e., messages on edges), typically to moderate
the impact of some global change to the graph [7], [9], [10].
Every I1 iterations, a diversity stage is executed in which
the extrinsic contribution of the LLRs, Γvj , of each variable
node v at iteration j, is scaled down by a damping coefficient,
α, 0 < α < 1, and accumulated on the input to the next
iteration according to the damping rule Lvj+1 = Lvj + αΓvj .
The extrinsic contribution to variable node v (the sum of all
incoming messages, µv←uj ) in iteration j is,

Γvj =
∑
u∈Nv

µv←uj (3)

where we define Γv0 , 0. The initial contribution from the
received noisy channel vector is never damped, which is
apparent if we rewrite Lvj+1 = Lv0 + αΣjj′=1 Γvj′ . These new,
damped LLRs are then used to re-initialize the decoder. So,
after resetting all messages, µv←uj := 0 ∀ (u, v) ∈ G, iteration
j + 1 begins by forwarding the new, damped input towards
the check nodes. This “global reset stage” is necessary when
the operation used in the SISO HDPC decoder acts on the
variable node level, e.g., as in SPA-PD, which permutes L [9].
After this, the relationship (3) between extrinsic information
(on edges) and LLRs (in nodes) no longer holds. The global
stage of accumulating the input followed by re-initializing all
edges, is referred to as global damping (GD). In contrast to
GD, we have previously proposed edge-local damping schemes
more suited to the edge-local action of ELC [12], [24]. The
damping rule can be generalized to include and take advantage
of extrinsic information on an edge (u, v), µv←uj , in iteration
j;

µv→uj+1 = Lvj + α(Γvj − µv←uj ). (4)

Each edge adjacent to v is damped individually. Note how
µv←uj is subtracted, to adhere to the extrinsic principle of the
SPA. Thus, less information is lost than is the case with GD.

ELC on an edge (u′, v′) complements the edges of Eu′,v′

– the “internal” edges with both endpoints in N v′

u′ ∪N u′

v′ . By
defining a flooding SPA iteration as the update of all check
nodes followed by all variable nodes, we ensure that all soft
information (on edges) is stored in Γv , for all variable nodes v,
before ELC. Thus, the information loss due to edges removed
by ELC is reduced, and we need only focus on edges inserted
by ELC; precisely (u, v) ∈ Eu′,v′ . These new edges must

be initialized with some outgoing message, µv→uj+1 , before the
next SPA iteration (iteration j + 1, which begins with check
nodes, u), so (4) implements a damping-and-initialization rule.
However, since µv←uj = 0 for new edges, (4) reduces to
µv→uj+1 = Lvj + αΓvj = Lvj+1 (GD). We emphasize that edges
connected to Nv\Nv′ , i.e., those unaffected by ELC on (u′, v′),
are not damped and retain their extrinsic messages for the next
iteration. Restricting damping to the edges affected by ELC is
referred to as edge-local damping (LD) [12].

C. Error-Rate Observations

We will show the effectiveness of the proposed ELC-
based decoding algorithms, SPA-ELC and SPA-WBELC, by
comparing against the benchmark SPA-PD algorithm. These
are all implemented using the generalized SISO HDPC decoder.
For all algorithms, we ensure the same maximum number of
SPA iterations, τ = I1I2I3. In the diversity stage (every I1
iterations), p random operations are applied. These can be
permutations from Aut(C) (as in SPA-PD), or ELC operations
(recall that one WB-ELC operation consists of one or two
ELC operations). The values of p, I1, I2, and I3 are chosen
empirically, based on frame error-rate (FER) simulations. As
discussed in [16], the performance is most sensitive to p and
I1, and optimal performance appears to be when these are both
low. To emphasize the effect of various operations, we also
compare against the standard SPA decoder. The most general
observation is that SPA decoding of HDPC codes benefits from
increased diversity, see Fig. 5. For all codes and decoders
simulated, we observe a significant gain in FER over SPA
decoding, especially in the high signal-to-noise ratio (SNR)
region (for a lowered “error floor”).

Since any ELC operation must either preserve the graph (up
to isomorphism) or give a different graph from the orbit, a
small orbit must imply a large (relative to code size) Aut(C).
Generally, SPA-ELC can be described as a combination of
SPA-PD (when ELC is iso-ELC) and MBBP (otherwise). The
extended Hamming and Golay codes are famous examples
of codes with very strong structure (orbit size 1 and 2,
respectively), and we see that the performance of SPA-ELC
matches closely that of SPA-PD (see Fig. 5(a) and also [20]).
From a decoding perspective, diversity is in terms of Tanner
graphs. We can express the probability of gaining diversity
when using SPA-PD by 1− |D|/|Aut(C)|; i.e., the probability
of not drawing a trivial permutation from Aut(C). For such
strongly structured codes, the size of Aut(C) will ensure good
diversity. Using SPA-ELC, any ELC operation will swap a
pair of columns between I and P (in H), and will thus
necessarily give a distinct Tanner graph. However, a sequence
of p > 1 ELC operations may cancel, and give the same
Tanner graph (no diversity); p − 1 ELC operations work to
“undo” the swap induced by the first ELC. This is to restore
the I-part of H , and thus (by extension) restoring the initial
H (see Alg. 1 and Example 2). The probability of diversity is
1−D(p)/S(p), where D(p) is the number of such “redundant”
(i.e., nonminimal) length-p ELC-sequences, and S(p) is the
total number of (possibly redundant) length-p ELC-sequences
encountered in a depth-first search (on some graph). Recall



10

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 2  2.5  3  3.5  4  4.5  5  5.5  6

F
E

R

Eb/N0 (dB)

SPA(τ = 600)
SPA-PD(1, 1,30,20, 0.08, --)

SPA-ELC(2, 1,30,20, 0.08, --)
MLD

10
2

10
3

10
4

 3  4  5  6

A
v
. 
S

P
A

 M
e
s
s
a
g
e
s

(a) Ext. Golay = [24, 12, 8], with |Aut(C)| = 244 823 040
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(b) R2 = [36, 18, 8], with |Aut(C)| = 32
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(c) C38,2 = [38, 19, 8], with |Aut(C)| = 1
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(d) EQR48 = [48, 24, 12], with |Aut(C)| = 51 888. MLD data provided
by Alban Goupil.

Fig. 5. Simulation results. Each SNR point is simulated until at least 100 frame-error events are observed (otherwise, error bars indicate a 95% confidence
interval [25]). The union bound is calculated based on the full weight enumerator of the code. Parameters are listed as (p, I1,I2,I3, α, T ).

that the extended Golay code has only two graphs in its orbit
(Table II). For G0 we count D(1) = 0, S(1) = 84; D(2) = 84,
S(2) = 7152; and D(3) = 1008, S(3) = 608 640. Similarily,
for G1, D(1) = 0, S(1) = 88; D(2) = 88, S(2) = 7480;
and D(3) = 1144, S(3) = 636 592. Using SPA-ELC, the
probability of diversity remains quite high, also as we increase
p, which gives us the additional benefit of (implicitly) running
SPA-PD on both graphs. For this code, no additional gain can
be achieved by SPA-WBELC (|G| is either 96 or 100).

For such strongly structured codes (where Aut(C) is large),
SPA-PD is known to perform well [9]. ELC-enhanced decoding,
however, acting on the entire orbit of the code, can be made
effective on a greater range of codes. When the orbit is large,
the probability of iso-ELC becomes negligible, and SPA-ELC
is reminiscent of an online, local-action MBBP. Consider the
extremal (in terms of dmin) self-dual [36, 18, 8] “R2” code [26]
in Fig. 5(b). This code has a small Aut(C), of size |Aut(C)| ≈
n, which thus hampers the performance of SPA-PD. For this
code, we observe a consistent gain (over the entire SNR range
simulated) of SPA-ELC, especially by removing a floor effect.
The optimal value of p is seen in Fig. 6(a) to be 3. The gain due
to improved diversity depends on the quality of the resulting

Tanner graphs. SPA decoding is sensitive to short cycles and,
more generally, an increase in graph weight (number of edges).
This code has a large orbit, so we can not expect all graphs to
be well-suited for SPA decoding – and it is easily verifiable
that they are not [16]. Especially at the low-SNR range we
observe a gain by using SPA-WBELC over SPA-ELC. This
demonstrates the benefit of restricting decoding to a sparse
sub-orbit of the code.

As an example of a nonrandom, constructed HDPC code
with a trivial Aut(C) we consider the [38, 19, 8] “C38,2” code
[26] in Fig. 5(c). This code is related to the “R2” code, and
has otherwise very similar parameters and properties. The most
important practical result of this paper is that we find the
same (large) gain over SPA as for “R2” – despite the trivial
Aut(C). This verifies the benefits of ELC-based decoding on
codes less suited for SPA-PD. For this code we observe a more
consistent gain for SPA-WBELC over SPA-ELC, especially at
the low-SNR range. The break-off point where SPA-WBELC
converges with SPA-ELC depends on the WB-ELC threshold,
T . As we increase T , we allow graphs of higher weight to
participate in the decoding process. Yet the search complexity
of WB-ELC is obviously lower for less restrictive (i.e., higher)
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Fig. 6. Details for SPA-ELC with I1 = 1, I2 = 30, and I3 = 20. Here,
p = 0 denotes SPA decoding (with no damping). p may be increased to
slightly reduce flooring effects.

thresholds [16]. Eventually, as we increase T sufficiently, the
weight is no longer bounded (compared to “unbounded” SPA-
ELC). So, with increasing T , the break-off point is shifted to a
higher SNR but the low-SNR gain is reduced, as SPA-WBELC
“reduces” to SPA-ELC.

We also consider the [48, 24, 12] extended QR (EQR) code,
denoted by “EQR48”, as a next step from the extended Golay
code but for which the orbit size is large. Correspondingly,
Aut(C) is relatively small, containing “only” 51 888 permu-
tations. This is nevertheless more than sufficient to ensure
a strong performance of SPA-PD, which is only 0.5dB to
1dB away from optimal maximum likelihood decoding (MLD).
Yet, simply by interspersing SPA iterations with (p = 2; see
Fig. 6(b)) random ELC operations, we achieve a performance
only ∼0.25dB away from SPA-PD (and even closer below an
SNR of 4dB). However, the weight increase due to ELC has an
adverse effect on decoding performance, so to close this gap we
use WB-ELC. The minimum weight of any graph of this code
is 288, and we are able to find many distinct minimum-weight
Tanner graphs (including nonisomorphic simple graphs) [16].
Fig. 5(d) shows how the peformance of SPA-WBELC depends
on T in a similar way as for “R2.”

We also compare against some other decoding algorithms
(not included in Fig. 5). A simple scheme running SPA on
seven distinct minimum-weight matrices for the extended Golay
code gives an improvement over SPA [27]. We observe a
performance gain of ∼0.5dB at bit-error rate 10−4 over this
scheme (we still observe a gain of ∼0.25dB when we limit SPA-
ELC to τ = 200 iterations). We also observe an improvement
in error-rate on this code over the more advanced MBBP
algorithm, which uses 15 n × n matrices (based on cyclic
shifts of minimum-weight codewords in C⊥) in a parallel (i.e.,
list) decoding scheme [23]. At FER 3 · 10−3 we observe a
gain of ∼0.2dB when using τ = 600 iterations. In addition to
this improvement in performance, we also achieve a significant
reduction in complexity, by avoiding parallelism, by using
fewer iterations (they use a maximum of 1 050 iterations), and
by avoiding the storage (in memory) of redundant parity-check
matrices.

D. Complexity Observations

We also report on simulations to determine the average
complexity of the various decoding algorithms. The SPA-ELC

and SPA-WBELC decoders use a systematic matrix and modify
the corresponding graph during decoding, whereas the SPA
and SPA-PD decoders use a single, optimized (reduced-weight)
nonsystematic matrix. Since the weight varies under ELC
decoding, the complexity cannot be reported simply in terms
of the average number of iterations per codeword. However,
the complexity of all stages of SPA decoding and of the ELC
operation is proportional to the number of edges involved,
so decoding complexity may be measured by the average
number of SPA messages [11], [28]. In terms of messages, the
complexity of one (flooding) SPA iteration is 2(|G|+n−k) =
2(kγ̄ + n− k). For the following argument, we assume that
k = n − k. At “50% weight” the complexity of one SPA
iteration is 2k(γ̄ + 1) = 2k(k/2 + 1) = k2 + 2k, which is
significantly higher (by at least a factor of 4) than the ELC
complexity, k2/4− k + 1, from (2). As such, we do not take
the overhead of applying ELC operations into account in the
comparisons.

For complexity, we observe the desired effect of bounding
the weight increase due to ELC. Fig. 5 (inset plots) indicates
a general trend where the SPA-PD decoder has the lowest
complexity, while the SPA is the most complex decoder. As
these two algorithms use the exact same graph (for a given
code), any difference must be entirely in terms of number
of iterations used per codeword. In other words, this shows
how the SPA-PD is an important benchmark, as it gives an
improvement in both FER and complexity. Similarily, our
proposed SPA-WBELC algorithm also gives an improvement
in complexity, over SPA and SPA-ELC, and is not far from
this benchmark. The complexity improvement over SPA-ELC
is a direct benefit obtained from bounding weight.

The complexity of finding WB-ELC operations, given a
graph and a threshold, is analyzed theoretically and empiricially
in [16]. However, for practical use in the SPA-WBELC
decoding algorithm, the search may be terminated upon finding
the first occurrence of a WB-ELC operation. Simulations show
that finding a random depth-2 WB-ELC operation on the
“EQR48” code with T = 8 requires only an average of 150
edges checked per iteration (where each “check” corresponds
roughly to one ELC operation). This drops to 50 edges for
T = 12, and 20 edges for T = 16. For comparison, Gaussian
elimination (as used in [7] and [24]) can be implemented
using n − k = 24 ELC operations [16]. So this is not an
unmanageable overhead, and we also assume better heuristics
can be designed.

CONCLUSION

In this work, we have presented a mapping from a Tanner
graph to a bipartite simple graph so as to facilitate the use
of a graph operation known as ELC during iterative, graph-
based decoding. ELC modifies locally the structure (i.e., the
edges) of a graph, without changing the associated code, thus
generating the entire orbit (all systematic parity-check matrices)
of the code. We have identified and described how ELC may
induce graph isomorphism, and how this is linked to code
automorphism, i.e., to Aut(C). We have also defined a notion
of Tanner graph isomorphism (row-equivalence of parity-check
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matrices), and shown the relationship to the corresponding
trivial (in terms of decoding) subgroup of Aut(C). This gives
a natural relationship with SPA-PD (a state-of-the-art decoding
algorithm for HDPC codes) which improves decoding by
employing random permutations from Aut(C) during decoding.

The concept of isomorphic ELC operations has been gen-
eralized to a weight-bounding application of ELC, WB-ELC.
All possible instances of WB-ELC due to single and double
application of ELC on a graph are classified, where we show
that all double instances occur on adjacent edges. This locality
improves search time (to find a random WB-ELC operation on
a graph). We described the usage of ELC (and WB-ELC) to
improve iterative SISO decoding of HDPC codes. Generally,
the orbit of a code contains many matrices which are less
suitable for SPA decoding (specifically, non-sparse matrices),
so the generalization to WB-ELC is a valuable extension of the
scope of SISO HDPC decoding. To facilitate the convergence
of the decoder, we also proposed a novel edge-local damping
rule, tailored to our graph-local context. Extensive simulation
data showed a consistent gain of SPA-ELC and SPA-WBELC
over SPA, and that SPA-WBELC competes closely with the
performance of SPA-PD when Aut(C) is large and outperforms
SPA-PD when Aut(C) is small or trivial.
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