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Abstract. Orbits of graphs under the operation edge local complemen-
tation (ELC) are defined. We show that the ELC orbit of a bipartite
graph corresponds to the equivalence class of a binary linear code. The
information sets and the minimum distance of a code can be derived
from the corresponding ELC orbit. By extending earlier results on local
complementation (LC) orbits, we classify the ELC orbits of all graphs on
up to 12 vertices. We also give a new method for classifying binary linear
codes, with running time comparable to the best known algorithm.
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1 Introduction

In this section we first give some definitions from graph theory, in particular we
describe the two graph operations local complementation (LC) and edge local
complementation (ELC), the latter also known as the pivot operation. We then
give some definitions related to binary linear codes. Of particular interest is
the concept of code equivalence. Österg̊ard [1] represented codes as graphs, and
devised an algorithm for classifying codes up to equivalence. In Section 2, we show
a different way of representing a binary linear code as a bipartite graph. We prove
that ELC on this graph provides a simple way of jumping between equivalent
codes, and that the orbit of a bipartite graph under ELC corresponds to the
complete equivalence class of the corresponding code. We also show how ELC
on a bipartite graph generates all information sets of the corresponding code.
Finally, we show that the minimum distance of a code is related to the minimum
vertex degree over the corresponding ELC orbit. In Section 3 we describe our
algorithm for classifying ELC orbits, which we have used to generate all ELC
orbits of graphs on up to 12 vertices. Although ELC orbits of non-bipartite
graphs do not have any obvious applications to classical coding theory, they are
of interest in other contexts, such as interlace polynomials [2,3] and quantum
graph states [4] which are related to quantum error correcting codes. From the
ELC orbits of bipartite graphs a classification of binary linear codes can be
derived. Binary linear codes have previously been classified up to length 14 [1,5].
We have generated the bipartite ELC orbits of graphs on up to 14 vertices, and
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this classification can be extended to at least 15 vertices [Sang-il Oum, personal
communication], showing that our method is comparable to the best known
algorithm. However, the main result of this paper is not a classification of codes,
but a new way of representing equivalence classes of codes, and a classification of
all ELC orbits of length up to 12.

1.1 Graph Theory

A graph is a pair G = (V,E) where V is a set of vertices, and E ⊆ V × V is a
set of edges. A graph with n vertices can be represented by an n× n adjacency
matrix Γ , where γij = 1 if {i, j} ∈ E, and γij = 0 otherwise. We will only
consider simple undirected graphs whose adjacency matrices are symmetric with
all diagonal elements being 0, i.e., all edges are bidirectional and no vertex can
be adjacent to itself. The neighbourhood of v ∈ V , denoted Nv ⊂ V , is the set of
vertices connected to v by an edge. The number of vertices adjacent to v is called
the degree of v. The induced subgraph of G on W ⊆ V contains vertices W and all
edges from E whose endpoints are both in W . The complement of G is found by
replacing E with V × V − E, i.e., the edges in E are changed to non-edges, and
the non-edges to edges. Two graphs G = (V,E) and G′ = (V,E′) are isomorphic
if and only if there exists a permutation π on V such that {u, v} ∈ E if and
only if {π(u), π(v)} ∈ E′. A path is a sequence of vertices, (v1, v2, . . . , vi), such
that {v1, v2}, {v2, v3}, . . . , {vi−1, vi} ∈ E. A graph is connected if there is a path
from any vertex to any other vertex in the graph. A graph is bipartite if its set
of vertices can be decomposed into two disjoint sets such that no two vertices
within the same set are adjacent. We call a graph (a, b)-bipartite if its vertices
can be decomposed into sets of size a and b.

Definition 1 ([6,7,8]). Given a graph G = (V,E) and a vertex v ∈ V , let
Nv ⊂ V be the neighbourhood of v. Local complementation (LC) on v transforms
G into G ∗ v by replacing the induced subgraph of G on Nv by its complement.
(Fig. 1)

21

3 4
(a) The Graph G

21

3 4
(b) The Graph G ∗ 1

Fig. 1: Example of Local Complementation
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Definition 2 ([7]). Given a graph G = (V,E) and an edge {u, v} ∈ E, edge
local complementation (ELC) on {u, v} transforms G into G(uv) = G ∗u ∗ v ∗u =
G ∗ v ∗ u ∗ v.

Definition 3 ([7]). ELC on {u, v} can equivalently be defined as follows. De-
compose V \ {u, v} into the following four disjoint sets, as visualized in Fig. 2.

A Vertices adjacent to u, but not to v.
B Vertices adjacent to v, but not to u.
C Vertices adjacent to both u and v.
D Vertices adjacent to neither u nor v.

To obtain G(uv), perform the following procedure. For any pair of vertices {x, y},
where x belongs to class A, B, or C, and y belongs to a different class A, B, or
C, “toggle” the pair {x, y}, i.e., if {x, y} ∈ E, delete the edge, and if {x, y} 6∈ E,
add the edge {x, y} to E. Finally, swap the labels of vertices u and v.

u v

D

A B

C

Fig. 2: Visualization of the ELC Operation

Definition 4. The LC orbit of a graph G is the set of all graphs that can be
obtained by performing any sequence of LC operations on G. Similarly, the ELC
orbit of G comprises all graphs that can be obtained by performing any sequence
of ELC operations on G. (Usually we consider LC and ELC orbits of unlabeled
graphs. In the cases where we consider orbits of labeled graphs, this will be noted.)

The LC operation was first defined by de Fraysseix [8], and later studied by
Fon-der-Flaas [6] and Bouchet [7]. Bouchet defined ELC as “complementation
along an edge” [7], but this operation is also known as pivoting on a graph [2,9]. LC
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orbits of graphs have been used to study quantum graph states [10,11,12], which
are equivalent to self-dual additive codes over GF(4) [13]. We have previously
used LC orbits to classify such codes [14,15]. ELC orbits have also been studied
in the context of quantum graph states [4,9]. Interlace polynomials of graphs
have been defined with respect to both ELC [2] and LC [3]. These polynomials
encode properties of the graph orbits, and were originally used to study a problem
related to DNA sequencing [16].

Proposition 1. If G = (V,E) is a connected graph, then, for any vertex v ∈ V ,
G ∗ v must also be connected. Likewise, for any edge {u, v} ∈ E, G(uv) must be
connected.

Proof. If the edge {x, y} is deleted as part of an LC operation on v, both x and
y must be, and will remain, connected to v. Similarly, if by performing ELC on
the edge {u, v}, the edge {x, y} is deleted, both x and y will remain connected to
either u, v, or both, and u and v will remain connected. ut

Proposition 2 ([9]). If G is an (a, b)-bipartite graph, then, for any edge {u, v} ∈
E, G(uv) must also be (a, b)-bipartite.

Proof. A bipartite graph with an edge {u, v} can not contain any vertex that
is connected to both u and v. Using the terminology of Definition 3, the set C
will always be empty when we perform ELC on a bipartite graph. Moreover, all
vertices in the set A must belong to the same partition as u, and all vertices in B
must belong to the same partition as v. All edges that are added or deleted have
one endpoint in A and one in B, and it follows that bipartiteness is preserved. ut

Proposition 3. Let G be a bipartite graph, and let {u, v} ∈ E. Then G(uv) can
be obtained by “toggling” all edges between the sets Nu \{v} and Nv \{u}, followed
by a swapping of vertices u and v.

1.2 Coding Theory

A binary linear code, C, is a linear subspace of GF(2)n of dimension k, where
0 ≤ k ≤ n. C is called an [n, k] code, and the 2k elements of C are called codewords.
The Hamming weight of u ∈ GF(2)n, denoted wt(u), is the number of nonzero
components of u. The Hamming distance between u,v ∈ GF(2)n is wt(u− v).
The minimum distance of the code C is the minimal Hamming distance between
any two codewords of C. Since C is a linear code, the minimum distance is
also given by the smallest weight of any codeword in C. A code with minimum
distance d is called an [n, k, d] code. A code is decomposable if it can be written
as the direct sum of two smaller codes. For example, let C be an [n, k, d] code and
C′ an [n′, k′, d′] code. The direct sum, C ⊕ C′ = {u||v | u ∈ C, v ∈ C′}, where ||
means concatenation, is an [n+ n′, k + k′,min{d, d′}] code. Two codes, C and C′,
are considered to be equivalent if one can be obtained from the other by some
permutation of the coordinates, or equivalently, a permutation of the columns of
a generator matrix. We define the dual of the code C with respect to the standard
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inner product, C⊥ = {u ∈ GF(2)n | u · c = 0 for all c ∈ C}. C is called self-dual
if C = C⊥, and isodual if C is equivalent to C⊥. Self-dual and isodual codes must
have even length n, and dimension k = n

2 . The code C can be defined by a k × n
generator matrix, C, whose rows span C. A set of k linearly independent columns
of C is called an information set of C. We can permute the columns of C such that
an information set makes up the first k columns. By elementary row operations,
this matrix can then be transformed into a matrix of the form C ′ = (I | P ),
where I is a k× k identity matrix, and P is some k× (n− k) matrix. The matrix
C ′, which is said to be of standard form, generates a code C′ which is equivalent
to C. Every code is equivalent to a code with a generator matrix of standard
form. The matrix H ′ = (PT | I), where I is an (n− k)× (n− k) identity matrix

is called the parity check matrix of C′. Observe that G′H ′
T

= 0, where 0 is the
all-zero vector. It follows that H ′ must be the generator matrix of C′⊥.

2 ELC and Code Equivalence

As mentioned earlier, LC orbits of graphs correspond to equivalence classes of
self-dual quantum codes. We have previously classified all such codes of length up
to 12 [15], by classifying LC orbits of simple undirected graphs. In this paper, we
show that ELC orbits of bipartite graphs correspond to the equivalence classes of
binary linear codes. First we explain how a binary linear code can be represented
by a graph.

Definition 5 ([17,18]). Let C be a binary linear [n, k] code with generator matrix
C = (I | P ). Then the code C corresponds to the (k, n− k)-bipartite graph on n
vertices with adjacency matrix

Γ =

(
0k×k P
PT 0(n−k)×(n−k)

)
,

where 0 denote all-zero matrices of the specified dimensions.

Theorem 1. Let G = (V,E) be the (k, n − k)-bipartite graph derived from a
standard form generator matrix C = (I | P ) of the [n, k] code C. Let G′ be the
graph obtained by performing ELC on the edge {u, v} ∈ E, followed by a swapping
of vertices u and v. Then the code C′ generated by C ′ = (I | P ′) corresponding to
G′ is equivalent to C, and can be obtained by interchanging coordinates u and v
of C.

Proof. Assume, without loss of generality, that u ≤ k and v > k. C ′ can be
obtained from C by adding row u to all rows in Nv \ {u} and then swapping
columns u and v, where Nv denotes the neighbourhood of v in G. These operations
preserve the equivalence of linear codes. As described in Proposition 3, the
bipartite graph G is transformed into G′ by “toggling” all pairs of vertices {x, y},
where x ∈ Nu \ {v} and y ∈ Nv \ {u}. This action on the submatrix P is
implemented by the row additions on C described above. However, this also
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“toggles” the pairs {v, y}, where y ∈ Nv \ {u}, transforming column v of C into a
vector with 0 in all coordinates except u. But column u of C now contains the
original column v, and thus swapping columns u and v restores the neighbourhood
of v, giving the desired submatrix P . ut

Corollary 1. Applying any sequence of ELC operations to a graph G corre-
sponding to a code C will produce a graph corresponding to a code equivalent to
C.

Instead of mapping the generator matrix C = (I | P ) to the adjacency matrix
of a bipartite graph in order to perform ELC on the edge {u, v}, we can work
directly with the submatrix P . Let the rows of P be labeled 1, 2, . . . , k and the
columns of P be labeled k + 1, k + 2, . . . , n. Assume that u indicates a row of P
and that v indicates a column of P . The element Pij is then replaced by 1− Pij

if i 6= u, j 6= v, and Puj = Piv = 1.

Example 1. The [7, 4, 3] Hamming code has a generator matrix

C =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 ,

which corresponds to the graph shown in Fig. 3a. ELC on the edge {2, 7} produces
the graph shown in Fig. 3b, which corresponds to the generator matrix

C ′ =


1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

 .

The code generated by C ′ is also obtained by swapping coordinates 2 and 7 of
the code generated by C.

Consider a code C. As described in Section 1.2, it is possible to go from a
generator matrix of standard form, C = (I | P ), to another generator matrix of
standard form, C ′, of a code equivalent to C by one of the n! possible permutations
of the columns of C, followed by elementary row operations. More precisely, we
can get from C to C ′ via a combination of the following operations.

1. Permuting the columns of P .
2. Permuting the columns of I, followed by the same permutation on the rows

of C, to restore standard form.
3. Swapping columns from I with columns from P , such that the first k columns

still is an information set, followed by some elementary row operations to
restore standard form.

Theorem 2. Let C and C′ be equivalent codes. Let C and C ′ be matrices of stan-
dard form generating C and C′. Let G and G′ be the bipartite graphs corresponding
to C and C ′. G′ is isomorphic to a graph obtained by performing some sequence
of ELC operations on G.
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(b) The Graph G(27)

Fig. 3: Two Graph Representations of the [7, 4, 3] Hamming Code

Proof. C and C′ must be related by a combination of the operations 1, 2, and
3 listed above. It is easy to see that operations 1 and 2 applied to G produce
an isomorphic graph. It remains to prove that operation 3 always corresponds
to some sequence of ELC operations. We know from Theorem 1 that swapping
columns u and v of C, where u is part of I and v is part of P , corresponds to ELC
on the edge {u, v} of G, followed by a swapping of the vertices u and v. When
{u, v} is not an edge of G, we can not swap columns u and v of C via ELC. In
this case, coordinate v of column u is 0, and column u has 1 in coordinate u and
0 elsewhere. Swapping these columns would result in a generator matrix where
the first k columns all have 0 at coordinate u. These columns can not correspond
to an information set. It follows that if {u, v} is not an edge of G, swapping
columns u and v is not a valid operation of type 3 in the above list. Thus ELC
and graph isomorphism cover all possible operations that map standard form
generator matrices of equivalent codes to each other. ut

Let us for a moment consider ELC orbits of labeled graphs, i.e., where we
do not take isomorphism into consideration. Let G = (V,E) be the connected
bipartite graph representing the indecomposable code C, and G(uv) be the graph
obtained by ELC on the edge {u, v} ∈ E. Since we perform ELC on {u, v} without
swapping u and v afterwards, the adjacency matrix of G(uv) will not be of the type
we saw in Definition 5. Assuming that vertices {1, 2, . . . , k} make up one of the
partitions of the bipartite graph G, we can think of G as a graph corresponding
to the information set {1, 2, . . . , k} of C. Assume that u ≤ k and v > k. G(uv)

will then represent another information set of C, namely {1, 2, . . . , k} \ {u} ∪ {v}.

Theorem 3. Let G be a connected bipartite graph representing the indecom-
posable code C. Each labeled graph in the ELC orbit of G corresponds to an
information set of C. If C is a self-dual code, each graph corresponds to two
information sets, one for each partition. Moreover, the number of information
sets of C equals the number of labeled graphs in the ELC orbit of G, or twice the
number of graphs if C is a self-dual code.
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Proof. Performing ELC without swapping vertices afterwards corresponds to
elementary row operations on the associated generator matrix, and will thus leave
the code invariant. The only thing we change with ELC is the information set of
the code, as indicated by the bipartition of the graph. We know from Theorem 2
that if two generator matrices of standard form generate equivalent codes, we can
always get from one to the other via ELC operations on the associated graph. It
follows from this that when we consider labeled graphs, and do not swap vertices
to obtain a code of standard form, we find all information sets in the ELC orbit.
If and only if a code is self-dual, (I | P ) will generate the same code as (PT | I).
Since the matrices (I | P ) and (PT | I) correspond to exactly the same graph,
but two different information sets, we must multiply the ELC orbit size with two
to get the number of information sets of a self-dual code. ut

Note that the distinction between ELC with or without a final swapping
of vertices is only significant when we want to find information sets. For other
applications, where we consider graphs up to isomorphism, this distinction is not
of importance.

Theorem 4. The minimum distance, d, of a binary linear [n, k, d] code C, is
equal to δ + 1, where δ is the smallest vertex degree of any vertex in the partition
of size k over all graphs in the associated ELC orbit.

Proof. If there is a vertex with degree d− 1, belonging to the partition of size k,
in the ELC orbit, there is a row of weight d in a generator matrix that generates
a code equivalent to C. Hence there must also be a codeword of weight d in C.
We need to show that when d is the minimum distance of C, such a vertex always
exists. Let C be the standard form generator matrix of C. If C contains a row of
weight d, we are done. Otherwise, select a codeword c of weight d, generated by
C, and let the i-th row of C be one of the rows that c is linearly dependent on.
Replace the i-th row of C by c to get C ′. Permute the columns of C ′ to obtain C ′′

where the first k columns is still an information set, and where c is mapped to c′

with 1 in coordinate i, with the rest of the k first coordinates being 0. That such
a permutation will always exist follows from the fact that c has weight d while
all other rows of C ′ have weight greater than d− 1 in the last n− k coordinates.
Thus, for each coordinate j ≤ k, j 6= i, where c is 1, there must exist a distinct
coordinate l > k where c is 0 and the j-th row of C ′ is 1. We can transform
C ′′ into a matrix of the form (I | P ) by elementary row operations. Row i of
this final matrix has weight d, and thus the corresponding bipartite graph has a
vertex with degree d− 1. ut

3 Classification of ELC Orbits

We have previously classified all self-dual additive codes over GF(4) of length up
to 12 [15,19], by classifying orbits of simple undirected graphs with respect to
local complementation and graph isomorphism. In Table 1, the sequence (iLC

n )
gives the number of LC orbits of connected graphs on n vertices, while (tLC

n ) gives
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the total number of LC orbits of graphs on n vertices. A database containing
one representative from each LC orbit is available at http://www.ii.uib.no/

~larsed/vncorbits/.

Table 1: Numbers of LC Orbits

n 1 2 3 4 5 6 7 8 9 10 11 12

iLC
n 1 1 1 2 4 11 26 101 440 3,132 40,457 1,274,068
tLC
n 1 2 3 6 11 26 59 182 675 3,990 45,144 1,323,363

By recursively applying ELC operations to all edges of a graph, whilst checking
for graph isomorphism using the program nauty [20], we can find all members of
the ELC orbit. Let Gn be the set of all unlabeled simple undirected connected
graphs on n vertices. Let the set of all distinct ELC orbits of connected graphs on n
vertices be a partitioning of Gn into iELC

n disjoint sets. Our previous classification
of the LC orbits of all graphs of up to 12 vertices helps us to classify ELC orbits,
since it follows from Definition 2 that each LC orbit can be partitioned into a set
of disjoint ELC orbits. We have used this fact to classify all ELC orbits of graphs
on up to 12 vertices, a computation that required approximately one month of
running time on a parallel cluster computer. In Table 2, the sequence (iELC

n )
gives the number of ELC orbits of connected graphs on n vertices, while (tELC

n )
gives the total number of ELC orbits of graphs on n vertices. Note that the value
of tn can be derived easily once the sequence (im) is known for 1 ≤ m ≤ n, using
the Euler transform [21],

cn =
∑
d|n

did,

t1 = c1,

tn =
1

n

(
cn +

n−1∑
k=1

cktn−k

)
.

A database containing one representative from each ELC orbit can be found at
http://www.ii.uib.no/~larsed/pivot/.

We are particularly interested in bipartite graphs, because of their connection
to binary linear codes. For the classification of the orbits of bipartite graphs with
respect to ELC and graph isomorphism, the following technique is helpful. If G
is an (a, b)-bipartite graph, it has 2a + 2b − 2 possible extensions. Each extension
is formed by adding a new vertex and joining it to all possible combinations of
at least one of the old vertices. Let P n be a set containing one representative
from each ELC orbit of all connected bipartite graphs on n vertices. The set
En is formed by making all possible extensions of all graphs in P n−1. It can
then be shown that P n ⊂ En, i.e., that the set En will contain at least one
representative from each ELC orbit of connected bipartite graphs on n vertices.

http://www.ii.uib.no/~larsed/vncorbits/
http://www.ii.uib.no/~larsed/vncorbits/
http://www.ii.uib.no/~larsed/pivot/
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Table 2: Numbers of ELC Orbits and Binary Linear Codes

n iELC
n tELC

n iELC,B
n tELC,B

n iCn iCiso
n

1 1 1 1 1 1 -
2 1 2 1 2 1 1
3 2 4 1 3 2 -
4 4 9 2 6 3 1
5 10 21 3 10 6 -
6 35 64 8 22 13 3
7 134 218 15 43 30 -
8 777 1,068 43 104 76 10
9 6,702 8,038 110 250 220 -

10 104,825 114,188 370 720 700 40
11 3,370,317 3,493,965 1,260 2,229 2,520 -
12 231,557,290 235,176,097 5,366 8,361 10,503 229
13 ? ? 25,684 36,441 51,368 -
14 154,104 199,610 306,328 1,880
15 1,156,716 1,395,326 2,313,432 -
16 ? ? 23,069,977 ?
17 157,302,628 ? 314,605,256 -

The set En will be much smaller than Gn, so it will be more efficient to search
for a set of ELC orbit representatives within En. A similar technique was used
by Glynn, et al. [10] to classify LC orbits.

In Table 2, the sequence (iELC,B
n ) gives the number of ELC orbits of connected

bipartite graphs on n vertices, and (tELC,B
n ) gives the total number of ELC orbits

of bipartite graphs on n vertices. A database containing one representative from
each of these orbits can be found at http://www.ii.uib.no/~larsed/pivot/.

Theorem 5. Let k 6= n
2 . Then the number of inequivalent binary linear [n, k]

codes, which is also the number of inequivalent [n, n− k] codes, is equal to the
number of ELC orbits of (n− k, k)-bipartite graphs.

When n is even and k = n
2 , the number of inequivalent binary linear [n, k]

codes is equal to twice the number of ELC orbits of (k, k)-bipartite graphs minus
the number of isodual codes of length n.

Proof. We recall that if a code C is generated by (I | P ), then its dual, C⊥, is
generated by (PT | I). Also note that C⊥ is equivalent to the code generated by
(I | PT). The bipartite graphs corresponding to the codes generated by (I | P )
and (I | PT) are isomorphic. It follows that the ELC orbit associated with an
[n, k] code C is simultaneously the orbit associated with the dual [n, n− k] code
C⊥. In the case where k = n

2 , each ELC orbit corresponds to two non-equivalent
[n, k] codes, except in the case where C is isodual. ut

Corollary 2. The total number of binary linear codes of length n is equal to
twice the number of ELC orbits of bipartite graphs on n vertices, minus the
number of isodual codes of length n.

http://www.ii.uib.no/~larsed/pivot/
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Note that if we only consider connected graphs on n vertices, we get the
number of indecomposable codes of length n, iCn , i.e., the codes that can not be
written as the direct sum of two smaller codes. The total number of codes can
easily be derived from the values of (iCn ). Table 2 gives the number of ELC orbits
of connected bipartite graphs on n vertices, iELC,B

n , the number of indecom-
posable binary linear codes of length n, iCn , and the number of indecomposable
isodual codes of length n, iCiso

n . A method for counting the number of binary
linear codes by using computer algebra tools was devised by Fripertinger and
Kerber [22]. A table enumerating binary linear codes of length up to 25 is available
online at http://www.mathe2.uni-bayreuth.de/frib/codes/tables_2.html.
The numbers in italics in Table 2 are taken from this webpage. Note however that
this approach only gives the number of inequivalent codes, and does not produce
the codes themselves. Classification of all binary linear codes of length up to 14
and with distance at least 3 was carried out by Österg̊ard [1]. He also used a
graph-based algorithm, but one quite different from the method described in this
paper. In a recent book by Kaski and Österg̊ard [5], it is proposed as a research
problem to extend this classification to lengths higher than 14. Sang-il Oum [per-
sonal communication] demonstrated that the 1,395,326 ELC orbits of bipartite
graphs on 15 vertices can be generated in about 58 hours. This indicates that
classification of codes by ELC orbits is comparable to the currently best known
algorithm. It may also be possible that our method will be more efficient than
existing algorithms for classifying special types of codes. For instance, matrices
of the form (I | P ), where P is symmetric, generate a subset of the isodual codes.
The bipartite graphs corresponding to these codes, which were also studied by
Curtis [17], should be well suited to our method, since any graph of this type
must arise as an extension of a graph of the same type.
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1. Österg̊ard, P.R.J.: Classifying subspaces of Hamming spaces. Des. Codes Cryptogr.
27 (2002) 297–305

2. Arratia, R., Bollobás, B., Sorkin, G.B.: The interlace polynomial of a graph.
J. Combin. Theory Ser. B 92 (2004) 199–233 arXiv:math.CO/0209045.

3. Aigner, M., van der Holst, H.: Interlace polynomials. Linear Algebra Appl. 377
(2004) 11–30

4. Van den Nest, M., De Moor, B.: Edge-local equivalence of graphs. Preprint,
arXiv:math.CO/0510246 (2005)
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