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Abstract

We characterise the aperiodic autocorrelation for a Boolean function,
f , and define the Aperiodic Propagation Criteria (APC) of degree l and
order q. We establish the strong similarity between APC and the Extended
Propagation Criteria (EPC) as defined by Preneel et al. in 1991, although
the criteria are not identical. We also show how aperiodic autocorrelation
can be related to the first derivative of f . We further propose the metric
APC distance and show that quantum error correcting codes (QECCs) are
natural candidates for Boolean functions with favourable APC distance.

Keywords: Propagation criteria; Differential cryptanalysis; Aperiodic au-
tocorrelation; Quantum error-correcting codes; Boolean functions; Graph
theory; Quantum entanglement

1 Introduction
Imagine the block cipher scenario where an attacker has knowledge of the values
of a fixed subset, µ, of the plaintext bits and any subset of the ciphertext bits,
for multiple plaintext/ciphertext pairs. Moreover he is able to modify any of
the plaintext bits from the set µ, in order to realise a differential attack on the
cipher. For a given cipher, what is the smallest size of µ such that a biased
differential can be established across the cipher? This scenario motivates us to
define Aperiodic Propagation Criteria (APC) for a Boolean function such that
APC distance is this minimum size for µ for a constituent Boolean function of
the cipher. We also define multivariate aperiodic autocorrelation of a Boolean
function, from which APC is derived.

Now imagine a similar scenario where the attacker has knowledge of the
values of a fixed subset, µ, of the plaintext bits, and he is able to modify any
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subset, a, of the plaintext bits, but this time a is not necessarily a subset of µ.
For a given cipher, and for a given size for a, what is the smallest size for µ
such that a biased differential can be established across the cipher? Preneel
et al. [33] have defined Extended Propagation Criteria (EPC) such that, for a
constituent Boolean function of the cipher, EPC(l) of order q means that a
biased differential cannot be found if µ is of size q or less given that a is of size
l or less. To ease comparison with APC, we further propose EPC distance to
be the minimum size of µ∪a such that a biased differential can be found. EPC
is also considered in [8, 26].

One purpose of this paper is to characterise aperiodic autocorrelation for a
Boolean function, to motivate its use for cryptanalysis, and to consider construc-
tions for Boolean functions with favourable aperiodic criteria, where favourable
here means that the aperiodic coefficients are zero at low weight indices. Preneel
et al. [33] propose (periodic) Propagation Criteria (PC) of degree l and order q
which evaluates periodic properties of a Boolean function when q of the input
bits are kept constant. In the same way we propose Aperiodic Propagation Cri-
teria (APC) of degree l and order q to evaluate aperiodic properties when q bits
are kept constant. It is then natural to compare APC with EPC.

By interpreting our Boolean function of m variables as a quantum state of
m qubits, we also establish, rather surprisingly, that the APC distance of a
quadratic Boolean function is equal to the minimum distance of an associated
zero-dimensional quantum error-correcting code (QECC) which represents, in
turn, a highly-entangled pure quantum state [23]. We apply recent results
on quantum codes to the construction of quadratic Boolean functions with
favourable APC. This suggests that the disciplines of quantum entanglement
and cryptographic criteria for Boolean functions are closely related [32]. The
mapping of Boolean functions into Hilbert space allows one to apply local unitary
transforms to establish orbits of Boolean functions over which APC distance is
invariant. Orbits of quadratic functions can be generated by successive local
complementation (LC) operations on associated graphs [3, 18, 19, 42]. These
graph operations encode the action of a special subset of the local unitary trans-
forms. Similarly, APC distance-invariant orbits of functions of algebraic degree
greater than two can also be generated by application of the same set of local
unitary transforms. Therefore, a second purpose of this paper is to re-cast the
construction of QECCs as a problem of construction of Boolean functions. As a
result, we are able to generalise the set of QECCs to Boolean functions of degree
greater than two, whereas conventional QECCs only map to Boolean functions
of degree two.

This paper is structured as follows. After establishing the notation, we char-
acterise the aperiodic and fixed-aperiodic autocorrelation for a Boolean func-
tion. We then define APC, elaborate on the similarities between APC and
EPC, and define APC and EPC distance metrics. We consider constructions
for quadratic Boolean functions with favourable APC, using known results for
QECCs. We also highlight the unusual LC symmetry. Finally we consider the
challenging problem of finding constructions for Boolean functions of algebraic
degree greater than two with favourable APC, and we describe the generalisation
of LC for such functions. We also show, in Appendix B, how to use aperiodic co-
efficients to compute the combined periodic/negaperiodic coefficients, and vice
versa. Symmetries associated with aperiodic autocorrelation are described in
Appendix C. Finally Appendix D presents the results of the (truncated) differen-
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tial analysis of a few state-of-the-art S-boxes with respect to periodic, aperiodic,
and fixed-aperiodic autocorrelation.

2 Preliminaries
Let Bm denote the set of all Boolean functions on m variables. For a =
(a0, a1, . . . , am−1) ∈ Fm

2 , the Hamming weight of a is

wt(a) =
m−1∑
i=0

ai. (1)

We define the operators : Fm
2 → Fm

2 , and & : Fm
2 × Fm

2 → Fm
2 as bitwise

negation and modular multiplication modulo 2, respectively. Let a, b, c ∈ Fm
2 ,

then

c = a & b ⇒ ci = aibi, ∀i, 0 ≤ i < m. (2)
c = a ⇒ ci = ai + 1, ∀i, 0 ≤ i < m. (3)

Let a, b ∈ Fm
2 , then

b � a ⇔ bi ≤ ai, ∀i, 0 ≤ i < m, (4)

and we say that a covers b.
The dual, V ⊥, of a subspace V ⊂ Fm

2 can be described relative to the scalar
product,

V ⊥ = {x ∈ Fm
2 | x · y = 0, y ∈ V }. (5)

In particular, for r ∈ Fm
2 , we define Vr as

Vr = {x ∈ Fm
2 | x � r}. (6)

Moreover, for any k ∈ Fm
2 , k + V defines a coset of V .

Let E be any subset of Fm
2 . For any f ∈ Bm we define fφE as the restriction

of f to E such that fφE(x) = 1 iff f(x) = 1 and x ∈ E. If E is a k-dimensional
linear subspace of Fm

2 then, for any coset, b + E, we identify fφb+E with a
Boolean function in Bk, where the function obtained depends on b.

For any f ∈ Bm we define F(f) as

F(f) =
∑

x∈Fm
2

(−1)f(x). (7)

If E is a k-dimensional linear subspace of Fm
2 then, for any coset b + E,

F(fφb+E) =
∑

x∈b+E

(−1)f(x). (8)

The (Walsh-Hadamard) Fourier spectrum of f ∈ Bm is expressed as the multi-
set

{F(f + α · x), α ∈ Fm
2 }. (9)
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Definition 1. Let f ∈ Bm and let t be some positive integer. The function f
is said to be correlation-immune of order t if and only if F(f + α · x) = 0 for
any α ∈ Fm

2 such that 1 ≤ wt(α) ≤ t. Moreover, if such an f is also balanced,
it is said to be t-resilient. A balanced function with no correlation-immunity is
0-resilient.

For any f ∈ Bm and a ∈ Fm
2 , the first derivative of f with respect to a is

given by Daf ∈ Bm, where

Daf = f(x) + f(x + a). (10)

In the sequel we use expressions of the form DafφE which should always be
taken to mean (Daf)φE , i.e., we omit brackets for clarity.

For a,k,µ ∈ Fm
2 , a � µ, k � µ, the fixed-periodic autocorrelation coeffi-

cients, pa,k,µ, of f after fixing the subspace Vµ to k, can be defined by

pa,k,µ = F(Dafφk+Vµ
), a � µ, k � µ. (11)

When µ = 0 there is no subspace fixing, and (11) simplifies to the periodic
autocorrelation of f , given by

pa = F(Daf). (12)

Definition 2 ([33]). Let E ⊂ Fm
2 . The function f ∈ Bm satisfies the (periodic)

Propagation Criteria (PC) with respect to E if, for all e ∈ E, pe = 0. The
function f satisfies PC of degree l and order q (also denoted PC(l) of order q)
for some positive integers l and q if pa,k,µ = 0 for any a,k,µ ∈ Fm

2 such that
a � µ, k � µ, 1 ≤ wt(a) ≤ l and 0 ≤ wt(µ) ≤ q. For q = 0 we abbreviate,
saying that f satisfies PC(l).

3 Aperiodic Autocorrelation of a Boolean Function
For a,k,µ ∈ Fm

2 , a,k � µ, and θ = µ + a, where θ and a are disjoint, the
fixed-aperiodic autocorrelation coefficients of f after fixing the subspace Vθ to
k &θ are defined by

ua,k,µ = F(Dafφk+Vµ
), a,k � µ. (13)

The only difference between (11) and (13) is that, for the fixed-periodic case,
a � µ whereas, for the fixed-aperiodic case, a � µ. For (11), (Daf)φk+Vµ

=
Da(fφk+Vµ

), but this is ill-defined for (13). Note that “knowledge of the values
of a fixed subset, µ”, as stated in Section 1, is here characterised by fixed values
of k, where k is covered by µ.

When µ = a there are no additional fixed values, and (13) simplifies to the
aperiodic autocorrelation of f , given by

ua,k = F(Dafφk+Va
), k � a. (14)

In other words, the aperiodic autocorrelation coefficients are given by a set
of restrictions on the first derivatives of f . From the definitions there are∑

a∈Fm
2

2wt(a) = 3m coefficients ua,k and
∑

µ∈Fm
2

22 wt(µ) = 5m coefficients

4



ua,k,µ. In fact, for autocorrelations of real functions, Fm
2 → R, there are only a

maximum of 3m

2 and 5m

2 different values for ua,k and ua,k,µ, respectively.
The fixed-aperiodic autocorrelation of a Boolean function over a subspace

is related to the Extended Propagation Criteria (EPC) as defined by Pre-
neel et al. [33], and investigated by Carlet [8]. However, the aperiodic property
is more accurately characterised by a criteria we define as Aperiodic Propagation
Criteria (APC). We first explain why (13) is an aperiodic (non-modular) metric,
and we later return to the definitions of both APC and EPC.

Proposition 3. The periodic autocorrelations of (11) and (12) can be expressed
as modular (periodic) multivariate polynomial multiplications, and the aperiodic
autocorrelations of (13) and (14) can be expressed as non-modular (aperiodic)
multivariate polynomial multiplications.

Proof. Let pa and ua,k be as defined in (12) and (14), respectively. Let z ∈ Cm.
Define v(z), P (z), and A(z) as

v(z) =
∑

x∈Fm
2

(−1)f(x)
∏

i∈Zm

zxi
i , (15)

P (z) =
∑

a∈Fm
2

pa

∏
i∈Zm

zai
i , (16)

A(z) =
∑

k,a∈Fm
2 ,k�a

ua,k

∏
i∈Zm

z
ai(−1)ki

i . (17)

Let z−1 = (z−1
0 , z−1

1 , . . . , z−1
m−1). Then an expansion verifies the following mod-

ular and non-modular relationships for P (z) and A(z).

P (z) = v(z)v(z−1) (mod
∏

i∈Zm

(z2
i − 1)), (18)

A(z) = v(z)v(z−1). (19)

The above argument carries over simply to (11) (resp. (13)) by first fixing
a subspace Vµ (resp. Vθ), then computing a modular (resp. non-modular)
polynomial multiplication over the remaining subspace.

For a, c ∈ Fm
2 , define Ga,c as the Fourier spectrum of Daf , so that

Ga,c = F(Daf + c · x). (20)

The fixed-aperiodic autocorrelation of f after fixing a subspace, Vθ, is equivalent
to a subspace Fourier transform of the Fourier transform of the first derivatives
of f , as in the following proposition.

Proposition 4.

ua,k,µ = 2−wt(µ)
∑
c�µ

Ga,c(−1)k·c, a,k � µ, (21)

Ga,c =
∑
k�µ

ua,k,µ(−1)c·k, a, c � µ, (22)

where, as before, the simplification to no additional fixed values is given by
assigning µ = a.
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Proof. See Appendix A.

The relationship between aperiodic autocorrelation and its constituent pe-
riodic and negaperiodic autocorrelations is described in subsection B.1 of Ap-
pendix B, and the relationships to the second derivative are described in sub-
section B.2 of the same appendix.

We can establish power relationships between fixed-aperiodic coefficients and
Fourier spectra of the first derivative of f as follows.∑

k�µ

|ua,k,µ|2 = 2−wt(µ)
∑
c�µ

|Ga,c|2 (23)

We define the fixed-aperiodic sum-of-squares with respect to a after fixing a
subspace Vθ, referred to as σa,µ, as

σa,µ =
∑
k�µ

|ua,k,µ|2. (24)

By summing over all a,µ ∈ Fm
2 where a � µ, we arrive at an expression for the

complete fixed-aperiodic sum-of-squares, E , for f .

2E + 6n =
∑

µ∈Fm
2

∑
a�µ

σa,µ =
∑

µ∈Fm
2

∑
a,k�µ

|ua,k,µ|2 (25)

When a = µ, the above expression simplifies to the aperiodic sum-of-squares, σ,
where

2σ + 4n =
∑

a∈Fm
2

σa =
∑

a∈Fm
2

∑
k�a

|ua,k|2. (26)

The aperiodic sum-of-squares, and the complete fixed-aperiodic sum-of-squares,
have been investigated in [22] and [31], resp., where recursions in σ and E , resp.,
have been established for certain infinite quadratic Boolean constructions.1 Of
significant interest in this paper are the choices for a and µ such that σa,µ = 0,
in particular for the cases where wt(µ) is small. To this end we define the
Aperiodic Propagation Criteria as follows.

Definition 5. The function f ∈ Bm satisfies the Aperiodic Propagation Criteria
(APC) of degree l and order q (also denoted APC(l) of order q), for some positive
integers l and q if ua,k,µ = 0 for any a,k,µ ∈ Fm

2 such that a,k � µ, µ = a+θ,
1 ≤ wt(a) ≤ l and 0 ≤ wt(θ) ≤ q, where a and θ are disjoint. For q = 0 we
abbreviate, saying that f satisfies APC(l).

An intuitive reason for the usefulness of APC in a classical cryptographic
context is as follows. Let x = {xi} be the complete set of input bits. let
xµ,xa ⊆ x be such that xa ⊆ xµ, |xµ| ≤ q + |xa|, and |xa| ≤ l. Then a
Boolean function, f , satisfies APC(l) of order q if, for every possible xµ,xa pair,
knowledge of the bits in xµ gives no information as to the values of the function
Daf , where ai = 1 iff xi ∈ xa. This definition is very similar but not identical to
the Extended Propagation Criteria (EPC) originally defined by Preneel et al. [33].
In order to define EPC, we first define extended autocorrelation.

1The factor of 2 on the left-hand sides of (25) and (26) reflects the fact that, for real
functions, Fm

2 → R, we have ua,k,µ = ua,k̄,µ and ua,k = ua,k̄, respectively. Moreover, 6n

and 4n represent the zero-shift contributions.

6



For a,k,µ ∈ Fm
2 , k � µ, and θ � µ, the fixed-extended autocorrelation

coefficients of f after fixing the subspace, Vθ, to k &θ, are defined by

va,k,µ = F(Dafφk+Vµ
), k � µ. (27)

When µ � a, (27) simplifies to the extended autocorrelation of f , given by

va,k = F(Dafφk+Vµ
), k � a. (28)

Note that

ua,k,µ = va,k,µ, a � µ, (29)
ua,k = va,k, a = µ, (30)

so the fixed-aperiodic autocorrelation coefficients are a subset of the extended
autocorrelation coefficients. EPC is defined as follows.

Definition 6 ([33]). The function f ∈ Bm satisfies the Extended Propagation
Criteria (EPC) of degree l and order q (also denoted EPC(l) of order q) for some
positive integers l and q if va,k,µ = 0 for any a,k,µ ∈ Fm

2 , such that k � µ,
1 ≤ wt(a) ≤ l and 0 ≤ wt(µ) ≤ q. For q = 0 we abbreviate, saying that f
satisfies EPC(l).2

An intuitive reason for the usefulness of EPC in a classical cryptographic
context is as follows [8, 33]. Let x = {xi} be the complete set of input bits.
Let xµ,xa ⊆ x be such that |xµ| ≤ q, and |xa| ≤ l. Then a Boolean function,
f , satisfies EPC(l) of order q if, for every possible xµ,xa pair, knowledge of
the bits in xµ gives no information as to the values of the function Daf , where
ai = 1 iff xi ∈ xa.

The essential difference between APC and EPC is that, for APC the bits in
the set xa are assumed to be known. This is not necessarily the case for EPC. In
practice this means that APC envisages a scenario where the ability to modify
input bits from the set xa also means that the attacker has “free” knowledge
of the values of these same bits. In other words, “Modify” and “Read” are not
distinguished for APC, whereas they are distinguished for EPC.

It is useful to define both APC and EPC in terms of one parameter each,
namely APC distance and EPC distance, respectively.

Definition 7. The function f ∈ Bm has APC distance d if it satisfies APC(l)
of order q for all positive integers, l, q, such that d > l + q.

Definition 8. The function f ∈ Bm has EPC distance d if it satisfies EPC(l)
of order q for all positive integers, l, q, such that d > l + q.

The following is easily verified from (29).

APC distance(f) ≤ EPC distance(f) (31)

Computational results suggest that, for most Boolean functions of a small num-
ber of variables, the two distances are equal. A counterexample is the clique

2 There appears to be some disagreement in the literature regarding the distinction between
PC and EPC, and the reader should be aware that some papers (e.g. [26]) refer to EPC(l) of
order k as PC(l) of order k.
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function, f =
∑

i<j xixj . For m ≥ 4, we have EPC distance = 4 but APC
distance = 2.

The APC has been defined above in terms of fixed-aperiodic coefficients,
ua,k,µ, but can also be defined in terms of Ga,c. From (23) we have the following
two-way implication, where a � µ.

ua,k,µ = 0, ∀k � µ ⇔ Ga,c = 0, ∀c � µ. (32)

Preneel et al. [33] and Carlet [8] have given spectral characterisations of the
EPC in terms of the Fourier transform of Daf . We now re-express this charac-
terisation in terms of the EPC distance and resilience of Daf .

Corollary 9. f has EPC distance d if and only if Daf is (d−wt(a)−1)-resilient
for all a where wt(a) < d.

Using (31) we obtain the following corollary.

Corollary 10. If f has APC distance d, then Daf is (d−wt(a)− 1)-resilient
for all a where wt(a) < d.

If Daf is (d−wt(a)− 1)-resilient, then f may have APC distance less than
d, (e.g. the clique function f =

∑
i<j xixj for m ≥ 3).

APC distance is slightly stricter than EPC distance3 and both are much
stricter criteria than PC. For example, it is easily verified that the hyper-bent
function f = x0x1x2 +x0x1x5 +x0x2x3 +x0x4x5 +x1x2x3 +x1x2x4 +x1x2x5 +
x1x3x4 +x1x3x5 +x1x4x5 +x2x4x5 +x0x3 +x0x5 +x1x4 +x2x3 +x3x4 satisfies
PC(6), but only APC(1), and further has both APC distance and EPC distance
equal to 2. In fact, PC acts as an upper-bound on EPC which, in turn, acts as
an upper bound on APC, giving the following lemma.

Lemma 11. Let f satisfy PC(l) of order q, EPC(l′) of order q, and APC(l′′)
of order q. Then l′′ ≤ l′ ≤ l.

Fig. 1 shows the scope of µ and a for EPC, APC, and PC. Although EPC
is more general then APC (because a is not necessarily a subset of µ), the
“spectral region” examined by EPC is no bigger than for APC. In other words,
for EPC, the part of a not covered by µ is, in a sense, superfluous, as it refers
only to the periodic autocorrelation, which is a spectral subset of the aperiodic
autocorrelation.4 APC, on the other hand, has no purely periodic part.

Here is a well-known quadratic construction [15] for f ∈ Bm which satisfies
APC(bm

2 c).

3Although the fixed-aperiodic autocorrelation coefficients are a subset of the extended
autocorrelation coefficients (see (29)), the interpretation of the weight of the coefficient indices
as a distance measure means that APC is stricter than EPC. More informally, EPC distance is
weaker than APC distance because EPC double-counts (does not identify) the overlap between
µ and a.

4By “spectral region” we mean that the ua,k,µ and va,k,µ of f can both be computed
from the {I, H, N}m set of transforms, where {I, H, N}m is as defined in Section 4.6. More
specifically, aperiodic autocorrelation (ua,k) can be computed from the set of {H, N}m trans-
form coefficients, whereas periodic autocorrelation (pa) can be computed from the {H}m

(Walsh-Hadamard) coefficients, which are a subset of the {H, N}m transform coefficients.
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Fig. 1: Relative Scope of µ and a for Extended, Aperiodic, and Periodic Autocorre-
lations

Theorem 12. Define f ∈ Bm, e ∈ Fm
2 , and d ∈ F2 such that

f(x) =
m−2∑
i=0

xπ(i)xπ(i+1) + e · x + d, (33)

where π is any permutation from Zm to Zm. Then f satisfies APC(bm
2 c).

Proof. See Appendix A.

Unfortunately the construction of Theorem 12 only gives APC distance 2.
This is because fixing variables can comprise the strength of the residual sub-
space function. For instance, for π the identity, µ = 1100 . . ., and a = 100 . . .
we find that ua,k,µ 6= 0 and wt(µ) = 2.

4 Constructions for Boolean Functions with Favourable APC

4.1 Qubits and Local Unitary Transforms
A quantum bit or qubit is an idealisation of a 2-dimensional quantum object. It
is described by the vector (q0, q1), such that the probability of measuring the
qubit in state 0 or state 1 is |q0|2 or |q1|2, respectively, with |q0|2 + |q1|2 = 1.
Similarly, m qubits comprise a 2m-dimensional object or pure5 quantum state,
|ψ〉, as described by the vector s = (s00...0, s00...1, . . . , s11...1) such that the
probability of a joint measurement on the m qubits of |ψ〉 yielding state i is
|si|2, where i ∈ Zm

2 , and ||s||22 =
∑11...1

i=00...0 |si|2 = 1, where ||s||p is the Lp-norm
of s. We say that s is normalised if ||s||22 = 1. A local change of basis on the
measurement axes is realised by evaluating s′ = Us, where U is a 2m × 2m

tensor-decomposable, unitary matrix. U is unitary if UU† = I, where I is the
identity and † means transpose conjugate. U is tensor-decomposable if it can be
written as U = U0 ⊗ U1 ⊗ . . .⊗ Um−1, where the Uj are 2× 2 unitary matrices.
If U is of this form, then it is referred to as a local unitary transform. The
transform is local because it is fully tensor-decomposed. We define s and s′

to be locally equivalent if s′ = Us for U a local unitary transform. In such a
case, s and s′ are considered to be equivalent quantum states. It is this notion
of equivalence that is exploited later in this section in the context of Boolean
functions. As in [32], we will use a bijective mapping from a Boolean function,
f ∈ Bm, to a quantum state of m qubits, |ψ〉, as represented by s.

|ψ〉 ≡ s = 2−
m
2 (−1)f(x), (34)

5Only pure states are considered in this paper.
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with si = 2−
m
2 (−1)f(i). Consequently we refer to qubit i as xi. This mapping

allows us to view the fixed-aperiodic autocorrelation of a Boolean function in
a quantum context. In particular we will see that the typical error model used
to define a QECC can be related precisely to the operations associated with
the fixed-aperiodic autocorrelation of a Boolean function. As the QECC error
set is invariant to a local basis change, this means that, if s = 2−

m
2 (−1)f(x)

and s′ = 2−
m
2 (−1)f ′(x) are locally equivalent, then f and f ′ have the same

fixed-aperiodic autocorrelation profile.

4.2 Quantum Error Correcting Codes
Stabilizer QECCs [20] make excellent candidates for Boolean functions with
favourable APC. An [[m, k, d]] QECC is a code over m qubits of dimension k
and minimum distance d, where each of the 2k codewords can be thought of as
a length 2m normalised complex vector. The typical error-model for such a code
assumes the occurrence of no error, bit-flip, phase-flip, or combined phase-flip
then bit-flip error on each qubit independently. These errors are denoted I,X,Z,
and Y , respectively. We introduce the Pauli matrices

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y =

(
0 −i
i 0

)
= iXZ, (35)

where i2 = −1. The Pauli matrices form a linear basis for all 2 × 2 complex
unitary matrices. Let a quantum code of m qubits be subject to an error,
E = (E0, E1, . . . , Em−1), such that Ej ∈ {I,X,Z, Y } acts on qubit j. An error
from E can be described by the local unitary transform UE = E0⊗E1 . . .⊗Em−1,
such that s′ = UEs takes s to the errored state s′. The weight of the error
vector is given by wt(E) = |{Ej | Ej 6= I}|, and an [[m, k, d]] QECC can, by
definition, detect any error vector of weight less than d.

It has been shown that any stabilizer QECC can be represented by a graph
on m vertices [3, 18, 19, 21, 35, 37, 41, 42]. Quantum states with a graphical
representation which have a direct interpretation as quadratic Boolean functions
were also investigated in [32]. These turn out to be QECCs of dimension k = 0,
and therefore correspond to the graph states recently proposed in [23, 42] as a
consequence of the work of [4, 34]. These QECCs also correspond to additive
self-dual codes over GF(4) [5, 19]. The mapping from an additive self-dual code
over GF(4) to a graph can be understood by converting the generator matrix
over GF(4) to an equivalent form, G, such that G = Γ + ωI, where Γ is a
symmetric m ×m matrix over GF(2) with zero diagonal, and ω is a primitive
element of GF(4). This conversion is always possible if the code is self-dual. Γ
is then, simultaneously, the adjacency matrix for a simple graph that represents
the graph state. In this paper we also interpret this graph state as a quadratic
Boolean function

f(x) =
∑
j>i

Γi,jxixj , (36)

where the Γi,j are entries of Γ. In other words, we exploit the equivalence of
[[m, 0, d]] stabilizer QECCs to quadratic Boolean functions via their interpreta-
tion as simple graphs. Conversely, we interpret a quadratic Boolean function
as a graph state which, in turn, is a stabilizer QECC of dimension zero, using
the mapping (34). The QECC literature often refers to stabilizer states more
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abstractly as eigenvectors of a subset of error operators,6 but, without loss of
generality, we can associate these eigenvectors with specific states. When the
dimension of the QECC is k = 0 the code coincides with a single quantum state
which we interpret in this paper by a quadratic Boolean function and, if the
distance, d, of the code is high, the state is relatively robust to errors, imply-
ing that the state is highly entangled [23, 32]. Later in this section we also
use the mapping (34) to find non-stabilizer QECCs via non-quadratic Boolean
functions. A pure m-partite quantum state is unentangled if its associated state
vector can be fully decomposed as a tensor product. Otherwise the quantum
state is considered to be entangled. There are many metrics to describe the
entanglement of an m-partite quantum state just as there are many metrics to
describe the properties of an error-correcting code [32], (and, for large enough
m, most of them are intractable to compute). For m > 2 any single metric is,
inevitably, insufficient to describe the properties of the state or code. However,
in this paper, we focus on the fixed-aperiodic properties of the state as giving
a good indication of the entanglement of the state—certainly much more use-
ful than just the periodic properties—with high APC distance indicating high
entanglement. 7

Let |ψ〉 be described by f , and a ∈ Fm
2 define the set of bit-flips Xa, such

that qubit xj is bit-flipped if j ∈ {k | ak = 1}. These bit-flips can also be
described in terms of f ,

|ψ〉 → Xa(|ψ〉) ⇔ f(x) → f(x + a). (37)

Similarly, for c ∈ Fm
2 , the set of phase-flips Zc, where qubit xj is phase-flipped

if j ∈ {k | ck = 1}, can be described in terms of f as

|ψ〉 → Zc(|ψ〉) ⇔ f(x) → f(x) + c · x. (38)

Any combination of phase-flips followed by bit-flips on |ψ〉 can be described in
terms of f as

|ψ〉 → XaZc(|ψ〉) ⇔ f(x) → f(x + a) + c · x + c · a, (39)

with a combined phase-flip then bit-flip occurring at the indices covered by
a& c. Note that ZcXa(|ψ〉) = −XaZc(|ψ〉), but to simplify the discussion
in this paper we ignore post-multiplication by −1 and assume phase-flips are
always performed before bit-flips.

The error-vector, E , describing XaZc(|ψ〉), has weight wt(µ), where µ =
a + a & c (i.e. µ = aOR c). To ensure that the QECC can detect all errors
of weight less than d it is necessary and sufficient that, for wt(µ) < d, all
error states, XaZc(|ψ〉), are orthogonal to |ψ〉 with respect to the normal scalar
product of vectors. If this is true then the QECC is an [[m, 0, d]] code.

6The QECC is defined by finding a subset of error operators such that any codeword in
the QECC is a joint eigenvector of all operators in the subset, i.e. the codeword is “stabilised”
by this subset of error operators. The minimum distance of the QECC is then given by the
minimum-weight error operator in the subset.

7 In the physics literature there is an important subset of entanglement metrics, namely
entanglement monotones [1]. We will not discuss these metrics in this paper but, instead,
consider the weaker, more general notion of entanglement criteria. APC are certainly the
latter but are also closely related to the former. The sum-of-squares metric, E, of (25) will be
shown in a future paper to be an entanglement monotone to within a trivial re-formulation.
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Theorem 13. For f ∈ Bm, let |ψ〉 be a [[m, 0, d]] QECC, described by s =
2−

m
2 (−1)f(x). Then f has APC distance d. Conversely, if f has APC distance

d, then s represents an [[m, 0, d]] QECC, |ψ〉.

Proof. See Appendix A.

Remark. Theorem 13 holds for f of any algebraic degree, but when f has de-
gree two we are considering stabilizer QECCs. In this case, the error-subset
which forms the stabilizer can be identified with the subset of fixed-aperiodic
(as opposed to periodic) propagations that identify all linear structures [10, 17].

In this paper we focus on QECCs of dimension zero as these relate to single
Boolean functions. (Codes of higher dimension relate to sets of functions which
will be dealt with in future work). An [[m, 0, d]] QECC corresponds to an
(m, 2m, d) self-dual additive code over GF(4). We distinguish between two types
of self-dual additive code over GF(4). A code is of type II if all codewords have
even weight, otherwise it is of type I. Bounds on the minimum distance of self-
dual codes were given by Rains and Sloane [5]. Let dI be the minimum distance
of a type I code of length m. Then dI is upper-bounded by

dI ≤


2

⌊
m
6

⌋
+ 1, if m ≡ 0 (mod 6)

2
⌊

m
6

⌋
+ 3, if m ≡ 5 (mod 6)

2
⌊

m
6

⌋
+ 2, otherwise.

(40)

There is a similar bound on dII , the minimum distance of a type II code of
length m,

dII ≤ 2
⌊m

6

⌋
+ 2. (41)

A code that meets the appropriate bound is called extremal. These upper-
bounds translate directly into upper-bounds on the APC distance for quadratic
Boolean functions of m variables.

4.3 Spectral Equivalence and Local Complementation
Parker and Rijmen [32] observed that quantum states represented by the clique
function, f(x) =

∑
i<j xixj , and the star function, f(x) =

∑m−1
i=1 x0xi, are

equivalent with respect to local unitary transforms (and further equivalent to
the generalised GHZ (Greenberger-Horne-Zeilinger) state). It turns out that,
for a special subset of local unitary transforms, for any pair of Boolean func-
tions which are equivalent with respect to this transform set, the APC distance
remains invariant. This invariance is already known in the context of QECCs,
(i.e. for quadratic Boolean functions), but the proof is extended to all Boolean
functions in Subsection 4.6, where the transform equivalence is described in
more detail.8

We focus here on the quadratic equivalence which has been formulated as a
graph symmetry by Glynn [18, 19], where the symmetry operation is referred to
as vertex-neighbour-complement (VNC). It was also described independently by

8Note, however, that Boolean functions of degree greater than two with APC distance d
do not map to stabilizer QECCs as these functions no longer map to joint eigenvectors of the
error-set. However, one can still interpret the functions as [[m, 0, d]] QECCs, as all errored-
states of error-weight less than d are orthogonal to the unerrored states and, for large d, the
quantum state is highly-entangled.
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Hein et al. [23] and Van Den Nest et al. [42]. In [35] this operation is explicitly
described via repeated actions of the so-called {I,H,N}m transform set. The
same operation also has a history in graph theory, where it is referred to as
local complementation (LC) by Bouchet [3], who identified isotropic systems
as being equivalent with respect to local complementation. LC also translates
into the natural equivalence between self-dual additive codes over GF(4). Not
surprisingly, isotropic systems and self-dual additive codes over GF(4) are very
similar structures (if not identical). The LC symmetry rule can be described as
follows.

Definition 14. If the quadratic monomial xixj occurs in the algebraic normal
form of the quadratic Boolean function f ∈ Bm, then xi and xj are mutual
neighbours in the graph represented by f , as described by the m×m symmetric
adjacency matrix Γ, where Γi,j = Γj,i = 1 iff xixj occurs in f , and Γi,j = 0
otherwise. For quadratic f, f ′ ∈ Bm, f and f ′ are in the same LC orbit if

f ′(x) = f(x) +
∑

j,k∈Na
j 6=k

xjxk (mod 2), (42)

where Na comprises the neighbours of xa in the graphical representation of f .

In the same way that a bent function f and its dual, f̃ , are equivalent with
respect to a Walsh-Hadamard transform [16], so the members of an LC-orbit
represent flat spectra with respect to a certain set of local unitary transforms
as described in Subsection 4.6 [35]. Exploiting this generalised duality, one can
show the following.

Theorem 15. Let f, f ′ ∈ Bm such that f and f ′ are quadratic and in the same
LC orbit. Then f and f ′ have the same APC distance.

For example, the quadratic functions fh(x) = x0x1 + x0x3 + x0x4 + x1x2 +
x1x5+x2x3+x2x5+x3x4+x4x5 and f ′h(x) = x0(x1+x2+x3+x4+x5)+x1x2+
x2x3 + x3x4 + x4x5 + x5x1 are in the same orbit and therefore have the same
APC distance (of 4). They are the two representations of the [[6, 0, 4]] hexacode
up to graph isomorphism. The graphs associated with these two functions both
have a maximum independent set of 2, but the maximum independent sets of
the clique and star graph, which are two members of another LC orbit, are
1 and m − 1 respectively. In general, quadratic Boolean functions with high
APC distance correspond to LC orbits that only comprise graphs with small
maximum independent sets [12, 14].

To illustrate the interpretation of the graph as a self-dual additive code over
GF(4), consider the hexacode as represented by the Boolean function fh defined
above. According to (36), this function corresponds to the graph with adjacency
matrix

Γ =


0 1 0 1 1 0
1 0 1 0 0 1
0 1 0 1 0 1
1 0 1 0 1 0
1 0 0 1 0 1
0 1 1 0 1 0

 .
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Table 1: Number of LC Orbits of Graphs on m Vertices

m

1 2 3 4 5 6 7 8 9 10 11 12

im 1 1 1 2 4 11 26 101 440 3,132 40,457 1,274,068
tm 1 2 3 6 11 26 59 182 675 3,990 45,144 1,323,363

A generator matrix for the (6, 26, 4) additive code over GF(4) can then be written
as

Γ + ωI =


ω 1 0 1 1 0
1 ω 1 0 0 1
0 1 ω 1 0 1
1 0 1 ω 1 0
1 0 0 1 ω 1
0 1 1 0 1 ω

 ,

where ω is a primitive element in GF(4).
All self-dual additive codes over GF(4) of length m, i.e., the LC orbits of

quadratic Boolean functions, have been classified, up to equivalence, by Calder-
bank et al. [5] for m ≤ 5, by Höhn [24] for m ≤ 7, by Hein et al. [23] for m ≤ 7,
by Glynn et al. [19] for m ≤ 9, and by two of the authors of this paper [12, 13]
for m ≤ 12. The number of LC orbits up to isomorphism is given in Table 1,
where im denotes the number of LC orbits of connected graphs on m vertices,
and tm denotes the total number of LC orbits. The values of im and tm can
also be found as sequences A090899 and A094927 in The On-Line Encyclopedia
of Integer Sequences [39]. A database of orbit representatives up to m = 12 can
be obtained from http://www.ii.uib.no/~larsed/vncorbits/.

4.4 Examples
Consider the following construction, known as the quadratic residue construction.
Let p be a prime of the form 4k+1. Assign aij = 1 iff j−i is a quadratic residue
modulo p, and aij = 0 otherwise. (n is a quadratic residue modulo p iff there
exists an m such that m2 ≡ n (mod p).) Let f ∈ Bp be a quadratic Boolean
function defined by

f(x) =
∑
i<j

aijxixj . (43)

Then f has favourable APC distance. The m×m symmetric adjacency matrix Γ,
where Γi,j = Γj,i = 1 iff ai,j = 1, represents a Paley graph which is well-known
in the graph-theoretic literature.

We extend the above construction by “bordering” the function. With f as
defined above, let g ∈ Bp+1 be a quadratic Boolean function defined by

g(x) = f(x) + xp

p−1∑
i=0

xi. (44)

Then g has favourable APC distance.
As an example, for p = 5, f(x) = x0x1 + x1x2 + x2x3 + x3x4 + x4x0, and

g(x) = f(x)+x5(x0 +x1 +x2 +x3 +x4). f has APC distance 3 and g has APC
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distance 4. The function g is unique over the 6-variable quadratics in achieving
an optimal APC distance of 4, and corresponds to the unique [[6, 0, 4]] QECC,
known as the hexacode. This function has been identified as being a highly
entangled 6-qubit quantum state [32]. As another example, when p = 29, f has
an APC distance of 11 and g has an APC distance of 12.

Form = 12 the QECC with optimal distance is the dodecacode which maps to
a function with APC distance 6. Its LC orbit can be represented by the Boolean
function f(x) = x0x3 +x0x7 +x0x8 +x0x9 +x0x11 +x1x4 +x1x6 +x1x8 +x1x9 +
x1x10+x2x5+x2x6+x2x7+x2x10+x2x11+x3x6+x3x8+x3x10+x3x11+x4x6+
x4x7 +x4x9 +x4x11 +x5x7 +x5x8 +x5x9 +x5x10 +x6x9 +x7x10 +x8x11. It is
interesting to note that both the hexacode and dodecacode can be represented
by regular graphs with minimal vertex degree for every vertex, namely 3 and 5,
these being one less than their respective distances. These minimal representa-
tions appear to be possible for many optimal QECCs although not all [12]. In
particular, a partial (but significant) search did not reveal a regular graph with
vertex degree 11 in the LC orbit of the graph corresponding to the [[30, 0, 12]]
QECC. It remains an open problem as to whether a minimal representation
exists for this graph.

We are also able to use the LC orbit to improve the resiliency of quadratic
functions, combined with the addition of a suitable affine function. The addition
of linear terms does not change the APC. The LC orbit is particularly useful in
this context as the maximum resiliency achievable can change over the orbit. For
example, as discussed previously, there are two representations of the hexacode
up to isomorphism, namely fh and f ′h. One of these functions, f ′h, is bent,
i.e. satisfies PC(n), and so cannot be resilient for any linear offset. The other
function is correlation immune of order 1 and the maximum achievable resiliency
is 0 by choosing, say, the balanced function, fh + x0. Typically the maximum
achievable resiliency for functions with favourable APC will be low [10].

4.5 Aperiodic Properties of Nonquadratic Boolean Functions
To the best of our knowledge, QECCs represented by Boolean functions of degree
greater than two have not been examined in the literature. These will, in general,
be non-stabilizer QECCs, as the Boolean functions no longer map to eigenvectors
of the error set, so one must be careful how to use these QECCs. However APC
remains well-defined for such functions. Cryptographically, we are particularly
interested in Boolean functions of high degree so as to avoid potential algebraic
attacks. From a quantum standpoint, in general, one may expect the QECC
minimum distance to decrease as algebraic degree rises. We now consider the
APC distance of such functions. These functions can also be referred to as
hypergraph states. Note that both Kurosawa and Satoh [26], and Carlet [8],
have proposed non-quadratic Boolean functions with favourable EPC properties
based on binary linear codes, and binary Kerdock and Preparata nonlinear codes,
respectively.

An exhaustive computer search [12], making use of the program nauty [28],
reveals that no Boolean function of 4 or 5 variables and of degree greater than 2
has an APC distance greater than 2. However, there are 24 cubic functions of 6
variables which satisfy an APC distance of 3. These 24 functions are inequivalent
with respect to the symmetries discussed in Appendix C. If we also consider
the symmetry described in Subsection 4.6, there are only 11 inequivalent such
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functions. For example, f(x) = x1x3x5 +x1x2x5 +x3x4x5 +x2x4x5 +x0x1x3 +
x0x1x2+x0x3x4+x0x2x4+x0x4+x0x5+x1x2+x1x4+x2x3+x2x5+x3x4+x3x5+
x4x5 has APC and EPC distances of 3. It was also found that no cubic functions
of 6 variables can achieve an APC distance greater than 3. By searching all
inequivalent Boolean functions with just one non-quadratic term we found 7-
variable and 8-variable functions with APC distances 3 and 4, respectively. For
example, f(x) = x1x3x5+x0x1+x0x2+x1x6+x2x5+x3x4+x3x6+x4x5+x5x6

and f(x) = x0x1x2x3 +x0x4 +x0x5 +x1x4 +x1x6 +x2x5 +x2x6 +x3x4 +x3x5 +
x3x6 have APC and EPC distances of 3, and f = x0x1x2 + x0x4 + x0x5 +
x0x7 + x1x4 + x1x6 + x1x7 + x2x5 + x2x6 + x2x7 + x3x4 + x3x5 + x3x6 and
f = x0x1x2x3 +x0x4 +x0x5 +x0x6 +x1x4 +x1x5 +x1x7 +x2x4 +x2x6 +x2x7 +
x3x5 + x3x6 + x3x7 have APC and EPC distances of 4. These results equal the
best distances achievable using quadratic functions.

The Maiorana-McFarland construction [16] is as follows.

f(y,z) = y · λ(z) + g(z), (45)

where f ∈ Br+s, y ∈ Fr
2, z ∈ Fs

2, g ∈ Bs, and λmaps Fs
2 to Fr

2. Following [26], the
above examples of 7-variable and 8-variable functions can both be described us-
ing (45) with λ a linear map and g(z) the non-quadratic part. We have found, as
shown above, functions of this kind with favourable APC but, as pointed out by
Carlet [8], the reliance on g(z) to make the function non-quadratic may lead to
cryptanalytic attacks. A more interesting set of functions is obtained by chang-
ing λ to a non-linear mapping. Carlet constructs such functions with favourable
EPC [8], based on nonlinear Kerdock/Preparata mappings. We can, trivially,
use Lemma 11 to state that, for these Kerdock/Preparata-based constructions,
the resultant 2m+1-variable functions satisfy APC(l) of order 2m−1−2m/2−1−1,
with maximum possible l ≤ 5, or APC(l) of order 5 with maximum possible
l ≤ 2m−1−2m/2−1−1. Moreover, using (31), both the EPC and APC distances
for such functions are upper-bounded by 2m−1 − 2m/2−1 + 5. From (45), the
Maiorana-McFarland construction is bipartite, and the size of the maximum in-
dependent set of its associated hypergraph is at least r. Typically one chooses
r = s, but LC orbits of the graphs corresponding to the best QECCs maintain a
small maximum independent set for every member of the orbit, i.e., r � s, with
g(z) an APC-favourable sub-graph. We expect, similarly, that constructions
for Boolean functions of algebraic degree greater than two (hypergraphs) with
favourable APC should also have a small independent set for their quadratic
part, with g(z) constructed recursively in the same way. Over 32 variables, the
Maiorana-McFarland constructions of Carlet [8] satisfy an APC distance upper-
bounded by 11 and the maximum independent set of the quadratic part of the
functions is 16. In contrast the 30-variable function of Subsection 4.4 has APC
distance 12, and the graph describing this quadratic function has a maximum
independent set of only 6. Moreover a partial search of about 10 million func-
tions from within the (huge) LC orbit of this 30-variable function did not reveal
a maximum independent set of size greater than 7.

4.6 Orbits of Boolean Functions with respect to {I, H, N }m

We describe how an orbit of Boolean functions can be generated such that any
two members of the orbit are spectral “duals” with respect to a certain local
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unitary transform taken from a set of transforms called the {I,H,N}m set
(using and refining the terminology introduced in [30]). The APC distance is
invariant over this orbit.

For a, b ∈ Fm
2 , we define a +̃ b such that 0 +̃ 0 = 0, 1 +̃ 0 = 0 +̃ 1 = 1, and

1 +̃ 1 = 2. Moreover, for h ∈ F2 and c ∈ Z, we define ch to be in {0, c}.
Let f ∈ Bm and θ, r,α, e ∈ Fm

2 such that r � θ and α, e � θ. Then each
pair of values of e and θ describes one of 3m possible local unitary transforms
taken from the {I,H,N}m set.

se,θ(z) = 2
wt(θ)

2

∑
x∈r+Vθ

i2(f(x)+α) +̃ e, (46)

where z = α + r, i2 = −1, and se,θ ∈ C2m

. In related papers [30, 32, 35]
the {I,H,N}m transform set is described as the set of 3m local unitary trans-
form matrices of size 2m × 2m, constructed from any possible tensor product
combination of the 2× 2 unitary matrices I, H, and N , defined as

I =
(

1 0
0 1

)
, H =

1√
2

(
1 1
1 −1

)
, N =

1√
2

(
1 i
1 −i

)
, (47)

where i2 = −1. In this paper we largely avoid the matrix terminology but retain
the name {I,H,N}m.9

If, for a fixed e and θ, se,θ is a flat spectrum, i.e., if |se,θ(z)| = |se,θ(z′)| for
all z,z′ ∈ Fm

2 , then we can write

se,θ(z) = 2
m
2 wge,θ(z), (48)

where ge,θ(z) is a function from Fm
2 to Zm

8 and w = e
2πi
8 , w ∈ C.

Definition 16. Let f, f ′ ∈ Bm. Then f and f ′ are in the same {I,H,N}m orbit
iff, for some choice of e and θ, se,θ is a flat spectrum and ge,θ can further be
written as ge,θ(z) = 4f ′(z) + c · z + d (mod 8), where c ∈ Zm

8 , and d ∈ Z8.

The following theorem has previously been proven for f quadratic but not for
general f , which is proven here. The LC symmetry discussed in subsection 4.3
is a translation of the quadratic case of this theorem into graphical operations.

Theorem 17. Let f, f ′ ∈ Bm. If f and f ′ are both in the same {I,H,N}m

orbit, then f and f ′ have the same APC distance.

Proof. The proof relies on two critical observations that we express as lemmas.

Lemma 18. Let a, b ∈ CN be two complex vectors of length N . Let U be
an N × N complex unitary matrix such that a′ = Ua and b′ = Ub. Define
orthogonality of vectors a and b with respect to the scalar product, 〈a, b〉 =
a · b = 0. Then 〈a, b〉 = 0 if and only if

〈
a′, b′

〉
= 0.

Let E ∈ {I,X, Y, Z}, as defined in Section 4, be the error acting on a single
qubit. Then it can be shown that any transform, T , taken from the {I,H,N}
set for m = 1, takes the error set, {I,X, Y, Z} to itself under conjugation.

9However, to clarify (46) in terms of {I, H, N}m, note that the one positions in θ and e
identify the tensor positions where I and N are applied, respectively, with H applied to all
other tensor positions.
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This is because the {I,H,N} set generates the local Clifford group which is
defined as the group of local unitary matrices that keeps the Pauli matrices
over a single complex variable invariant with respect to conjugation [25] (to
within a global constant). Explicitly, for T ∈ {I,H,N}, E ′ = TET−1 satisfies,
E ′ ∈ {I,X, Y, Z}.10 It follows immediately that the {I,H,N}m transform set,
as defined in (46), keeps E within the Pauli set for any fixed m, and keeps the
weight of E invariant. We then arrive at the following lemma.

Lemma 19. Let Te,θ ∈ {I,H,N}m and E ∈ {I,X, Y, Z}m. Then

E ′ = Te,θET−1
e,θ ⇒ E ′ ∈ {I,X, Y, Z}m ⇒ wt(E ′) = wt(E). (49)

Let a quantum state of m qubits, |ψ〉, be represented by a length 2m vector
s ∈ C2m

, where s = 2−
m
2 (−1)f(x). We can then re-express Theorem 13 as

follows.

APC distance(f) = d ⇒ 〈Es, s〉 = 0, ∀E , 0 < wt(E) < d, (50)

where E ∈ {I,X, Y, Z}m. We wish to show that

APC distance(f) = d ⇒ 〈E ′s′, s′〉 = 0, ∀E ′, 0 < wt(E ′) < d, (51)

where E ′ ∈ {I,X, Y, Z}m, and s′ is any vector that occurs as a spectral output
with respect to any transform taken from the {I,H,N}m set. To do this we
note that s = Te,θs′ for some Te,θ ∈ {I,H,N}m. We now use Lemma 19
to conjugate E acting on s to E ′ acting on s′. Now we can write 〈Es, s〉 =
0 as

〈
T−1

e,θE ′Te,θs, T−1
e,θTe,θs

〉
= 0. It follows from Lemmas 18 and 19 that

〈E ′Te,θs, Te,θs〉 = 0, ∀E ′, 0 < wt(E ′) < d. The theorem follows.

Remark. Note that we have proved the invariance of the APC distance for any
s and s′ in the same orbit with respect to the {I,H,N}m transform set. So the
proof not only holds for Boolean functions, but also more generally for functions
from Fm

2 to Z8. More generally still, the proof holds for any s and s′, even when
s and s′ represent non-flat spectra.

We next provide an example of this spectral symmetry for non-quadratic
Boolean functions, which generalises LC and uses the flat spectra of a Boolean
function with respect to the {I,H,N}n transform set to generate an orbit of
Boolean functions with the same APC distance, as described above. Consider
the cubic Boolean function x0x1x2 + x0x1x3 + x0x1x4 + x0x2x3 + x0x2x4 +
x0x5 + x1x3 + x1x5 + x2x4 + x2x5 + x3x4 which has APC distance 3. Applying
the transform technique described above, we obtain 144 flat spectra of which
20 map to Boolean functions. Of these 20, only 3 are inequivalent. These 3
functions are cubic and have APC distance 3 and EPC distance 3. For instance,
x0x1x5 + x0x3x5 + x0x4x5 + x0x1 + x0x2 + x0x3 + x0x5 + x1x2 + x1x3 + x1x4 +
x1x5 +x2x5 +x3x4 +x4x5 is in the same orbit and is obtained via the transform
obtained by setting θ = 110110 and e = 001000. Note, however, that no linear
offset of a member of this orbit is balanced, so resiliency cannot be satisfied.

10Note that conjugation by H takes X to Z, Z to X, and Y to −Y . Conjugation by N
takes X to −iY , Z to X, and Y to −Z. Conjugation by I takes X to X, Z to Z, and Y to Y .
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5 Conclusions

We have motivated and characterised aperiodic autocorrelation and the Ape-
riodic Propagation Criteria (APC) for a Boolean function. In particular we
have equated, for quadratic Boolean functions, APC distance with the mini-
mum distance of an associated zero-dimensional quantum error-correcting code.
It follows that, for quantum states which have an interpretation as Boolean
functions, the APC of the function are also quantum entanglement criteria for
the associated state. We highlighted the importance of local complementation
(LC) symmetry for APC analysis of quadratic Boolean functions, and also gave
a generalisation of LC to Boolean functions of algebraic degree greater than two.
We presented some results for the APC distance of functions of degree greater
than two and discussed possible forms other Boolean constructions might take
to improve APC distance.

We also showed that fixed-aperiodic autocorrelation is a subset of extended
autocorrelation. We further defined the metrics of APC and EPC distance
and demonstrated that APC distance is a slightly stricter criteria than EPC
distance. Although extended autocorrelation considers a slightly more general
set of cryptographic scenarios than fixed-aperiodic autocorrelation, the APC, in
some sense, highlights the most important parts of EPC, and this motivates the
use of APC for cryptography.

APC is also a potential attack scenario. Just as generalised linear crypt-
analysis [30] finds substantially higher biases over state-of-the-art S-boxes, the
differential“dual”, as covered in this paper, finds substantially higher differential
biases where, by “differential” we here refer to an input differential ∆x ∈ Fm

2 ,
and an output binary (truncated) differential ∆y ∈ F2. Appendix D gives results
of an exhaustive search for the worst-case differential biases of given input dif-
ferential weight, taken over the linear space of selected state-of-the-art S-boxes.
It is evident that significantly higher biases can be obtained by using aperiodic
as opposed to periodic differentials. One should remember that the context in
which the S-box is used will determine whether a high-bias differential consti-
tutes a weakness for the cipher. For instance, the 9× 9 Misty1 S-box, because
it is a quadratic S-box, has a linear space with periodic differential biases that
occur with probability 1 for all weights, (i.e. it has linear structures for all
weights), but these do not necessarily constitute a weakness as the S-box is
used in a Feistel structure, and in conjunction with a 7× 7 cubic S-box.11 Still,
the 7×7 S-box exhibits significantly higher aperiodic and fixed-aperiodic biases
compared to periodic biases. These biases may lead to a practical block cipher
attack. However, for the typical block cipher which inputs the key via XOR, one
cannot exploit these higher biases by using the standard technique of piecing
together differential trails through successive cipher rounds, as the“route”of the
trail will be key-dependent [30, 40]. In other words, although aperiodic and fixed-
aperiodic differentials establish much higher biases across constituent S-boxes
and, by implication, across complete block ciphers, than periodic differentials,
the location of these biases across multiple rounds is strongly key-dependent.
So it may be difficult to exploit these high biases. Even so, the results of this
paper provide an extended theoretical framework for a Boolean function, which
suggests a technique where one finds a function with favourable fixed-aperiodic

11However, see [7]
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criteria, then one traverses, either exactly or approximately, through the orbit
generated by a set of local unitary transforms, so as to optimise the function
with respect to the Walsh-Hadamard spectral criteria.

The problem of designing an S-box (or block cipher) so that all constituent
Boolean functions have high APC distance is also an interesting challenge, but
the stipulation that an S-box is a balanced function from Fm

2 to Fn
2 may limit

the achievable APC distance. Note that all S-boxes examined in Appendix D
achieve only APC distance 1 over the complete linear space of the S-box (in
fact most S-boxes are not even designed to achieve PC(1)). At the end of
Table 3 we have included the worst-case biases for the single quadratic Boolean
function that represents the [[6, 0, 4]] hexacode. By definition, the biases are
all 0.5 up to weight 4. However it is much more constraining—and remains
an open problem—to construct a function (S-box) with output in Fn

2 , n > 1,
such that the low-weight biases of the linear space of the S-box are all near to
0.5. Finally, functions with favourable APC distance automatically have high
generalised nonlinearity with respect to the generalised transform sets discussed
by [30] and [35], e.g., with respect to {I,H,N}m. This can be explained by
considering a generalisation of the results of [9] to larger transform sets.

Acknowledgements The authors would like to thank Prof. Alexander Pott for
reading early versions of this paper and for helpful suggestions, and Prof. Patrick
Solé for helpful advice and for pointing out numerous connections with other
work in the literature.

A Proofs

Proposition 4. Proposition 1 of [6] states∑
v∈V ⊥

F(f + x · v) = 2m−kF(fφV ), (52)

where k is the dimension of V . Applying (52) to (20) gives∑
c�µ

Ga,c =
∑
c�µ

F(Daf + c · x) = 2wt(µ)F(DafφVµ
). (53)

It is further stated in [6] that∑
v∈V ⊥

F(f + x · v)(−1)k·v = 2m−kF(fφk+V ). (54)

Applying (54) to (13), (20), and (53) gives the result.

Theorem 12. First we compute the values of ua,k for k = 0 = 000 . . . with π
the identity permutation. Let ua,k[m] denote the values of ua,k for f over m
variables. Below are tabulated the values of ua,0[m] and the associated upper
bound on the l of APC(l) inferred from these ua,0[m], for all possible assignments
to the three least significant bits (lsbs) of a, where * means “don’t care”.
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a (lsbs on the left) ua,0[m] Upper bound on l

100 . . . 0 m
01* . . . 0 m
11* . . . ua,0[m− 1] (m− 1) + 1 = m
001 . . . 0 m
101 . . . ua,0[m− 2] (m− 2) + 1 = m− 1

We are interested in the lowest value of l that we can achieve by suitable as-
signments to a. From the above table, the only case where the upper bound
on l is lower than m is in the last row of the table. We recursively assign
the lsbs of a according to this last row (e.g. for the second iteration we have
a = 10101 . . . and l ≤ m−2). By induction one concludes that l = bm

2 c. As f is
a quadratic function we can invoke the symmetry of Lemma 21 in Appendix C
to extend the result from ua,0[m] to all ua,k[m]. We further invoke the permu-
tation symmetry of Lemma 22 to extend the result to all functions f where π
is not necessarily the identity permutation.

Theorem 13. Consider all bit-flip and phase-flip errors on |ψ〉 of weight less than
d, described by a and c such that wt(µ) = wt(a) + wt(θ) < d, as discussed
previously, where µ = a + a & c and θ = a& c. We know that XaZc |ψ〉, is
orthogonal to |ψ〉 and this can be interpreted in terms of f by asserting that
Daf + c ·x is balanced for all a, c that satisfy wt(µ) < d. In other words, from
(20), (32), and Definition 6, Ga,c = 0 for all a, c � µ. The first part of the
theorem follows from Definition 7. The converse is easily proven.

B Further Spectral Identities

B.1 Periodic/Negaperiodic Autocorrelation
We here define the periodic/negaperiodic autocorrelation of f , and show how its
coefficients are derived from the Fourier spectra of Daf , thus allowing us to
relate the periodic/negaperiodic autocorrelation with the aperiodic autocorrela-
tion. The reason we refer to the autocorrelations as “periodic/negaperiodic”will
be explained in Proposition 20. Define the periodic/negaperiodic autocorrelation
coefficients of f after fixing the subspace Vθ as Ua,e,r,µ, where a, r,µ ∈ Fm

2 ,
e � a � µ, r � θ, and θ = µ + a, and θ and a are disjoint. Then

Ua,e,r,µ = 2−wt(θ)
∑

c∈e+Vθ

F(Daf + c · x + wt(c))(−1)r·c

= 2−wt(θ)
∑

c∈e+Vθ

F(Daf + c · x)(−1)r·c.
(55)

When µ = a then θ = 0 and there is no subspace fixing, so that (55) simplifies
to the computation of the periodic/negaperiodic autocorrelation coefficients of
f , namely Ua,c, where c � a.

Ua,c = (−1)wt(c)F(Daf + c · x), c � a. (56)

There are 3m coefficients, Ua,c, where c � a, but only 2m complete autocor-
relation profiles that we can obtain from Ua,c as each value is represented 2wt(a)
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times to realise a complete set of 22m autocorrelation coefficients. Combining
(20) with (55) and (56) yields

Ua,e,r,µ = 2−wt(θ)
∑

c∈e+Vθ

Ga,c(−1)r·c, e � a � µ, r � θ, (57)

and
Ua,c = (−1)wt(c)Ga,c, c � a. (58)

Note that the factor of (−1)wt(c) is of no significance in this paper, but we retain
it for completeness.

By combining Proposition 4 with (57) and (58) we can now express the
fixed-aperiodic (non-modular) autocorrelation coefficients in terms of the peri-
odic/negaperiodic autocorrelation coefficients, and vice versa, where e � a � µ,
k � µ, θ = a + µ, and r = k &θ

ua,k,µ = 2−wt(a)
∑
e�a

Ua,e,r,µ(−1)k·e, k � µ (59)

Ua,e,r,µ =
∑

k�r+Va

ua,k,µ(−1)e·k, e � a (60)

ua,k = 2−wt(a)
∑
c�a

Ua,c(−1)k·c, k � a (61)

Ua,c =
∑
k�a

ua,k(−1)c·k, c � a. (62)

We now explain why (55) and (56) can be viewed as periodic/negaperiodic
(modular) metrics.

Proposition 20. Each periodic/negaperiodic autocorrelation of (55) and (56)
is specified after fixing a subspace (resp. without fixing) by the parameters
a, e, r,µ (resp. a, c). For each setting of the parameters, the coefficients can be
calculated using multivariate polynomial multiplications which are periodically
modular for the variables identified by the “1” positions of a& e (resp. a& c),
and negaperiodically modular for the variables identified by the “1” positions of
e (resp. c).

Proof. Let Ua,c be as defined in (56), and let z ∈ Cm. Define v(z), and Qc(z)
as follows

v(z) =
∑

x∈Fm
2

(−1)f(x)
∏

i∈Zm

zxi
i (63)

Qc(z) =
∑

a∈Fm
2

Ua,c

∏
i∈Zm

zai
i . (64)

Then an expansion verifies the following modular relationship for Qc(z)

Qc(z) = v(z)v(z−1) (mod
∏

i∈Zm

(z2
i − (−1)ci)). (65)

Qc(z) is the evaluation of a periodic (negaperiodic) multiplication for variable i
if ci = 0, (resp. ci = 1). The above argument then carries over to (55) by
first fixing the subspace Vθ, then computing all possible periodic/negaperiodic
multivariate polynomial multiplications over the remaining unfixed subspace.
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We can recover the (non-modular) polynomial A(z) of Proposition 3 by ap-
plying the Chinese remainder theorem (CRT) to the residue polynomials Qc(z).
In summary,

A(z) = v(z)v(z−1) = v(z)v(z−1) (mod
∏

i∈Zm

(z4
i − 1)) = CRT({Qc(z)}).

(66)
In this way, we obtain an alternative derivation of (62). A similar argument can
be used with respect to a fixed subspace, Vθ, so as to rederive (60).

B.2 Relationships to the Second Derivative
As Ga,c is the Fourier spectrum of the first derivative of f , there is a natural
relationship between the Fourier power spectra of Ga,c and the second derivative
of f , DbDaf , where a, c, b ∈ Fm

2 .∑
c�µ

|Ga,c|2(−1)c·k = 2wt(µ)
∑

b∈k+Vµ

F(DbDaf), k � µ. (67)

Moreover we can use Parseval’s theorem to establish the following.

∑
c�µ

|Ga,c|4 = 2wt(µ)
∑
k�µ

 ∑
b∈k+Vµ

F(DbDaf)

2

. (68)

Combining the above relationship with (23), we can establish the following upper
bound on the fixed-aperiodic sum-of-squares with respect to a after fixing a
subspace Vθ, referred to as σa,µ, and defined in (24), in terms of the second
derivative of f .

σa,µ ≤ 2−2 wt(µ)
∑
k�µ

 ∑
b∈k+Vµ

F(DbDaf)

2

. (69)

B.3 A Generalised Definition of APC
Using the results of this Appendix and Appendix C we are able to generalise
(32) as follows.

ua,k,µ = 0, ∀k � µ ⇔ Ua,e,r,µ = 0, ∀e � a, ∀r � θ

⇔ Ga,c = 0, ∀c � µ

⇔
∑

b∈k+Vµ

F(DbDaf) = 0, ∀k � µ,
(70)

where a � µ.

C Symmetries of Aperiodic Autocorrelation
We summarise some important conditions for simplification of the fixed-aperi-
odic autocorrelation profile and and/or symmetry operations that operate on a
Boolean function and that keep the multiset of fixed-aperiodic autocorrelation
coefficients unchanged to within a multiplicative phase offset and to within a
permutation of the coefficient positions within the autocorrelation profile.
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C.1 Quadratic Simplification
When the degree of f is two, a substantial simplification of the fixed-aperiodic
autocorrelation profile can be obtained as follows.

Lemma 21. Let f ∈ Bm be a quadratic function, and let ua,k,µ be as defined
in (13). Then, for any k′ � µ, ua,k,µ = ±ua,k′,µ.

Proof. The proof is straightforward.

The simplification described by this lemma significantly reduces the APC
analysis for quadratic Boolean functions as we can set k = 0. From Section 4
the APC distance is equivalent to the distance measure for zero-dimensional
QECCs. Such QECCs map to quadratic Boolean functions. As QECCs of the
stabilizer type are conveniently described by self-dual additive codes over GF(4),
quadratic Boolean functions with favourable APC can conversely be constructed
with relative ease from self-dual additive codes over GF(4). This simplification
implicitly exploits the symmetry of Lemma 21.

C.2 Index Permutation Symmetry (Hypergraph Isomorphism)
Lemma 22. Define f ∈ Bm. Let π be a permutation from Zm to Zm. Let
γ be a permutation from Fm

2 to Fm
2 such that, for r ∈ Fm

2 , γ(r) takes ri to
rπ(i). For f = f(x0, x1, . . . , xm−1), let f ′ = f(xπ(0), xπ(1), . . . , xπ(m−1)). Then
ua,k,µ(f ′) = uγ(a),γ(k),γ(µ)(f), so that both f and f ′ satisfy APC(l) of order q.

C.3 Periodic and Negaperiodic Symmetries
The fixed-aperiodic autocorrelation coefficient magnitudes of a function f ∈ Bm

remain unchanged to within a linear permutation of the indices after periodic
and/or negaperiodic shift of the input variables of f . With γ ∈ Fm

2 define f ′ as
a periodic shift of f , where f ′(x) = f(x + γ).

Proposition 23. With a,k,γ,µ ∈ Fm
2 , f ′ as defined above, and fixed-aperiodic

autocorrelation coefficients as defined in (13), ua,k,µ(f) = ua,(k+γ) & µ,µ(f ′),
where k � µ.

Proof. Using (13), ua,k,µ(f ′) = F(Daf
′φk+Vµ

) = F(Dafφγ+k+Vµ
), where k �

µ.

γ + k + Vµ = (γ &µ + k) + γ &µ + Vµ

= (γ + k)& µ + (γ &µ + Vµ)
= (γ + k)& µ + Vµ, k � µ.

After the change of variable k to (k + γ) &µ, we obtain

ua,(k+γ) & µ,µ(f ′) = F(Dfφk+Vµ
) = ua,k,µ(f), k � µ. (71)

Similarly, with λ ∈ Fm
2 we define f ′′ as a negaperiodic shift of f , where

f ′′(x) = f(x + λ) + λ · x + wt(λ).

24



Proposition 24. With a,k,λ,µ ∈ Fm
2 , f ′′ as defined above, and fixed-aperiodic

autocorrelation coefficients as defined in (13)

ua,k,µ(f) = (−1)λ·aua,(k+λ) & µ,µ(f ′′), (72)

where k � µ.

Proof. Remembering that f ′ is a periodic shift of f , observe that Daf
′′ = f(x+

λ) + f(x + λ + a) + λ · a = Daf
′ + λ · a. Therefore

ua,k,µ(f ′′) = F(Daf
′′φk+Vµ

)
= F(Daf

′φk+Vµ
+ λ · a)

= (−1)λ·aF(Daf
′φλ+k+Vµ

),

where k � µ. Substituting k with (k + λ)& µ gives ua,(k+λ) & µ,µ(f ′′) =
(−1)λ·aua,k,µ(f), and the proposition follows.

We can combine the above results for periodic/negaperiodic shift (Proposi-
tions 23 and 24) as follows. With γ,λ ∈ Fm

2 we define fpn as a periodic/nega-
periodic shift of f .

fpn(x) = f(x + γ) + λ · x + wt(λ), (73)

where λ � γ.

Proposition 25. With a,k,γ,λ,µ ∈ Fm
2 , fpn as defined above, and fixed-ape-

riodic autocorrelation coefficients as defined in (13)

ua,k,µ(f) = (−1)λ·aua,(k+γ) & µ,µ(fpn), (74)

where k � µ and λ � γ.

Proof. Combine Propositions 23 and 24.

Corollary 26. For the special case with γ � µ and fpn defined as above,
ua,k,µ(f) = ua,k,µ(fpn), where k � µ.

Proof. γ &µ = 0.

It follows that a periodic shift (resp. negaperiodic shift) of f after fixing a
subspace Vθ does not change the values (resp. magnitudes) of the fixed-aperiodic
autocorrelation coefficients of f , but may permute them.

Given fpn as defined above, (13), and Proposition 4, we obtain the follow-
ing identities for the periodic/negaperiodic autocorrelation coefficients given in
Lemma 27.

Lemma 27.

Ga,c(f) = (−1)λ·a+γ·cGa,c(fpn), λ � γ, c � µ, (75)

Ua,c(f) = (−1)λ·a+γ·cUa,c(fpn), λ � γ, c � a, (76)

Ua,e,r,µ(f) = (−1)λ·a+γ·eUa,e,(r+γ & θ),µ(fpn), λ � γ, e � a, r � θ. (77)
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Proof. For k � µ and λ � γ, and noting that, for c � µ, γ &µ · c = γ · c,

(−1)λ·aua,(k+γ) & µ,µ = 2−wt(µ)(−1)λ·a
∑
c�µ

Ga,c(−1)(k+γ)·c

= 2−wt(µ)(−1)λ·a
∑
c�µ

((−1)γ·cGa,c)(−1)k·c.

The results for Ua,c and Ua,e,r,µ follow in a similar way.

It follows that the magnitudes of the periodic/negaperiodic autocorrelation
coefficients are unchanged by a periodic and/or negaperiodic shift of f to within
a linear permutation of the indices.

As the magnitudes of ua,k,µ(f), Ua,c(f), and Ua,e,r,µ are invariant to a
periodic and/or negaperiodic shift of f to within a linear permutation, it follows,
from (26), Definition 6, and (32) that σa,θ(f), E(f), σ(f), and the APC of f
are invariant to periodic and/or negaperiodic shifts of f . We summarise these
observations in the following Corollary.

Corollary 28. For f ∈ Bm, µ ∈ Fm
2 , and a � µ, let fpn be a periodic and/or

negaperiodic shift of f . Then σa,µ(fpn) = σa,µ(f), E(fpn) = E(f), and σ(fpn) =
σ(f). The functions f and fpn will also satisfy APC of order q of the same
degree, and have the same APC distance.

D Generalised Differential Biases of State-of-the-Art S-Boxes
In this section we examine the worst-case (truncated) differential bias for a
given input differential weight, with respect to periodic, aperiodic, and fixed-
aperiodic autocorrelation, for selected state-of-the-art S-boxes. More precisely,
we consider a function f (S-box) mapping Fm

2 to Fn
2 , and comprising n m-

variable functions, fi ∈ Bm, 0 ≤ i < n. Then we define the linear space of
the S-box to be the set of functions, {gc | c ∈ Fn

2}, such that gc = c · f . We
then compute, for a given S-box, the maximum bias over all functions in the
set {gc}. The periodic bias at weight |a| is given by 2m+|pa|

2m+1 , the aperiodic bias

at weight |a| is given by 2m−|a|+|ua,k|
2m−|a|+1 , and the fixed-aperiodic bias at weight

µ is given by 2m−|µ|+|ua,k,µ|
2m−|µ|+1 , where, for a given differential weight, it always

holds that the periodic bias is less than the aperiodic bias, which again is less
than the fixed-aperiodic bias. Tables 2 and 3 show the results. For example, an
exhaustive search of all 256 8-variable Boolean functions constructed by linear
combinations of the 8 constituent Boolean functions of the AES S-box reveals
that a weight-4 differential can be found with bias 0.56, 0.94, and 1.00, for the
periodic, aperiodic, and fixed-aperiodic differentials, respectively.
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Table 2: Periodic (P), Aperiodic (A), and Fixed-Aperiodic (F) Autocorrelation Bi-
ases for Selected S-Boxes

Differential Weight

S-box 1 2 3 4 5 6 7 8 9

AES [11] P 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
(8× 8) A 0.56 0.66 0.81 0.94 1.00 1.00 1.00 1.00

F 0.56 0.66 0.81 1.00 1.00 1.00 1.00 1.00

Khazad [36] P 0.67 0.67 0.69 0.70 0.67 0.67 0.66 0.63
(8× 8) A 0.67 0.77 0.94 1.00 1.00 1.00 1.00 1.00

F 0.67 0.77 0.94 1.00 1.00 1.00 1.00 1.00

Whirlpool [2] P 0.66 0.69 0.67 0.69 0.66 0.67 0.66 0.64
(8× 8) A 0.66 0.75 0.84 1.00 1.00 1.00 1.00 1.00

F 0.66 0.78 0.91 1.00 1.00 1.00 1.00 1.00

Misty1 [27] P 0.56 0.56 0.56 0.56 0.56 0.56 0.56
(7× 7) A 0.56 0.75 0.75 1.00 1.00 1.00 1.00

F 0.56 0.75 1.00 1.00 1.00 1.00 1.00

Misty1 P 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(9× 9) A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

F 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DES-1 [29] P 0.88 0.81 0.81 0.81 0.75 0.69
(6× 4) A 0.88 0.94 1.00 1.00 1.00 1.00

F 0.88 1.00 1.00 1.00 1.00 1.00

DES-2 P 0.94 0.81 0.81 0.81 0.88 0.75
(6× 4) A 0.94 0.94 1.00 1.00 1.00 1.00

F 0.94 1.00 1.00 1.00 1.00 1.00

DES-3 P 0.88 0.75 0.81 0.81 0.75 0.69
(6× 4) A 0.88 0.88 1.00 1.00 1.00 1.00

F 0.88 1.00 1.00 1.00 1.00 1.00

DES-4 P 1.00 0.75 0.75 1.00 1.00 0.75
(6× 4) A 1.00 1.00 1.00 1.00 1.00 1.00

F 1.00 1.00 1.00 1.00 1.00 1.00

DES-5 P 0.81 0.81 0.81 0.81 0.75 0.63
(6× 4) A 0.81 0.94 1.00 1.00 1.00 1.00

F 0.81 1.00 1.00 1.00 1.00 1.00

DES-6 P 0.81 0.88 0.81 0.81 0.81 0.69
(6× 4) A 0.81 0.94 1.00 1.00 1.00 1.00

F 0.81 1.00 1.00 1.00 1.00 1.00

DES-7 P 0.88 0.88 0.81 0.81 0.81 0.69
(6× 4) A 0.88 1.00 1.00 1.00 1.00 1.00

F 0.88 1.00 1.00 1.00 1.00 1.00

DES-8 P 0.88 0.88 0.81 0.81 0.75 0.75
(6× 4) A 0.88 0.94 1.00 1.00 1.00 1.00

F 0.88 1.00 1.00 1.00 1.00 1.00
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Table 3: Periodic (P), Aperiodic (A), and Fixed-Aperiodic (F) Autocorrelation Bi-
ases for Selected S-Boxes

Differential Weight

S-box 1 2 3 4 5 6

FDE-1 [38] P 0.69 0.88 0.88 0.88 0.75 0.63
(6× 4) A 0.69 1.00 1.00 1.00 1.00 1.00

F 0.69 1.00 1.00 1.00 1.00 1.00

FDE-2 P 0.69 0.69 0.75 0.75 0.75 0.63
(6× 4) A 0.69 0.81 1.00 1.00 1.00 1.00

F 0.69 0.88 1.00 1.00 1.00 1.00

FDE-3 P 0.75 0.75 0.75 0.69 0.69 0.75
(6× 4) A 0.75 0.88 1.00 1.00 1.00 1.00

F 0.75 0.88 1.00 1.00 1.00 1.00

FDE-4 P 0.81 0.75 0.81 0.81 0.75 0.63
(6× 4) A 0.81 0.88 1.00 1.00 1.00 1.00

F 0.81 1.00 1.00 1.00 1.00 1.00

FDE-5 P 0.75 0.69 0.75 0.75 0.69 0.69
(6× 4) A 0.75 0.94 1.00 1.00 1.00 1.00

F 0.75 0.94 1.00 1.00 1.00 1.00

FDE-6 P 0.75 0.75 0.75 0.75 0.75 0.63
(6× 4) A 0.75 0.81 1.00 1.00 1.00 1.00

F 0.75 0.88 1.00 1.00 1.00 1.00

FDE-7 P 0.75 0.75 0.75 0.75 0.69 0.69
(6× 4) A 0.75 0.88 1.00 1.00 1.00 1.00

F 0.75 0.88 1.00 1.00 1.00 1.00

FDE-8 P 0.69 0.75 0.75 0.81 0.75 0.63
(6× 4) A 0.69 0.88 1.00 1.00 1.00 1.00

F 0.69 0.88 1.00 1.00 1.00 1.00

[[6, 0, 4]] hexacode P 0.50 0.50 0.50 1.00 0.50 0.50
(single function) A 0.50 0.50 0.50 1.00 0.50 1.00

F 0.50 0.50 0.50 1.00 1.00 1.00
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