‘ é PGJC3.book Page 103 Tuesday, November 25, 2008 9:10 PM

Al

Access Control 4

1.1 Develop code that declares classes (including abstract and all forms of
nested classes), interfaces, and enums, and includes the appropriate use of
package and import statements (including static imports).

o The package and import statements are covered in this chapter.
o For class declarations, see Section 3.1, p. 40.

o For abstract classes, see Section 4.8, p. 135.

o For nested classes, see Chapter 8, p. 351.

o For interfaces, see Section 7.6, p. 309.

o For enums, see Section 3.5, p. 54.

7.1 Given a code example and a scenario, write code that uses the appropriate
access modifiers, package declarations, and import statements to interact
with (through access or inheritance) the code in the example.

7.5 Given the fully-qualified name of a class that is deployed inside and/or
outside a JAR file, construct the appropriate directory structure for that
class. Given a code example and a classpath, determine whether the
classpath will allow the code to compile successfully.

¢ Creating JAR files.

¢ Using system properties.

103

*%

‘ é PGJC3.book Page 104 Tuesday, November 25, 2008 9:10 PM

104

CHAPTER 4: ACCESS CONTROL

4.1 Java Source File Structure

The structure of a skeletal Java source file is depicted in Figure 4.1. A Java source
file can have the following elements that, if present, must be specified in the fol-
lowing order:

1.

An optional package declaration to specify a package name. Packages are dis-
cussed in Section 4.2.

Zero or more import declarations. Since import declarations introduce type or
static member names in the source code, they must be placed before any type
declarations. Both type and static import statements are discussed in Section 4.2.

Any number of top-level type declarations. Class, enum, and interface declara-
tions are collectively known as type declarations. Since these declarations
belong to the same package, they are said to be defined at the fop level, which
is the package level.

The type declarations can be defined in any order. Technically, a source file
need not have any such declaration, but that is hardly useful.

The JDK imposes the restriction that at the most one public class declaration
per source file can be defined. If a public class is defined, the file name must
match this public class. If the public class name is NewApp, the file name must be
NewApp. java.

Classes are discussed in Section 3.1, p. 40, and interfaces are discussed in Sec-
tion 7.6, p. 309.

Note that except for the package and the import statements, all code is encapsulated
in classes and interfaces. No such restriction applies to comments and white space.

Figure4.1 Java Source File Structure

// Filename: NewApp.java

// PART 1: (OPTIONAL) package declaration
package com.company.project.fragilePackage;

// PART 2: (ZERO OR MORE) import declarations
import java.io.*;

import java.util.*;

import static java.lang.Math.*;

// PART 3: (ZERO OR MORE) top-Tevel class and interface declarations
public class NewApp { }

class A { }
interface IX { }
class B { }
interface IY { }

enum C { FIRST, SECOND, THIRD }

// end of file

%

‘ é PGJC3.book Page 105 Tuesday, November 25, 2008 9:10 PM

4.2: PACKAGES 105

4.2 Packages

A package in Java is an encapsulation mechanism that can be used to group related
classes, interfaces, enums, and subpackages.

Figure 4.2 shows an example of a package hierarchy, comprising a package called
wizard that contains two other packages: pandorasBox and spells. The package
pandorasBox has a class called Clown that implements an interface called Magic, also
found in the same package. In addition, the package pandorasBox has a class called
LovePotion and a subpackage called artifacts containing a class called Ailment. The
package spells has two classes: Baldness and LovePotion. The class Baldness is a sub-
class of class Aiment found in the subpackage artifacts in the package pandorasBox.

The dot (.) notation is used to uniquely identify package members in the package
hierarchy. The class wizard.pandorasBox.LovePotion is different from the class
wizard.spells.LovePotion. The Ailment class can be easily identified by the name
wizard.pandorasBox.artifacts.Ailment. This is called the fully qualified name of the
type. Note that the fully qualified name of the type in a named package comprises
the fully qualified name of the package and the simple name of the type. The simple
type name Ailment and the fully qualified package name wizard.pandorasBox.artifacts
together define the fully qualified type name wizard.pandorasBox.artifacts.Ailment.
Analogously, the fully qualified name of a subpackage comprises the fully qualified
name of the parent package and the simple name of the subpackage.

Java programming environments usually map the fully qualified name of packages
to the underlying (hierarchical) file system. For example, on a Unix system, the class
file LovePotion.class corresponding to the fully qualified name wizard.pandoras-
Box. LovePotion would be found under the directory wizard/pandorasBox.

Figure4.2 Package Hierarchy

wizard
pandorasBox spells
«interface» LovePotion Baldness LovePotion
Magic
Z?& artifacts
1 1
Clown
Ailment

*%

‘ é PGJC3.book Page 106 Tuesday, November 25, 2008 9:10 PM

Al

106

CHAPTER 4: ACCESS CONTROL

Conventionally, a global naming scheme based on the Internet domain names is
used to uniquely identify packages. If the above package wizard was implemented
by a company called Sorcerers Limited that owns the domain sorcerersitd. com, its
fully qualified name would be:

com.sorcerersltd.wizard

Because domain names are unique, packages with this naming scheme are globally
identifiable. It is not advisable to use the top-level package names java and sun, as
these are reserved for the Java designers.

The subpackage wizard.pandorasBox.artifacts could easily have been placed else-
where, as long as it was uniquely identified. Subpackages in a package do not
affect the accessibility of the other package members. For all intents and purposes,
subpackages are more an organizational feature rather than a language feature.
Accessibility of members in a package is discussed in Section 4.6. Accessibility of
members defined in type declarations is discussed in Section 4.9.

Defining Packages

A package hierarchy represents an organization of the Java classes and interfaces.
It does not represent the source code organization of the classes and interfaces. The
source code is of no consequence in this regard. Each Java source file (also called
compilation unit) can contain zero or more type declarations, but the compiler pro-
duces a separate class file containing the Java byte code for each of them. A type
declaration can indicate that its Java byte code be placed in a particular package,
using a package declaration.

The package statement has the following syntax:
package <fully qualified package name>;

At most one package declaration can appear in a source file, and it must be the first
statement in the source file. The package name is saved in the Java byte code for
the types contained in the package.

Note that this scheme has two consequences. First, all the classes and interfaces in
a source file will be placed in the same package. Second, several source files can be
used to specify the contents of a package.

If a package declaration is omitted in a compilation unit, the Java byte code for the
declarations in the compilation unit will belong to an unnamed package (also called
the default package), which is typically synonymous with the current working direc-
tory on the host system.

Example 4.1 illustrates how the packages in Figure 4.2 can be defined using the
package declaration. There are four compilation units. Each compilation unit has a
package declaration, ensuring that the type declarations are compiled into the cor-
rect package. The complete code can be found in Example 4.10 on page 133.

%

ﬁ

*%

‘ é PGJC3.book Page 107 Tuesday, November 25, 2008 9:10 PM

4.2: PACKAGES

Example4.1 Defining Packages and Using Type Import

//File: Clown.java
package wizard.pandorasBox;

import wizard.pandorasBox.artifacts.Ailment;

public class Clown implements Magic { /* ...

interface Magic { /* ... */ }

//File: LovePotion.java

package wizard.pandorasBox;

public class LovePotion { /* ... */ }
//File: Ailment.java

package wizard.pandorasBox.artifacts;
public class Ailment { /* ... */ }
//File: Baldness.java

package wizard.spells;

import wizard.pandorasBox.*;
import wizard.pandorasBox.artifacts.*;

public class Baldness extends Ailment {
wizard.pandorasBox.LovePotion t1cOne;
LovePotion tlcTwo;
/] ...

}

class LovePotion { /* ... */ }

Using Packages

//
//
*/

/!

/!

/!

/!
//

//
/!
/!

107

(1) Package declaration
(2) Importing class

}

(1) Package declaration

(1) Package declaration

(1)Package declaration

(2) Type-import-on-demand
(3) Import from subpackage

(4) Abbreviated name for Ailment
(5) Fully qualified name
(6) Class in same package

The import facility in Java makes it easier to use the contents of packages. This sub-
section discusses importing reference types and static members of reference types from
packages.

Importing Reference Types

The accessibility of types (classes and interfaces) in a package determines their access
from other packages. Given a reference type that is accessible from outside a pack-
age, the reference type can be accessed in two ways. One way is to use the fully qual-
ified name of the type. However, writing long names can become tedious. The

%

‘ é PGJC3.book Page 108 Tuesday, November 25, 2008 9:10 PM

Al

108

CHAPTER 4: ACCESS CONTROL

second way is to use the import declaration that provides a shorthand notation for
specifying the name of the type, often called type import.

The import declarations must be the first statement after any package declaration in
a source file. The simple form of the import declaration has the following syntax:

import <fully qualified type name>;

This is called single-type-import. As the name implies, such an import declaration
provides a shorthand notation for a single type. The simple name of the type (that
is, its identifier) can now be used to access this particular type. Given the following
import declaration:

import wizard.pandorasBox.Clown;
the simple name Clown can be used in the source file to refer to this class.
Alternatively, the following form of the import declaration can be used:
import <fully qualified package name>.*;

This is called type-import-on-demand. It allows any type from the specified package
to be accessed by its simple name.

An import declaration does not recursively import subpackages. The declaration
also does not result in inclusion of the source code of the types. The declaration
only imports type names (that is, it makes type names available to the code in a
compilation unit).

All compilation units implicitly import the java.lang package (see Section 10.1, p.
424). This is the reason why we can refer to the class String by its simple name, and
need not use its fully qualified name java.lang.String all the time.

Example 4.1 shows several usages of the import statement. Here we will draw
attention to the class Baldness in the file Baldness.java. This class relies on two
classes that have the same simple name LovePotion but are in different packages:
wizard.pandorasBox and wizard.spells, respectively. To distinguish between the two
classes, we can use their fully qualified names. However, since one of them is in the
same package as the class Baldness, it is enough to fully qualify the class from the
other package. This solution is used in Example 4.1 at (5). Such name conflicts can
usually be resolved by using variations of the import statement together with fully
qualified names.

The class Baldness extends the class Ailment, which is in the subpackage artifacts
of the wizard.pandorasBox package. The import declaration at (3) is used to import
the types from the subpackage artifacts.

The following example shows how a single-type-import declaration can be used to
disambiguate a type name when access to the type is ambiguous by its simple
name. The following import statement allows the simple name List as shorthand
for the java.awt.List type as expected:

import java.awt.*; // imports all reference types from java.awt

%

—

ﬁ

*

*%

‘ é PGJC3.book Page 109 Tuesday, November 25, 2008 9:10 PM é

4.2: PACKAGES 109

Given the following two import declarations:

import java.awt.*; // imports all type names from java.awt
import java.util.*; // imports all type names from java.util

the simple name List is now ambiguous as both the types java.util.List and
java.awt.List match.

Adding a single-type-import declaration for the java.awt.List type last allows the
simple name List as a shorthand notation for this type:

import java.awt.*; // imports all type names from java.awt
import java.util.*; // imports all type names from java.util
import java.awt.List; // imports the type List from java.awt explicitly

Importing Static Members of Reference Types

Analogous to the type import facility, Java also allows import of static members of
reference types from packages, often called static import.

Static import allows accessible static members (static fields, static methods, static
member classes, enum, and interfaces) declared in a type to be imported, so that
they can be used by their simple name, and therefore need not be qualified. The
import applies to the whole compilation unit, and importing from the unnamed
package is not permissible.

The two forms of static import are shown below:

// Single-static-import: imports a specific static member from the designated type
import static <fully qualified type name>.<static member name>;

// Static-import-on-demand: imports all static members in the designated type
import static <fully qualified type name>.*;

Both forms require the use of the keyword static. In both cases, the fully qualified
name of the reference type we are importing from is required.

The first form allows single static import of individual static members, and is dem-
onstrated in Example 4.2. The constant PI, which is a static field in the class
java.lang.Math, is imported at (1). Note the use of the fully qualified name of the
type in the static import statement. The static method named sqrt from the class
java.lang.Math is imported at (2). Only the name of the static method is specified in
the static import statement. No parameters are listed. Use of any other static mem-
ber from the Math class requires that the fully qualifying name of the class be spec-
ified. Since types from the java.lang package are imported implicitly, the fully
qualified name of the Math class is not necessary, as shown at (3).

Static import on demand is easily demonstrated by replacing the two import state-
ments in Example 4.2 by the following import statement:

import static java.lang.Math.*;

We can also dispense with the use of the class name Math in (3), as all static members
from the Math class are now imported:

double hypotenuse = hypot(x, y); // (3’) Type name can now be omitted.

- il

‘ é PGJC3.book Page 110 Tuesday, November 25, 2008 9:10 PM é

110 CHAPTER 4: ACCESS CONTROL

Example4.2 Single Static Import

import static java.lang.Math.PI; // (1) Static field
import static java.lang.Math.sqrt; // (2) Static method
// Only specified static members are imported.

public class Calculatel {
public static void main(String[] args) {
double x = 3.0, y = 4.0;

double squareroot = sqrt(y); // Simple name of static method
double hypotenuse = Math.hypot(x, y); // (3) Requires type name.
double area = PI * y * y; // Simple name of static field

System.out.printf("Square root: %.2f, hypotenuse: %.2f, area: %.2f%n",
squareroot, hypotenuse, area);
}
}

Output from the program:

Square root: 2.00, hypotenuse: 5.00, area: 50.27

Using static import avoids the interface constant antipattern, as illustrated in Exam-
ple 4.3. The static import statement at (1) allows the interface constants in the pack-
age mypkg to be accessed by their simple names. The static import facility avoids the
MyFactory class having to implement the interface in order to access the constants by
their simple name:

public class MyFactory implements mypkg.IMachineState {
/] ...
}

Example4.3 Avoiding the Interface Constant Antipattern

package mypkg;

pubTlic interface IMachineState {
// Fields are public, static and final.

int BUSY = 1;
int IDLE = 0;
int BLOCKED = -1;
}
import static mypkg.IMachineState.*; // (1) Static import interface constants

public class MyFactory {
public static void main(String[] args) {
int[] states = { IDLE, BUSY, IDLE, BLOCKED };
for (int s : states)
System.out.print(s + " ");

- il

‘ é PGJC3.book Page 111 Tuesday, November 25, 2008 9:10 PM

4.2: PACKAGES 111

Output from the program:
010 -1

Static import is ideal for importing enum constants from packages, as such con-
stants are static members of an enum type. Example 4.4 combines type and static
import. The enum constants can be accessed at (4) using their simple names
because of the static import statement at (2). The type import at (1) is required to
access the enum type State by its simple name at (5).

Example4.4 Importing Enum Constants

package mypkg;

public enum State { BUSY, IDLE, BLOCKED }

import mypkg.State; // (1) Single type import

import static mypkg.State.*; // (2) Static import on demand
import static java.lang.System.out; // (3) Single static import

public class Factory {
public static void main(String[] args) {
State[] states = {
IDLE, BUSY, IDLE, BLOCKED // (4) Using static import implied by (2).

b
for (State s : states) // (5) Using type import implied by (1).
out.print(s + " "); // (6) Using static import implied by (3).
}
}
Output from the program:

IDLE BUSY IDLE BLOCKED

Identifiers in a class can shadow static members that are imported. Example 4.5
illustrates the case where the parameter out of the method writeInfo() has the same
name as the statically imported field java.lang.System.out. The type of the param-
eter is PrintWriter, and that of the statically imported field is PrintStream. Both
classes PrintStream and PrintWriter define the method print1n() that is called in the
program. The only way to access the imported field in the method writeInfo() is to
use its fully qualified name.

‘ é PGJC3.book Page 112 Tuesday, November 25, 2008 9:10 PM é

112 CHAPTER 4: ACCESS CONTROL

Example4.5 Shadowing by Importing

import static java.lang.System.out; // (1) Static import

import java.io.FileNotFoundException;
import java.io.PrintWriter; // (2) Single type import

public class ShadowingByImporting {

public static void main(String[] args) throws FileNotFoundException {
out.printIn("Calling printin() in java.lang.System.out");
PrintWriter pw = new PrintWriter("Tog.txt");
writeInfo(pw);
pw.flushQ;
pw.close(Q);

}

public static void writeInfo(PrintWriter out) { // Shadows java.lang.System.out
out.printTn("Calling printin() in the parameter out™);
System.out.printin("Calling printin() in java.lang.System.out"); // Qualify
}
}

Output from the program:

Calling printIn() in java.lang.System.out
Calling println() in java.lang.System.out

Contents of the file Tog.txt:

CalTling printin() in the parameter out

Conflicts can also occur when a static method with the same signature is imported
by several static import statements. In Example 4.6, a method named binarySearch
is imported 21 times by the static import statements. This method is overloaded
twice in the java.util.Collections class and 18 times in the java.util.Arrays class,
in addition to one declaration in the mypkg.Auxiliary class. The classes
java.util.Arrays and mypkg.Auxiliary have a declaration of this method with the
same signature that matches the method call at (2), resulting in a signature conflict.
The conflict can again be resolved by specifying the fully qualified name of the
method.

If the static import statement at (1) is removed, there is no conflict, as only the class
java.util.Arrays has a method that matches the method call at (2). If the declara-
tion of the method binarySearch() at (3) is allowed, there is also no conflict, as this
method declaration will shadow the imported method whose signature it matches.

‘ é PGJC3.book Page 113 Tuesday, November 25, 2008 9:10 PM

4.2: PACKAGES 113

Example 4.6 Conflict in Importing Static Method with the Same Signature

package mypkg;

public class Auxiliary {
public static int binarySearch(int[] a, int key) { // Same in java.util.Arrays.
// Implementation is omitted.
return -1;
}
}

import static java.util.Collections.binarySearch; // 2 overloaded methods
import static java.util.Arrays.binarySearch; // + 18 overloaded methods
import static mypkg.Auxiliary.binarySearch; // (1) Causes signature conflict.

class MultipleStaticImport {
public static void main(String[] args) {
int index = binarySearch(new int[] {10, 50, 100}, 50); // (2) Not ok!
System.out.printin(index);

}

// public static int binarySearch(int[] a, int key) { // (3)
// return -1;

// 0}

}

Example 4.6 illustrates importing nested static types (Section 8.2, p. 355). The class
yap.Machine declares three static members, which all are types. Since these nested
members are types that are static, they can be imported both as types and as static
members. The class MachineClient uses the static types declared in the yap.Machine
class. The program shows how the import statements influence which types and
members are accessible. The following statement in the main() method declared at
(10) does not compile:

String s1 = IDLE; // Ambiguous because of (3) and (6)

because the constant IDLE is imported from both the static class StateConstant and
the enum type MachineState by the following import statements:

import static yap.Machine.StateConstant.*; // (3

import static yap.Machine.MachineState.*; // (6)
Similarly, the following statement in the main() method is also not permitted:
MachineState ms1l = BLOCKED; // Ambiguous because of (3) and (6)

The conflicts are resolved by qualifying the member just enough to make the
names unambiguous.

‘ é PGJC3.book Page 114 Tuesday, November 25, 2008 9:10 PM é

114

CHAPTER 4: ACCESS CONTROL

Example4.7 Importing Nested Static Types

package yap; // yet another package
public class Machine { // Class with 3 nested types
public static class StateConstant { // A static member class

public static final String BUSY = "Busy";
pubTlic static final String IDLE = "Idle";
pubTlic static final String BLOCKED = "Blocked";

}
pubTic enum MachineState { // A nested enum is static.
BUSY, IDLE, BLOCKED
}
pubTic enum AuxMachineState { // Another static enum
UNDER_REPAIR, WRITE_OFF, HIRED, AVAILABLE;
}
}
import yap.Machine; // (0
import yap.Machine.StateConstant; // (D
import static yap.Machine.StateConstant; // (2) Superfluous because of (1)
import static yap.Machine.StateConstant.*; // (3)
import yap.Machine.MachineState; // (4)
import static yap.Machine.MachineState; // (5) Superfluous because of (4)
import static yap.Machine.MachineState.*; // (6)
import yap.Machine.AuxMachineState; // (D)
import static yap.Machine.AuxMachineState; // (8) Superfluous because of (7)
import static yap.Machine.AuxMachineState.*; // (9)
import static yap.Machine.AuxMachineState.WRITE_OFF; // (10)
pubTic class MachineClient {

public static void main(String[] args) { // (10)

StateConstant msc = new StateConstant(); // Requires (1) or (2)

//String sl = IDLE; // Ambiguous because of (3) and (6)
String s2 = StateConstant.IDLE; // Explicit disambiguation necessary.
//MachineState ms1l = BLOCKED; // Ambiguous because of (3) and (6)
MachineState ms2 = MachineState.BLOCKED; // Requires (4) or (5)
MachineState ms3 = MachineState.IDLE; // Explicit disambiguation necessary.
AuxMachineState[] states = { // Requires (7) or (8)
AVAILABLE, HIRED, UNDER_REPAIR, // Requires (9)
WRITE_OFF, // Requires (9) or (10)
AuxMachineState.WRITE_OFF, // Requires (7) or (8)

Machine.AuxMachineState .WRITE_OFF, // Requires (0)
yap.Machine.AuxMachineState.WRITE_OFF // Does not require any import

4~ ~¢0

‘ é PGJC3.book Page 115 Tuesday, November 25, 2008 9:10 PM

4.2: PACKAGES 115

for (AuxMachineState s : states)
System.out.print(s + " ");
}
}

Output from the program:
AVAILABLE HIRED UNDER_REPAIR WRITE_OFF WRITE_OFF WRITE_OFF WRITE_OFF

Compiling Code into Packages

In this chapter, we will use pathname conventions used on a Unix platform. See
Section 11.2, p. 468, for a discussion on pathnames and conventions for specifying
pathnames on different platforms. While trying out the examples in this section,
attention should be paid to platform-dependencies in this regard. Particularly, the
fact that the separator character in a file path for the Unix and Windows platform is
'/" and '\', respectively.

As mentioned earlier, a package can be mapped on a hierarchical file system. We
can think of a package name as a pathname in the file system. Referring to Example
4.1, the package name wizard.pandorasBox corresponds to the pathname wizard/pan-
dorasBox. The Java byte code for all types declared in the source files Clown. java and
LovePotion.java will be placed in the package directory with the pathname wizard/
pandorasBox, as these source files have the following package declaration:

package wizard.pandorasBox;

The location in the file system where the package directory should be created is
specified using the -d option (d for destination) of the javac command. The term des-
tination directory is a synonym for this location in the file system. The compiler will
create the package directory with the pathname wizard/pandorasBox (including any
subdirectories required) under the specified location, and place the Java byte code
for the types declared in the source files Clown.java and LovePotion.java inside the
package directory.

Assuming that the current directory (.) is the directory /pgjc/work, and the four
source files in Example 4.1 are to be found in this directory, the command

>javac -d . Clown.java LovePotion.java Ailment.java Baldness.java

issued in the current directory will create a file hierarchy under this directory,
that mirrors the package hierarchy in Figure 4.2 (see also Figure 4.3). Note the
subdirectories that are created for a fully qualified package name, and where the
class files are located. In the command line above, space between the -d option
and its argument is mandatory.

We can specify any relative pathname that designates the destination directory, or
its absolute pathname:

>javac -d /pgjc/work Clown.java LovePotion.java Ailment.java Baldness.java

- il

‘ é PGJC3.book Page 116 Tuesday, November 25, 2008 9:10 PM

116 CHAPTER 4: ACCESS CONTROL
We can, of course, specify other destinations than the current directory where the
class files with the byte code should be stored. The following command

>javac -d ../myapp Clown.java LovePotion.java Ailment.java Baldness.java

in the current directory /pgjc/work will create the necessary packages with the class
files under the destination directory /pgjc/myapp.

Without the -d option, the default behavior of the javac compiler is to place all class
files directly under the current directory (where the source files are located), rather
than in the appropriate subdirectories corresponding to the packages.

Figure4.3 File Hierarchy

—({) wizard

—D LovePotion.class

artifacts
Ailment.class

spells

_D Baldness.class
_D LovePotion.class

The compiler will report an error if there is any problem with the destination direc-
tory specified with the -d option (e.g., if it does not exist or does not have the right
file permissions).

‘ é PGJC3.book Page 117 Tuesday, November 25, 2008 9:10 PM é
4.3: SEARCHING FOR CLASSES 117

Running Code from Packages

Referring to Example 4.1, if the current directory has the absolute pathname /pgjc/
work and we want to run Clown. class in the directory with the pathname . /wizard/
pandorasBox, the fully qualified name of the Clown class must be specified in the java
command

>java wizard.pandorasBox.Clown

This will load the class Clown from the byte code in the file with the pathname ./
wizard/pandorasBox/Clown.class, and start the execution of its main() method.

4.3 Searching for Classes

The documentation for the JDK tools explains how to organize packages in more
elaborate schemes. In particular, the CLASSPATH environment variable can be used to
specify the class search path (usually abbreviated to just class path), which are
pathnames or locations in the file system where JDK tools should look when search-
ing for classes and other resource files. Alternatively, the -classpath option (often
abbreviated to -cp) of the JDK tool commands can be used for the same purpose.
The CLASSPATH environment variable is not recommended for this purpose, as its
class path value affects all Java applications on the host platform, and any applica-
tion can modify it. However, the -cp option can be used to set the class path for
each application individually. This way, an application cannot modify the class
path for other applications. The class path specified in the -cp option supersedes
the path or paths set by the CLASSPATH environment variable while the JDK tool
command is running. We will not discuss the CLASSPATH environment variable here,
and assume it to be undefined.

Basically, the JDK tools first look in the directories where the Java standard librar-
ies are installed. If the class is not found in the standard libraries, the tool searches
in the class path. When no class path is defined, the default value of the class path
is assumed to be the current directory. If the -cp option is used and the current
directory should be searched by the JDK tool, the current directory must be speci-
fied as an entry in the class path, just like any other directory that should be
searched. This is most conveniently done by including '." as one of the entries in
the class path.

We will use the file hierarchies shown in Figure 4.4 to illustrate some of the intrica-
cies involved when searching for classes. The current directory has the absolute
pathname /top/src, where the source files are stored. The package pkg is stored
under the directory with the absolute pathname /top/bin. The source code in the
two source files A. java and B. java is also shown in Figure 4.4.

The file hierarchy before any files are compiled is shown in Figure 4.4a. Since the
class B does not use any other classes, we compile it first with the following com-
mand, resulting in the file hierarchy shown in Figure 4.4b:

*%

4~ 4

‘ é PGJC3.book Page 118 Tuesday, November 25, 2008 9:10 PM é

118 CHAPTER 4: ACCESS CONTROL

Figure4.4 Searching for Classes
Cj /top CJ /top [::] /top
src ¥ src*) src*
Ajava Ajava a Ajava
B.java D B.java D B.java

L) bin bin bin
pkg pkg
* current directory —D B.class A.class
B.class
(@) (b) ©
// File name: A.java // File name: B.java
package pkg; package pkg;
class A { B b; } // A uses B class B { }

>javac -d ../bin B.java
Next, we try to compile the file A.java, and get the following results:

>javac -d ../bin A.java
A.java:3: cannot find symbol
symbol : class B
Tocation: class pkg.A
public class A { B b; }

A

1 error

The compiler cannot find the class B, i.e., the file B.class containing the Java byte
code for the class B. From Figure 4.4b we can see that it is in the package pkg under
the directory bin, but the compiler cannot find it. This is hardly surprising, as there
is no byte code file for the class B in the current directory, which is the default value
of the class path. The command below sets the value of the class path to be /top/
bin, and compilation is successful (see Figure 4.4c):

>javac -cp /top/bin -d ../bin A.java

It is very important to understand that when we want the JDK tool to search in a
named package, it is the location of the package that is specified, i.e., the class path
indicates the directory that contains the first element of the fully qualified package
name. In Figure 4.4c, the package pkg is contained under the directory whose abso-
lute path is /top/bin. The following command will not work, as the directory /top/
bin/pkg does not contain a package with the name pkg that has a class B:

- il

‘ é PGJC3.book Page 119 Tuesday, November 25, 2008 9:10 PM é
4.3: SEARCHING FOR CLASSES 119

>javac -cp /top/bin/pkg -d ../bin A.java

Also, the compiler is not using the class path to find the source file(s) that are spec-
ified in the command line. In the command above, the source file has the relative
pathname ./A.java. So the compiler looks for the source file in the current direc-
tory. The class path is used to find classes used by the class A.

Given the file hierarchy in Figure 4.3, the following -cp option sets the class path so
that all packages (wizard.pandorasBox, wizard.pandorasBox.artifacts, wizard.spells)
in Figure 4.3 will be searched, as all packages are located under the specified
directory:

-cp /pgjc/work

However, the following -cp option will not help in finding any of the packages in
Figure 4.3, as none of the packages are located under the specified directory:

>java -cp /pgjc/work/wizard pandorasBox.Clown

The command above also illustrates an important point about package names:
the fully qualified package name should not be split. The package name for the class
wizard.pandorasBox.Clown is wizard.pandorasBox, and must be specified fully. The
following command will search all packages in Figure 4.3 for classes that are
used by the class wizard.pandorasBox.Clown:

>java -cp /pgjc/work wizard.pandorasBox.Clown

The class path can specify several entries, i.e., several locations, and the JDK tool
searches them in the order they are specified, from left to right.

-cp /pgjc/work:/top/bin/pkg:.

We have used the path-separator character ':' for Unix platforms to separate the
entries, and also included the current directory (.) as an entry. There should be no
white space on either side of the path-separator character.

The search in the class path entries stops once the required class file is found.
Therefore, the order in which entries are specified can be significant. If a class B is
found in a package pkg located under the directory /ext/1ibl, and also in a package
pkg located under the directory /ext/1ib2, the order in which the entries are speci-
fied in the two -cp options shown below is significant. They will result in the class
pkg.B being found under /ext/1ibl and /ext/1ib2, respectively.

-cp /ext/Tlibl:/ext/1ib2
-cp /ext/1ib2:/ext/Tibl

The examples so far have used absolute pathnames for class path entries. We can
of course use relative pathnames as well. If the current directory has the absolute
pathname /pgjc/work in Figure 4.3, the following command will search the pack-
ages under the current directory:

>java -cp . wizard.pandorasBox.Clown

*%

4~ 4

‘ é PGJC3.book Page 120 Tuesday, November 25, 2008 9:10 PM

Al

120

4.4

CHAPTER 4: ACCESS CONTROL

If the current directory has the absolute pathname /top/src in Figure 4.4, the fol-
lowing command will compile the file ./A. java:

>javac -cp ../bin/pkg -d ../bin A.java

If the name of an entry in the class path includes white space, the name should be
double quoted in order to be interpreted correctly:

-cp "../new bin/Targe pkg"

The JAR Utility

The JAR (Java ARchive) utility provides a convenient way of bundling and deploy-
ing Java programs. A JAR file is created by using the jar tool. A typical JAR file
for an application will contain the class files and any other resources needed by
the application (for example image and audio files). In addition, a special manifest
file is also created and included in the archive. The manifest file can contain per-
tinent information, such as which class contains the main() method for starting the
application.

The jar command has many options (akin to the Unix tar command). A typical
command for making a JAR file for an application (for example, Example 4.10) has
the following syntax:

>jar cmf whereismain.txt bundledApp.jar wizard

Option c tells the jar tool to create an archive. Option mis used to create and include
a manifest file. Information to be included in the manifest file comes from a text file
specified on the command line (whereismain.txt). Option f specifies the name of the
archive to be created (bundledApp.jar). The JAR file name can be any valid file
name. Files to be included in the archive are listed on the command line after the
JAR file name. In the command line above, the contents under the wizard directory
will be archived. If the order of the options mand f is switched in the command line,
the order of the respective file names for these options must also be switched.

Information to be included in the manifest file is specified as name-value pairs.
In Example 4.10, program execution should start in the main() method of the
wizard.pandorasBox.Clown class. The file whereismain.txt has the following single
text line:

Main-Class: wizard.pandorasBox.Clown

The value of the predefined header named Main-Class specifies the execution entry
point of the application. The last text line in the file must be terminated by a
newline as well, in order to be processed by the jar tool. This is also true even if the
file only has a single line.

The application in an archive can be run by issuing the following command:

>java -jar bundledApp.jar

%

ﬁ

*%

‘ é PGJC3.book Page 121 Tuesday, November 25, 2008 9:10 PM

Al

4.4: THEJARUTILITY 121

Program arguments can be specified after the JAR file name.

Another typical use of a JAR file is bundling packages as libraries so that other Java
programs can use them. Such JAR files can be made available centrally, e.g., in the
jre/1ib/ext directory under Unix, where the jre directory contains the Java runt-
ime environment. The pathname of such a JAR file can also be specified in the CLASS-
PATH environment variable. Clients can also use the -cp option to specify the
pathname of the JAR file in order to utilize its contents. In all cases, the Java tools
will be able to find the packages contained in the JAR file. The compiler can search
the JAR file for classes when compiling the program, and the JVM can search the
JAR file for classes to load in order to run the program.

As an example, we consider the file organization in Figure 4.5, where the class
MyApp uses the class org.graphics.draw4d.Menu, and also classes from packages in the
JAR file gui.jar in the directory /top/1ib. We can compile the file MyApp.java in the
current directory /top/src with the following command:

>javac -cp /top/lib/gui.jar:/top/1ib -d /top/bin MyApp.java

Note that we need to specify pathnames of JAR files, but we specify locations where
to search for particular packages.

We can also use the class path wildcard * to include all JAR files contained in a
directory. Referring to Figure 4.5, the following -cp option will set the class path to
include both the JAR files gui.jar and db.jar:

>javac -cp /top/lib/*:/top/1ib -d /top/bin MyApp.java

Figure45 Searching in JAR files

@ /top
_C] Src
LB MyApp.java

bin
MyApp.class

—)lib

org
graphics

draw3d

ﬁ

*%

‘ é PGJC3.book Page 122 Tuesday, November 25, 2008 9:10 PM

Al

122

4.5

CHAPTER 4: ACCESS CONTROL

It may be necessary to quote the wildcard, depending on the configuration of the
command line environment:

>javac -cp "/top/Tib/*":/top/1ib -d /top/bin MyApp.java

The wildcard * only expands to JAR files under the directory designated by the
class path entry. It does not expand to any class files. Neither does it expand recur-
sively to any JAR files contained in any subdirectories under the directory desig-
nated by the class path entry. The order in which the JAR files are searched
depends on how the wildcard is expanded, and should not be relied upon when
using the JDK tools.

System Properties

The Java runtime environment maintains persistent information like the operating
system (OS) name, the JDK version, and various platform-dependent conventions
(e.g., file separator, path separator, line terminator). This information is stored as a
collection of properties on the platform on which the Java runtime environment is
installed. Each property is defined as a name-value pair. For example, the name of
the OS is stored as a property with the name "os.name" and the value "Windows
Vista" on a platform running this OS. Properties are stored in a hash table, and
applications can access them through the class java.util.Properties, which is a
subclass of the java.util.Hashtable class (Section 15.8, p. 821).

Example 4.8 provides a basic introduction to using system properties. The System.
getProperties() method returns a Properties hashtable containing all the properties
stored on the host platform, (1). An application-defined property can be added to the
Properties hashtable by calling the setProperty() method, with the appropriate
name and value of the property. At (2), a property with the name "appName" and the
value "BigKahuna" is put into the Properties hashtable. A property with a particular
name can be retrieved from the Properties hashtable by calling the getProperties()
method with the property name as argument, (3). Note that the type of both property
name and value is String.

The program in Example 4.8 is run with the following command line:
>java SysProp os.name java.version appName FontSize

The program arguments are property names. The program looks them up in the Prop-
erties hashtable, and prints their values. We see that the value of the application-
defined property with the name "appNam" is retrieved correctly. However, no property
with the name "FontSize" is found, there nu11 is printed as its value.

Another way of adding a property is by specifying it with the -D option (D for
Define) in the java command. Running the program with the following command
line

>java SysProp -DFontSize=18 os.name java.version appName FontSize

%

ﬁ

*%

‘ é PGJC3.book Page 123 Tuesday, November 25, 2008 9:10 PM

4.5: SYSTEM PROPERTIES 123

produces the following result:

os.name=Windows Vista
java.version=1.6.0_05
appName=B1igKahuna
FontSize=18

The name and the value of the property are separated by the character = when
specified using the -D option. The property is added by the JVM, and made avail-
able to the application.

There is also no white space on either side of the separator = in the -D option syntax,
and the value can be double quoted, if necessary.

Example4.8 Using Properties

import java.util.Properties;

public class SysProp {
public static void main(String[] args) {

Properties props = System.getProperties(); // (D

props.setProperty("appName", "BigKahuna"); // (2)

for (String prop : args) {
String value = props.getProperty(prop); // (3)
System.out.printf("%s=%s%n", prop, value);

}

}
}
Output from the program:

>javac SysProp.java

>java SysProp os.name java.version appName FontSize
os.name=Windows Vista

java.version=1.6.0_05

appName=BigKahuna

FontSize=null

Review Questions

41 What will be the result of attempting to compile this code?
import java.util.*;
package com.acme.toolkit;

pubTic class AClass {
public Other anInstance;

}

class Other {
int value;

}

‘ é PGJC3.book Page 124 Tuesday, November 25, 2008 9:10 PM

124 CHAPTER 4: ACCESS CONTROL

Select the one correct answer.

(@) The code will fail to compile, since the class Other has not yet been declared
when referenced in the class AClass.

(b) The code will fail to compile, since an import statement cannot occur as the
first statement in a source file.

(c) The code will fail to compile, since the package declaration cannot occur after
an import statement.

(d) The code will fail to compile, since the class Other must be defined in a file
called Other. java.

(e) The code will fail to compile, since the class Other must be declared public.

(f) The class will compile without errors.

4.2 Given the following code:

// (1) INSERT ONE IMPORT STATEMENT HERE
public class RQ700_20 {
public static void main(String[] args) {
System.out.printin(sqrt(49));
}
}

Which statements, when inserted at (1), will result in a program that prints 7, when
compiled and run?

Select the two correct answers.

(a) import static Math.*;

(b) import static Math.sqrt;

(c) dimport static java.lang.Math.sqrt;
(d) import static java.lang.Math.sqrt();
(e) import static java.lang.Math.*;

4.3 Given the following code:

// (1) INSERT ONE IMPORT STATEMENT HERE
pubTic class RQ700_10 {
public static void main(String[] args) {
System.out.println(Locale.UK); // Locale string for UK is "en_GB".
}
}

Which statements, when inserted at (1), will result in a program that prints en_CB,
when compiled and run?

Select the two correct answers.

(a) import java.util.¥;

(b) import java.util.Locale;

(c) import java.util.Locale.UK;

(d) import java.util.lLocale.¥*;

(e) import static java.util.*;

(f) dmport static java.util.lLocale;
(g) import static java.util.Locale.UK;
(h) import static java.util.Locale.*;

- il

‘ é PGJC3.book Page 125 Tuesday, November 25, 2008 9:10 PM

4.5: SYSTEM PROPERTIES 125

4.4 Given the following code:

package pl;
enum Signal {
GET_SET, ON_YOUR_MARKS, GO;

package p2;
// (1) INSERT IMPORT STATEMENT(S) HERE
public class RQ700_50 {
public static void main(String[] args) {
for(Signal sign : Signal.values(Q)) {
System.out.printIn(sign);
}
}
}

Which import statement(s), when inserted at (1), will result in a program that
prints the constants of the enum type Signal, when compiled and run?

Select the one correct answer.
(a) import static pl.Signal.*;
(b) import pl.Signal;
(c) import pl.*;
(d) import pl.Signal;

import static pl.Signal.*;
(e) import pl.*;

import static pl.*;
(f) None of the above.

4.5 Given the following code:

package p3;
public class Util {
public enum Format {
JPEG { public String toString() {return "Jpeggy"; }},
GIF { public String toString() {return "Giffy"; }},
TIFF { pubTic String toString() {return "Tiffy"; }};
}
pubTic static <T> void print(T t) {
System.out.print("|" + t + "|");

// (1) INSERT IMPORT STATEMENTS HERE
public class NestedImportsA {
public static void main(String[] args) {
Util u = new UtilQ);
Format[] formats = {
GIF, TIFF,
JPEG,
Format.JPEG,
Util.Format. JPEG,
p3.Util.Format.JPEG

- il

‘ é PGJC3.book Page 126 Tuesday, November 25, 2008 9:10 PM

126 CHAPTER 4: ACCESS CONTROL

3
for (Format fmt : formats)
print(fmt);
}
}

Which sequence of import statements, when inserted at (1), will result in the code
compiling, and the execution of the main() method printing:

|Giffy| |Tiffy||Jpeggy||Ipeggy||Ipeggy||Ipeggy|

Select the three correct answers.
(a) import p3.Util;
import p3.Util.Format;
import static p3.Util.print;
import static p3.Util.Format.*;
(b) import p3.Util;
import static p3.Util.Format;
import static p3.Util.print;
import static p3.Util.Format.*;
(c) import p3.%;
import static p3.Util.*;
import static p3.Util.Format.*;
(d) import p3.%;
import p3.Util.*;
import static p3.Util.Format.*;

4.6 Which statements are true about the import statement?

Select the two correct answers.

(a) Static import from a class automatically imports names of static members of
any nested types declared in that class.

(b) Static members of the default package cannot be imported.

(c) Static import statements must be specified after any type import statements.

(d) In the case of a name conflict, the name in the last static import statement is
chosen.

(e) A declaration of a name in a compilation unit can shadow a name that is
imported.

4.7 Given the source file A. java:

package top.sub;
public class A {}

And the following directory hierarchy:

/proj
|--- src
I |--- top
| [--- sub
| |--- A.java
|--- bin

- il

‘ é PGJC3.book Page 127 Tuesday, November 25, 2008 9:10 PM

4.5: SYSTEM PROPERTIES 127

4.8

Assuming that the current directory is /proj/src, which of the following statements
are true?

Select the three correct answers.

(@) The following command will compile, and place the file A.class under /proj/
bin:
javac -d . top/sub/A.java

(b) The following command will compile, and place the file A.class under /proj/
bin:
javac -d /proj/bin top/sub/A.java

(c) The following command will compile, and place the file A.class under /proj/
bin:
javac -D /proj/bin ./top/sub/A.java

(d) The following command will compile, and place the file A.class under /proj/
bin:
javac -d ../bin top/sub/A.java

(e) After successful compilation, the absolute pathname of the file A. class will be:
/proj/bin/A.class

(f) After successful compilation, the absolute pathname of the file A.class will be:
/proj/bin/top/sub/A.class

Given the following directory structure:
/top
[--- wrk
|--- pkg
[--- A.java
|--- B.java

Assume that the two files A. java and B. java contain the following code, respectively:

// Filename: A.java
package pkg;
class A { B b; }

// Filename: B.java
package pkg;
class B {...}

For which combinations of current directory and command is the compilation suc-
cessful?
Select the two correct answers.
(a) Current directory: /top/wrk
Command: javac -cp .:pkg A.java
(b) Current directory: /top/wrk
Command: javac -cp . pkg/A.java

(c) Current directory: /top/wrk
Command: javac -cp pkg A.java

%

ﬁ

*%

‘ é PGJC3.book Page 128 Tuesday, November 25, 2008 9:10 PM é

128

4.9

4.10

4.11

CHAPTER 4: ACCESS CONTROL

(d) Current directory: /top/wrk
Command: javac -cp .:pkg pkg/A.java

(e) Current directory: /top/wrk/pkg
Command: javac A.java

(f) Current directory: /top/wrk/pkg
Command: javac -cp . A.java

Given the following directory structure:

/proj

|--- src

| |--- A.class
|

|

|--- bin

|--- top
|--- sub
|--- A.class

Assume that the current directory is /proj/src. Which classpath specifications will
find the file A.class for the class top.sub.A?

Select the two correct answers.

(a) -cp /top/bin/top

(b) -cp /top/bin/top/sub

(c) -cp /top/bin/top/sub/A.class

(d) -cp ../bin;.

(e) -cp /top

(f) -cp /top/bin

Given that the name of the class MyClass is specified correctly, which commands are
syntactically valid:

Select the two correct answers.
(a) java -Ddebug=true MyClass
(b) java -ddebug=true MyClass
(c) java -Ddebug="true" MyClass

(d) java -D debug=true MyClass

Which statement is true?

Select the one correct answer.
(a) AJAR file can only contain one package.

(b) AJAR file can only be specified for use with the java command, in order to
run a program.

(c) The classpath definition of the platform overrides any entries specified in the

*%

4~ 4

‘ é PGJC3.book Page 129 Tuesday, November 25, 2008 9:10 PM

4.6: SCOPE RULES

4.6

129

classpath option.

(d) The -d option is used with the java command, and the -D is used with the
javac command.

(e) None of the above statements are true.

Scope Rules

Java provides explicit accessibility modifiers to control the accessibility of mem-
bers in a class by external clients (see Section 4.9, p. 138), but in two areas access is
governed by specific scope rules:

* Class scope for members: how member declarations are accessed within the
class.

* Block scope for local variables: how local variable declarations are accessed
within a block.

Class Scope for Members

Class scope concerns accessing members (including inherited ones) from code
within a class. Table 4.1 gives an overview of how static and non-static code in a
class can access members of the class, including those that are inherited. Table 4.1
assumes the following declarations:

class SuperName {
int instanceVarInSuper;
static int staticVarInSuper;

void instanceMethodInSuper() {/% ... %}
static void staticMethodInSuper() { /* ... */ }
/] ...

}

class ClassName extends SuperName {
int instanceVar;
static int staticVar;

o o

void instanceMethod()
static void staticMethod()
/] ...

}

The golden rule is that static code can only access other static members by their
simple names. Static code is not executed in the context of an object, therefore the
references this and super are not available. An object has knowledge of its class,
therefore, static members are always accessible in a non-static context.

(/%
(/% ¥/}

Note that using the class name to access static members within the class is no dif-
ferent from how external clients access these static members.

%

‘ é PGJC3.book Page 130 Tuesday, November 25, 2008 9:10 PM

130

CHAPTER 4: ACCESS CONTROL

Some factors that can influence the scope of a member declaration are:

e shadowing of a field declaration, either by local variables (see Section 4.6,

p- 131) or by declarations in the subclass (see Section 7.3, p. 294)

¢ initializers preceding the field declaration (see Section 9.7, p. 406)

¢ overriding an instance method from a superclass (see Section 7.2, p. 288)

* hiding a static method declared in a superclass (see Section 7.3, p. 294)

Accessing members within nested classes is discussed in Chapter 8.

Table4.1 Accessing Members within a Class

Member
declarations

Non-static Code in the Class
ClassName Can Refer to the
Member as

Static Code in the Class
ClassName Can Refer to the
Member as

Instance variables

instanceVar
this.instanceVar
instanceVarInSuper
this.instanceVarInSuper
super.instanceVarInSuper

Not possible

Instance methods

instanceMethod ()
this.instanceMethod()
instanceMethodInSuper()
this.instanceMethodInSuper()
super.instanceMethodInSuper()

Not possible

Static variables

staticVar

this.staticVar
ClassName.staticVar
staticVarInSuper
this.staticVarInSuper
super.staticVarInSuper
ClassName.staticVarInSuper
SuperName.staticVarInSuper

staticVar
ClassName.staticVar

staticVarInSuper

ClassName.staticVarInSuper
SuperName.staticVarInSuper

Static methods

staticMethod()
this.staticMethod()
ClassName.staticMethod()
staticMethodInSuper()
this.staticMethodInSuper()
super.staticMethodInSuper()
ClassName.staticMethodInSuper()
SuperName.staticMethodInSuper()

staticMethod()
ClassName.staticMethod()

staticMethodInSuper()

ClassName.staticMethodInSuper()
SuperName. staticMethodInSuper()

Within a class C, references of type C can be used to access all members in the class
C, regardless of their accessibility modifiers. In Example 4.9, the method duplicate-

%

‘ é PGJC3.book Page 131 Tuesday, November 25, 2008 9:10 PM é

4.6: SCOPE RULES 131

Light at (1) in the class Light has the parameter o1dLight and the local variable new-
Light that are references of the class Light. Even though the fields of the class are
private, they are accessible through the two references (oldLight and newLight) in
the method duplicateLight() as shown at (2), (3), and (4).

Example4.9 Class Scope

class Light {
// Instance variables:

private int noOfWatts; // wattage
private boolean indicator; // on or off
private String Tlocation; // placement

// Instance methods:

public void switchOn() { indicator = true; }
public void switchOff() { indicator = false; }
pubTic boolean isOn() { return indicator; }

public static Light duplicateLight(Light oldLight) { // (D
Light newLight = new Light(Q);

newLight.noOfWatts = oldLight.noOfWatts; // (@)
newLight.indicator = oldLight.indicator; // (3
newLight.location = oldLight.location; // (4

return newlLight;

Block Scope for Local Variables

Declarations and statements can be grouped into a block using braces, {}. Blocks
can be nested, and scope rules apply to local variable declarations in such blocks.
A local declaration can appear anywhere in a block. The general rule is that a var-
iable declared in a block is in scope inside the block in which it is declared, but it is
not accessible outside of this block. It is not possible to redeclare a variable if a local
variable of the same name is already declared in the current scope.

Local variables of a method include the formal parameters of the method and var-
iables that are declared in the method body. The local variables in a method are cre-
ated each time the method is invoked, and are therefore distinct from local
variables in other invocations of the same method that might be executing (see Sec-
tion 6.5, p. 235).

Figure 4.6 illustrates block scope for local variables. A method body is a block.
Parameters cannot be redeclared in the method body, as shown at (1) in Block 1.

A local variable—already declared in an enclosing block and, therefore, visible in
a nested block—cannot be redeclared in the nested block. These cases are shown at
(3), (5), and (6).

- il

% é PGJC3.book Page 132 Tuesday, November 25, 2008 9:10 PM

132 CHAPTER 4: ACCESS CONTROL

A local variable in a block can be redeclared in another block if the blocks are
disjoint, that is, they do not overlap. This is the case for variable i at (2) in Block 3
and at (4) in Block 4, as these two blocks are disjoint.

The scope of a local variable declaration begins from where it is declared in the
block and ends where this block terminates. The scope of the loop variable index is
the entire Block 2. Even though Block 2 is nested in Block 1, the declaration of the
variable index at (7) in Block 1 is valid. The scope of the variable index at (7) spans
from its declaration to the end of Block 1, and it does not overlap with that of the
loop variable index in Block 2.

Figure4.6 Block Scope

pubTic static void main(String args[]) { // Block 1
// String args = ""; // (1) Cannot redeclare parameters.
char digit = 'z';
for (int index = 0; index < 10; ++index) { // Block 2
switch(digit) { // Block 3
case 'a':
int i; // (2)
default:
// int 1i; // (3) Already declared in the same block.
} // switch
if (true) { // Block 4
int i; // (4) 0K
// int digit; // (5) Already declared in enclosing block 1.
// int index; // (6) Already declared in enclosing block 2.
Y //if
} // for
int index; // (7) OK
} // main

4.7 Accessibility Modifiers for Top-Level Type Declarations

The accessibility modifier public can be used to declare top-level types (that is,
classes, enums, and interfaces) in a package to be accessible from everywhere, both
inside their own package and other packages. If the accessibility modifier is omit-
ted, they are only accessible in their own package and not in any other packages or
subpackages. This is called package or default accessibility.

Accessibility modifiers for nested reference types are discussed in Section 8.1 on
page 352.

‘ é PGJC3.book Page 133 Tuesday, November 25, 2008 9:10 PM

4.7: ACCESSIBILITY MODIFIERS FOR TOP-LEVEL TYPE DECLARATIONS 133

Example4.10 Accessibility Modifiers for Classes and Interfaces

//File: Clown.java
package wizard.pandorasBox;

import wizard.pandorasBox.artifacts.Ailment

pubTlic class Clown implements Magic {
LovePotion tlc;
wizard.pandorasBox.artifacts.Ailment prob
Clown() {
tlc = new LovePotion("passion");
problem = new Ailment("flu");

public void Tevitate() { System.out.prin
public void mixPotion() { System.out.prin
public void healAilment() { System.out.pr

public static void main(String[] args) {
Clown joker = new Clown(Q);
joker.Tlevitate();
joker.mixPotion();
joker.healAilment();
}
}

interface Magic { void levitate(Q; }

//File: LovePotion.java
package wizard.pandorasBox;

public class LovePotion {
String potionName;

// (1) Package declaration
; // (2) Importing class
// (3) Class 1in same package
Tem; // (4) Fully qualified class name
// (5) Simple class name
tin("Levitating"); }
tIn("Mixing " + tlc); }
intIn("Healing " + problem); }

/7 (6)

/1 (D

// (1) Package declaration

// (2) Accessible outside package

public LovePotion(String name) { potionName = name; }

public String toString() { return potionN
}

//File: Ailment.java
package wizard.pandorasBox.artifacts;

ame; }

// (1) Package declaration

public class Ailment { // (2) Accessible outside package

String ailmentName;

pubTic Ailment(String name) { ailmentName

public String toString() { return ailment
}

//File: Baldness.java
package wizard.spells;

import wizard.pandorasBox.*;
import wizard.pandorasBox.artifacts.*;

public class Baldness extends Ailment {

%

= name; }
Name; }

// (L)Package declaration

// (2) Type import on demand
// (3) Import of subpackage

// (4) Simple name for Ailment

‘ é PGJC3.book Page 134 Tuesday, November 25, 2008 9:10 PM

134

CHAPTER 4: ACCESS CONTROL

wizard.pandorasBox.LovePotion tlcOne; // (5) Fully qualified name
LovePotion tlcTwo; // (6) Class in same package
Baldness(String name) {
super(name) ;
t1cOne = new wizard.pandorasBox. // (7) Fully qualified name
LovePotion("romance");
tlcTwo = new LovePotion(); // (8) Class in same package
}
}
class LovePotion // implements Magic // (9) Not accessible

{ public void levitateQ{} }

Compiling and running the program from the current directory gives the follow-
ing results:

>javac -d . Clown.java LovePotion.java Ailment.java Baldness.java
>java wizard.pandorasBox.Clown

Levitating

Mixing passion

Healing flu

In Example 4.10, the class Clown and the interface Magic are placed in a package
called wizard.pandorasBox. The public class Clown is accessible from everywhere. The
Magic interface has default accessibility, and can only be accessed within the pack-
age wizard.pandorasBox. It is not accessible from other packages, not even from its
subpackages.

The class LovePotion is also placed in the package called wizard.pandorasBox. The
class has public accessibility and is, therefore, accessible from other packages.
The two files Clown. java and LovePotion. java demonstrate how several compilation
units can be used to group classes in the same package.

The class Clown, from the file Clown. java, uses the class AiTment. The example shows
two ways in which a class can access classes from other packages:

1. Denote the class by its fully qualified class name, as shown at (4) (wizard.
pandorasBox.artifacts.Ailment).

2. Import the class explicitly from the package wizard.pandorasBox.artifacts as
shown at (2), and use the simple class name Ailment, as shown at (5).

In the file Baldness.java at (9), the class LovePotion wishes to implement the inter-
face Magic from the package wizard.pandorasBox, but cannot do so, although the
source file imports from this package. The reason is that the interface Magic has
default accessibility and can, therefore, only be accessed within the package
wizard.pandorasBox.

‘ é PGJC3.book Page 135 Tuesday, November 25, 2008 9:10 PM

4.8: OTHER MODIFIERS FOR CLASSES 135

Table4.2

4.8

Just because a type is accessible does not necessarily mean that members of the
type are also accessible. Member accessibility is governed separately from type
accessibility, as explained in Section 4.6.

Summary of Accessibility Modifiers for Top-Level Types

—

Modifiers Top-Level Types
default (no modifier) Accessible in its own package (package accessibility)
public Accessible anywhere

Other Modifiers for Classes

The modifiers abstract and final can be applied to top-level and nested classes.

abstract Classes

A class can be declared with the keyword abstract to indicate that it cannot be
instantiated. A class might choose to do this if the abstraction it represents is so
general that it needs to be specialized in order to be of practical use. The class Vehi-
cle might be specified as abstract to represent the general abstraction of a vehicle,
as creating instances of the class would not make much sense. Creating instances
of non-abstract subclasses, like Car and Bus, would make more sense, as this would
make the abstraction more concrete.

Any normal class (that is, a class declared with the keyword class) can be declared
abstract. However, if such a class that has one or more abstract methods (see Sec-
tion 4.10, p. 150), it must be declared abstract. Obviously such classes cannot be
instantiated, as their implementation might only be partial. A class might choose
this strategy to dictate certain behavior, but allow its subclasses the freedom to pro-
vide the relevant implementation. In other words, subclasses of the abstract class
have to take a stand and provide implementations of any inherited abstract meth-
ods before instances can be created. A subclass that does not provide an implemen-
tation of its inherited abstract methods, must also be declared abstract.

In Example 4.11, the declaration of the abstract class Light has an abstract method
named kwhPrice at (1). This forces its subclasses to provide an implementation for
this method. The subclass TubeLight provides an implementation for the method
kwhPrice() at (2). The class Factory creates an instance of the class TubelLight at (3).
References of an abstract class can be declared, as shown at (4), but an abstract
class cannot be instantiated, as shown at (5). References of an abstract class can
refer to objects of the subclasses, as shown at (6).

Interfaces just specify abstract methods and not any implementation; they are, by
their nature, implicitly abstract (that is, they cannot be instantiated). Though it is

%

‘ é PGJC3.book Page 136 Tuesday, November 25, 2008 9:10 PM

136 CHAPTER 4: ACCESS CONTROL

legal, it is redundant to declare an interface with the keyword abstract (see Section
7.6, p. 309).

Enum types cannot be declared abstract, because of the way they are implemented
in Java (see Section 3.5, p. 54).

Example4.11 Abstract Classes

abstract class Light {

// Fields:

int noOfWatts; // wattage
boolean indicator; // on or off
String Tlocation; // placement

// Instance methods:

pubTic void switchOn() { indicator = true; }
public void switchOff() { indicator = false; }
pubTic boolean isOn() { return indicator; }

// Abstract instance method

abstract public double kwhPrice(Q); // (1) No method body
}
//
class TubelLight extends Light {

// Field

int tubelength;

// Implementation of inherited abstract method.

public double kwhPrice() { return 2.75; } // (@)
}
//
public class Factory {

public static void main(String[] args) {

TubelLight cellarLight = new TubelLight(Q); // (3) 0K
Light nightLight; // (4) OK

// Light tablelLight = new Light(Q); // (5) Compile time error
nightLight = cellarLight; // (6) OK
System.out.printIn("KWH price: " + nightLight.kwhPrice());

}
}
Output from the program:

KWH price: 2.75

final Classes

A class can be declared final to indicate that it cannot be extended; that is, one can-
not declare subclasses of a final class. This implies that one cannot override any
methods declared in such a class. In other words, the class behavior cannot be

%

‘ é PGJC3.book Page 137 Tuesday, November 25, 2008 9:10 PM é

4.8: OTHER MODIFIERS FOR CLASSES 137

changed by extending the class. A final class marks the lower boundary of its
implementation inheritance hierarchy (see Section 7.1, p. 284). Only a class whose def-
inition is complete (that is, provides implementations of all its methods) can be
declared final.

A final class must be complete, whereas an abstract class is considered incom-
plete. Classes, therefore, cannot be both final and abstract at the same time. Inter-
faces are inherently abstract, as they can only specify methods that are abstract,
and therefore cannot be declared final. A final class and an interface represent two
extremes when it comes to providing an implementation. An abstract class repre-
sents a compromise between these two extremes. An enum type is also implicitly
final, and cannot be explicitly declared with the keyword final.

The Java standard library includes many final classes; for example, the
java.lang.String class and the wrapper classes for primitive values.

If it is decided that the class TubeLight in Example 4.11 may not be extended, it can
be declared final:

final class TubelLight extends Light {
/] ...
}

Discussion of final methods, fields, and local variables can be found in
Section 4.10, p. 148.

Table4.3 Summary of Other Modifiers for Types

Modifiers Classes Interfaces Enum types
abstract A non-final class can be declared Permitted, but ~ Not permitted.
abstract. redundant.

A class with an abstract method
must be declared abstract.

An abstract class cannot be
instantiated.

final A non-abstract class can be declared =~ Not permitted. Not permitted.
final.
A class with a final method need not
be declared final.
A final class cannot be extended.

‘ é PGJC3.book Page 138 Tuesday, November 25, 2008 9:10 PM

138 CHAPTER 4: ACCESS CONTROL

Review Questions

412 Given the following class, which of these alternatives are valid ways of referring
to the class from outside of the package net.basemaster?

package net.basemaster;

public class Base {
/] ...
}

Select the two correct answers.

(a) By simply referring to the class as Base.

(b) By simply referring to the class as basemaster.Base.

(c) By simply referring to the class as net.basemaster.Base.

(d) By importing with net.basemaster.*, and referring to the class as Base.
(e) By importing with net.*, and referring to the class as basemaster.Base.

4.13 Which one of the following class declarations is a valid declaration of a class that
cannot be instantiated?

Select the one correct answer.

(a) class Ghost { abstract void haunt(Q); }
(b) abstract class Ghost { void haunt(Q); }

(c) abstract class Ghost { void haunt() {}; }

(d) abstract Ghost { abstract void hauntQ); }
(e) static class Ghost { abstract haunt(Q); }

4.14 Which one of the following class declarations is a valid declaration of a class that
cannot be extended?

Select the one correct answer.

(a) class Link { }

(b) abstract class Link { }

(c) native class Link { }

(d) static class Link { }

(e) final class Link { }

(f) private class Link { }

(g) abstract final class Link { }

4.9 Member Accessibility Modifiers

By specifying member accessibility modifiers, a class can control what information
is accessible to clients (that is, other classes). These modifiers help a class to define
a contract so that clients know exactly what services are offered by the class.

%

ﬁ

*%

‘ é PGJC3.book Page 139 Tuesday, November 25, 2008 9:10 PM

4.9: MEMBER ACCESSIBILITY MODIFIERS 139

The accessibility of members can be one of the following;:
o public
o protected

o default (also called package accessibility)
o private

If an accessibility modifier is not specified, the member has package or default
accessibility.

In the following discussion on accessibility modifiers for members of a class, keep
in mind that the member accessibility modifier only has meaning if the class (or
one of its subclasses) is accessible to the client. Also, note that only one accessibility
modifier can be specified for a member. The discussion in this section applies to
both instance and static members of top-level classes. It applies equally to construc-
tors as well. Discussion of member accessibility for nested classes is deferred to
Chapter 8.

In UML notation, the prefixes +, #, and -, when applied to a member name, indicate
public, protected, and private member accessibility, respectively. No prefix indi-
cates default or package accessibility.

public Members

Public accessibility is the least restrictive of all the accessibility modifiers. A public
member is accessible from anywhere, both in the package containing its class and
in other packages where this class is visible. This is true for both instance and static
members.

Example 4.12 contains two source files, shown at (1) and (6). The package hierarchy
defined by the source files is depicted in Figure 4.7, showing the two packages,
packageA and packageB, containing their respective classes. The classes in packageB
use classes from packageA. The class SuperclassA in packageA has two subclasses: Sub-
classA in packageA and SubclassB in packageB.

Example4.12 Public Accessibility of Members

//Filename: SuperclassA.java [@D)
package packageA;

public class SuperclassA {
public int superclassVarA; // ()
public void superclassMethodA() {/*...*/} // (3
}

class SubclassA extends SuperclassA {
void subclassMethodA() { superclassvarA = 10; } // (4) OK.
}

- il

‘ é PGJC3.book Page 140 Tuesday, November 25, 2008 9:10 PM é

140 CHAPTER 4: ACCESS CONTROL

class Any(ClassA {
SuperclassA obj = new SuperclassA(Q);
void anyClassMethodA() {
obj.superclassMethodAQ); // (5) OK.
}
}

//Filename: SubclassB.java (6)
package packageB;
import packageA.*;

public class SubclassB extends SuperclassA {
void subclassMethodB() { superclassMethodA(); } // (7) OK.
}

class AnyClassB {
SuperclassA obj = new SuperclassA(Q);
void anyClassMethodB() {
obj.superclassVarA = 20; // (8) OK.
}
}

Accessibility is illustrated in Example 4.12 by the accessibility modifiers for the
field superclassVarA and the method superclassMethodA() at (2) and (3), respectively,
defined in the class SuperclassA. These members are accessed from four different
clients in Example 4.12.

e Client 1: From a subclass in the same package, which accesses an inherited
field. SubclassA is such a client, and does this at (4).

¢ (lient 2: From a non-subclass in the same package, which invokes a method on
an instance of the class. AnyClassA is such a client, and does this at (5).

* Client 3: From a subclass in another package, which invokes an inherited
method. SubclassB is such a client, and does this at (7).

* (lient 4: From a non-subclass in another package, which accesses a field in an
instance of the class. AnyClassB is such a client, and does this at (8).

In Example 4.12, the field superclassvarA and the method superclassMethodA() have
public accessibility, and are accessible by all four clients listed above. Subclasses
can access their inherited public members by their simple name, and all clients can
access public members through an instance of the class. Public accessibility is
depicted in Figure 4.7.

% é PGJC3.book Page 141 Tuesday, November 25, 2008 9:10 PM

4.9: MEMBER ACCESSIBILITY MODIFIERS 141

Figure4.7 Public Accessibility

packageA packageB
Client 3 Client 4
SuperclassA <iF——————————— SubcTassB AnyClassB
+superclassVarA:int | | obj:SuperClassA
+superclassMethodA subcTassMethodB || anyClassMethodB
Client 2 / cuenz\\ | l
AnyClassA SubclassA <}— Inheritance relationship
obj:SuperClassA <—— Access is permitted.
anyClassMethodA| | subclassMethodA

protected Members

A protected member is accessible in all classes in the same package, and by all sub-
classes of its class in any package where this class is visible. In other words, non-
subclasses in other packages cannot access protected members from other pack-
ages. It is more restrictive than public member accessibility.

In Example 4.12, if the field superclassvarA and the method superclassMethodA()
have protected accessibility, they are accessible within packageA, and only accessi-
ble by subclasses in any other packages.

pubTic class SuperclassA {
protected int superclassVarA; // (2) Protected member
protected void superclassMethodA() {/*...*/} // (3) Protected member
}

Client 4 in packageB cannot access these members, as shown in Figure 4.8.

A subclass in another package can only access protected members in the superclass
via references of its own type or its subtypes. The following new declaration of
SubclassB in packageB from Example 4.12 illustrates the point:

// Filename: SubclassB.java
package packageB;
import packageA.*;

pubTic class SubclassB extends SuperclassA { // In packageB.
SuperclassA objRefA = new SuperclassAQ); // Q)
void subclassMethodB(SubclassB objRefB) {
objRefB.superclassMethodAQ); // (2) OK.
objRefB.superclassVarA = 5; // (3) OK.
objRefA.superclassMethodAQ); // (4) Not OK.
objRefA.superclassVarA = 10; // (5) Not OK.
}
}

4~ ~3/

‘ é PGJC3.book Page 142 Tuesday, November 25, 2008 9:10 PM

142

CHAPTER 4: ACCESS CONTROL

Figure4.8 Protected Accessibility

packageA packageB
Client 3 Client 4
SubclassB AnyClassB

SuperclassA <]7‘

#superclassVarA:int

obj:SuperClassA

#superclassMethodA subclassMethodB || anyClassMethodB
Client 2 / cnenY\\ \
AnyClassA SubclassA

<]— Inheritance relationship
<—— Access is permitted.
<—><— Access is denied.

obj:SuperClassA

anyClassMethodA | | subclassMethodA

The class SubclassB declares the field objRefA of type SuperclassA at (1). The method
subclassMethodB() has the formal parameter objRefB of type SubclassB. Access is per-
mitted to a protected member of SuperclassA in packageA by a reference of the sub-
class, as shown at (2) and (3), but not by a reference of its superclass, as shown at
(4) and (5). Access to the field superclassvarA and the call to the method superclass-
MethodA() occur in SubclassB. These members are declared in SuperclassA. SubclassB
is not involved in the implementation of SuperclassA, which is the type of the ref-
erence objRefA. Hence, access to protected members at (4) and (5) is not permitted
as these are not members of an object that can be guaranteed to be implemented by
the code accessing them.

Accessibility to protected members of the superclass would also be permitted via
any reference whose type is a subclass of SubclassB. The above restriction helps to
ensure that subclasses in packages different from their superclass can only access
protected members of the superclass in their part of the implementation inherit-
ance hierarchy. In other words, a protected member of a superclass is only accessi-
ble in a subclass that is in another package if the member is inherited by an object
of the subclass (or by an object of a subclass of this subclass).

Default Accessibility for Members

When no member accessibility modifier is specified, the member is only accessible
by other classes in its own class’s package. Even if its class is visible in another
(possibly nested) package, the member is not accessible elsewhere. Default mem-
ber accessibility is more restrictive than protected member accessibility.

—

% é PGJC3.book Page 143 Tuesday, November 25, 2008 9:10 PM Gé

4.9: MEMBER ACCESSIBILITY MODIFIERS 143

In Example 4.12, if the field superclassVarA and the method superclassMethodA() are
defined with no accessibility modifier, they are only accessible within packageA, but
not in any other packages.

pubTlic class SuperclassA {
int superclassVarA; // ()
void superclassMethodA() {/*...*/} // (3)
}

The clients in packageB (that is, Clients 3 and 4) cannot access these members. This
situation is depicted in Figure 4.9.

Figure4.9 Default Accessibility

packageA packageB
Client 3 Client 4
SuperclassA <17 SubclassB AnyClassB
superclassVarA:int | | obj:SuperClassA
superclassMethodA subcTassMethodB || anyClassMethodB
Client 2 / cnenZ\\ | l
AnyClassA SubclassA <}— Inheritance relationship
obj:SuperClassA <—— Access is permitted.
anyClassMethodA | |subclassMethodA <—>¢— Access is denied.

private Members

This is the most restrictive of all the accessibility modifiers. Private members are
not accessible from any other classes. This also applies to subclasses, whether they
are in the same package or not. Since they are not accessible by their simple name
in a subclass, they are also not inherited by the subclass. This is not to be confused
with the existence of such a member in the state of an object of the subclass (see
Section 9.11, p. 416). A standard design strategy for JavaBeans is to make all fields
private and provide public accessor methods for them. Auxiliary methods are
often declared private, as they do not concern any client.

In Example 4.12, if the field superclassvarA and the method superclassMethodA()
have private accessibility, they are not accessible by any other clients.

pubTic class SuperclassA {
private int superclassVarA; // (2) Private member
private void superclassMethodA() {/*...*/} // (3) Private member
}

\
= - é PGJC3.book Page 144 Tuesday, November 25, 2008 9:10 PM

144 CHAPTER 4: ACCESS CONTROL

None of the clients in Figure 4.10 can access these members.

Figure4.10 Private Accessibility

packageA packageB
Client 3 Client 4
SuperclassA <]7 SubcTlassB Any(ClassB
-superclassVarA:int | | obj:SuperClassA
-superclassMethodA subclassMethodB || anyClassMethodB
Client 2 ﬂ/ Clienw\ | |
AnyClassA Subclassh <]— Inheritance relationship
obj:SuperClassh <>&— Access is denied.
anyClassMethodA| | subclassMethodA

Table4.4 Summary of Accessibility Modifiers for Members

Modifiers Members
public Accessible everywhere.
protected Accessible by any class in the same package as its class, and

accessible only by subclasses of its class in other packages.

default (no modifier) Only accessible by classes, including subclasses, in the
same package as its class (package accessibility).

private Only accessible in its own class and not anywhere else.

Review Questions

4.15 Given the following declaration of a class, which fields are accessible from outside
the package com.corporation.project?

package com.corporation.project;

public class MyClass {
int i;
pubTic int j;
protected int k;
private int 1;

}

1
K

‘ é PGJC3.book Page 145 Tuesday, November 25, 2008 9:10 PM

4.9: MEMBER ACCESSIBILITY MODIFIERS 145

Select the two correct answers.

(a) Field 1 is accessible in all classes in other packages.
(b) Field j is accessible in all classes in other packages.
(c) Field k is accessible in all classes in other packages.
(d) Field k is accessible in subclasses only in other packages.
(e) Field 11is accessible in all classes in other packages.
(f) Field 11is accessible in subclasses only in other packages.

416 How restrictive is the default accessibility compared to public, protected, and
private accessibility?

Select the one correct answer.

(a) Less restrictive than public.

(b) More restrictive than public, but less restrictive than protected.

(c) More restrictive than protected, but less restrictive than private.

(d) More restrictive than private.

(e) Less restrictive than protected from within a package, and more restrictive
than protected from outside a package.

417 Which statement is true about the accessibility of members?

Select the one correct answer.

(a) A private member is always accessible within the same package.

(b) A private member can only be accessed within the class of the member.

(c) A member with default accessibility can be accessed by any subclass of the
class in which it is declared.

(d) A private member cannot be accessed at all.

(e) Package/default accessibility for a member can be declared using the key-
word default.

418 Which lines that are marked will compile in the following code?

//Filename: A.java
package packageA;

public class A {
protected int pf;

}

//Filename: B.java
package packageB;
import packageA.A;

public class B extends A {
void action(A objl, B obj2, C obj3) {

pf = 10; // (D
objl.pf = 10; // (2)
obj2.pf = 10; // (3)
obj3.pf = 10; // (4

- il

‘ é PGJC3.book Page 146 Tuesday, November 25, 2008 9:10 PM é ‘
146 CHAPTER 4: ACCESS CONTROL

}
}

class C extends B {
void action(A objl, B obj2, C obj3) {
pf = 10; // (5)
objl.pf = 10; // (6)
obj2.pf = 10; // (D
obj3.pf = 10; // (8
}
}

class D {
void action(A objl, B obj2, C obj3) {
pf = 10; // (9
objl.pf = 10; // (10)
obj2.pf = 10; // (11)
obj3.pf = 10; // (12)
}
}

Select the five correct answers.
(@ @
(b) @
(© 3
(d) 4
(e)
) ®
(8
h) ®
H O
() 10
k)
O a»

4.10 Other Modifiers for Members

The following keywords can be used to specify certain characteristics of members
in a type declaration:
o static
o final
o abstract
synchronized
native
transient
volatile

*%

‘ é PGJC3.book Page 147 Tuesday, November 25, 2008 9:10 PM é

4.10: OTHER MODIFIERS FOR MEMBERS 147

static Members

Static members belong to the class in which they are declared and are not part of
any instance of the class. The declaration of static members is prefixed by the key-
word static to distinguish them from instance members. Depending on the acces-
sibility modifiers of the static members in a class, clients can access these by using
the class name or through object references of the class. The class need not be
instantiated to access its static members.

Static variables (also called class variables) exist in the class they are defined in only.
They are not instantiated when an instance of the class is created. In other words,
the values of these variables are not a part of the state of any object. When the class
is loaded, static variables are initialized to their default values if no explicit initial-
ization expression is specified (see Section 9.9, p. 410).

Static methods are also known as class methods. A static method in a class can
directly access other static members in the class. It cannot access instance (i.e., non-
static) members of the class, as there is no notion of an object associated with a
static method.

A typical static method might perform some task on behalf of the whole class and/
or for objects of the class. In Example 4.13, the static variable counter keeps track of
the number of instances of the Light class that have been created. The example shows
that the static method writeCount can only access static members directly, as shown
at (2), but not non-static members, as shown at (3). The static variable counter will be
initialized to the value 0 when the class is loaded at runtime. The main() method at
(4) in the class Warehouse shows how static members of the class Light can be accessed
using the class name and via object references of the type Light.

A summary of how static members are accessed in static and non-static code is
given in Table 4.1, p. 130.

Example4.13 Accessing Static Members

class Light {

// Fields:

int noOfWatts; // wattage
boolean indicator; // on or off
String Tlocation; // placement

// Static variable
static int counter; // No. of Light objects created. [@D)

// Explicit default constructor
Light(int noOfWatts, boolean indicator, String location) {
this.noOfWatts = noOfWatts;

this.indicator = indicator;
this.location = Tocation;
++counter; // Increment counter.

- il

‘ é PGJC3.book Page 148 Tuesday, November 25, 2008 9:10 PM

CHAPTER 4: ACCESS CONTROL

// Static method
public static void writeCount() {

System.out.printIn("Number of lights: " + counter); // (2)
// Compile-time error. Field noOfWatts is not accessible:
// System.out.printTn("Number of Watts: " + noOfWatts); // (3
}
}
//
pubTic class Warehouse {
public static void main(String[] args) { // (4
Light.writeCount(); // Invoked using class name
Light Tightl = new Light(100, true, "basement"); // Create an object
System.out.printin(
"Value of counter: " + Light.counter // Accessed via class name
);
Light Tight2 = new Light(200, false, "garage"); // Create another object
Tight2.writeCount(); // Invoked using reference
Light Tight3 = new Light(300, true, "kitchen"); // Create another object
System.out.printin(
"Value of counter: " + Tight3.counter // Accessed via reference
);
final int i;
}
}
Output from the program:

Number of Tights: 0
Value of counter: 1
Number of Tights: 2
Value of counter: 3

final Members

A final variable is a constant despite being called a variable. Its value cannot be
changed once it has been initialized. Instance and static variables can be declared
final. Note that the keyword final can also be applied to local variables, including
method parameters. Declaring a variable final has the following implications:

* A final variable of a primitive data type cannot change its value once it has
been initialized.

e A final variable of a reference type cannot change its reference value once it
has been initialized. This effectively means that a final reference will always
refer to the same object. However, the keyword final has no bearing on
whether the state of the object denoted by the reference can be changed or not.

Final static variables are commonly used to define manifest constants (also called
named constants), e.g., Integer .MAX_VALUE, which is the maximum int value. Varia-
bles defined in an interface are implicitly final (see Section 7.6, p. 309). Note that a
final variable need not be initialized in its declaration, but it must be initialized in

%

—

‘ é PGJC3.book Page 149 Tuesday, November 25, 2008 9:10 PM é

4.10: OTHER MODIFIERS FOR MEMBERS 149

the code once before it is used. These variables are also known as blank final varia-
bles. For a discussion on final parameters, see Section 3.7, p. 89.

A final method in a class is complete (that is, has an implementation) and cannot be
overridden in any subclass (see Section 7.2, p. 288).

Final variables ensure that values cannot be changed and final methods ensure
that behavior cannot be changed. Final classes are discussed in Section 4.8, p. 136.

The compiler may be able to perform code optimizations for final members,
because certain assumptions can be made about such members.

In Example 4.14, the class Light defines a final static variable at (1) and a final
method at (2). An attempt to change the value of the final variable at (3) results in
a compile-time error. The subclass TubeLight attempts to override the final method
setWatts() from the superclass Light at (4), which is not permitted. The class Ware-
house defines a final local reference aLight at (5). The state of the object denoted by
the reference tableLight is changed at (6), but its reference value cannot be changed
as attempted at (7). Another final local reference streetLight is declared at (8), but
it is not initialized. The compiler reports an error when an attempt is made to use
this reference at (9).

Example4.14 Accessing Final Members

class Light {
// Final static variable (@D)]
final public static double KWH_PRICE = 3.25;

int noOfWatts;
// Final instance method)

final public void setWatts(int watt) {
noOfWatts = watt;

}
public void setkWH(Q) {
// KWH_PRICE = 4.10; // (3) Not OK. Cannot be changed.
}
}
//

class Tubelight extends Light {
// Final method in superclass cannot be overridden.
// This method will not compile.
/:’c
pubTlic void setWatts(int watt) { // (4) Attempt to override.
noOfWatts = 2*watt;

}
7':/

‘ é PGJC3.book Page 150 Tuesday, November 25, 2008 9:10 PM

Al

150

CHAPTER 4: ACCESS CONTROL

public class Warehouse {
public static void main(String[] args) {

final Light tableLight = new Light();// (5) Final local variable.
tableLight.noOfWatts = 100; // (6) OK. Changing object state.
// tableLight = new Light(Q); // (7) Not OK. Changing final reference.

final Light streetLight; // (8) Not initialized.
// streetLight.noOfWatts = 2000; // (9) Not OK.

abstract Methods
An abstract method has the following syntax:

abstract <accessibility modifier> <return type> <method name> (<parameter list>)
<throws clause>;

An abstract method does not have an implementation; i.e., no method body is
defined for an abstract method, only the method header is provided in the class dec-
laration. The keyword abstract is mandatory in the header of an abstract method
declared in a class. Its class is then incomplete and must be explicitly declared
abstract (see Section 4.8, p. 135). Subclasses of an abstract class must then provide
the method implementation; otherwise, they must also be declared abstract. The
accessibility of an abstract method declared in a class cannot be private, as sub-
classes would not be able to override the method and provide an implementation.
See Section 4.8, where Example 4.11 also illustrates the use of abstract methods.

Only an instance method can be declared abstract. Since static methods cannot be
overridden, declaring an abstract static method makes no sense. A final method
cannot be abstract (i.e.,, cannot be incomplete) and vice versa. The keyword
abstract can only be combined with accessibility modifiers public or private.

Methods specified in an interface are implicitly abstract (see Section 7.6, p. 309),
and the keyword abstract is seldom specified in their method headers. These
methods can only have public or package accessibility.

synchronized Methods

Several threads can be executing in a program (see Section 13.5, p. 626). They might
try to execute several methods on the same object simultaneously. Methods can be
declared synchronized if it is desirable that only one thread at a time can execute a
method of the object. Their execution is then mutually exclusive among all threads.
At any given time, at most one thread can be executing a synchronized method on
an object. This discussion also applies to static synchronized methods of a class.

In Example 4.15, both the push() method, declared at (1), and the pop() method,
declared at (2), are synchronized in the class StackImpl. Only one thread at a time can

%

—

ﬁ

*

*%

‘ é PGJC3.book Page 151 Tuesday, November 25, 2008 9:10 PM é

4.10: OTHER MODIFIERS FOR MEMBERS 151

execute a synchronized method in an object of the class StackImpl. This means that
it is not possible for the state of an object of the class StackImp1 to be corrupted, for
example, while one thread is pushing an element and another is attempting to pop
the stack.

Example4.15 Synchronized Methods

class StackImpl { // Non-generic partial implementation
private Object[] stackArray;
private int topOfStack;
/] ...
synchronized public void push(Object elem) { // (1
stackArray [++topOfStack] = elem;
}

synchronized public Object pop() { // (2)
Object obj = stackArray[topOfStack];
stackArray[topOfStack] = null;
topOfStack--;
return obj;

}

// Other methods, etc.
public Object peek() { return stackArray[topOfStack]; }

native Methods

Native methods are methods whose implementation is not defined in Java but in
another programming language, for example, C or C++. Such a method can be
declared as a member in a Java class declaration. Since its implementation appears
elsewhere, only the method header is specified in the class declaration. The key-
word native is mandatory in the method header. A native method can also specify
checked exceptions in a throws clause (Section 6.9, p. 257), but the compiler cannot
check them, since the method is not implemented in Java.

In the following example, a native method in the class Native is declared at (2). The
class also uses a static initializer block (see Section 9.9, p. 410) at (1) to load the
native library when the class is loaded. Clients of the Native class can call the native
method like any another method, as at (3).

class Native {

/:’:
* The static block ensures that the native method Tibrary
* is loaded before the native method is called.
*/
static {
System.loadLibrary("NativeMethodLib"™); // (1) Load native library.
}

- il

‘ é PGJC3.book Page 152 Tuesday, November 25, 2008 9:10 PM

152

CHAPTER 4: ACCESS CONTROL

native void nativeMethod(); // (2) Native method header.
/] ...

}

class Client {
Y/
public static void main(String[] args) {
Native trueNative = new Native();
trueNative.nativeMethod(); // (3) Native method call.
}
/]
}

The Java Native Interface (JNI) is a special API that allows Java methods to invoke
native functions implemented in C.

transient Fields

Often it is desirable to save the state of an object. Such objects are said to be persist-
ent. In Java, the state of an object can be stored using serialization (see Section 11.6,
p- 510). Serialization transforms objects into an output format that is conducive for
storing objects. Objects can later be retrieved in the same state as when they were
serialized, meaning that all fields included in the serialization will have the same
values as at the time of serialization.

Sometimes the value of a field in an object should not be saved, in which case, the
field can be specified as transient in the class declaration. This implies that its
value should not be saved when objects of the class are written to persistent stor-
age. In the following example, the field currentTemperature is declared transient at
(1), because the current temperature is most likely to have changed when the object
is restored at a later date. However, the value of the field mass, declared at (2), is
likely to remain unchanged. When objects of the class Experiment are serialized, the
value of the field currentTemperature will not be saved, but that of the field mass will
be, as part of the state of the serialized object.

class Experiment implements Serializable {

/] ...

// The value of currentTemperature will not persist.

transient int currentTemperature; // (1) Transient value.

double mass; // (2) Persistent value.
}

Specifying the transient modifier for static variables is redundant and, therefore,
discouraged. Static variables are not part of the persistent state of a serialized
object.

—

—

‘ é PGJC3.book Page 153 Tuesday, November 25, 2008 9:10 PM

4.10: OTHER MODIFIERS FOR MEMBERS 153

volatile Fields

During execution, compiled code might cache the values of fields for efficiency rea-
sons. Since multiple threads can access the same field, it is vital that caching is not
allowed to cause inconsistencies when reading and writing the value in the field.
The volatile modifier can be used to inform the compiler that it should not attempt
to perform optimizations on the field, which could cause unpredictable results
when the field is accessed by multiple threads (see also Example 13.5, p. 644).

In the simple example below, the value of the field clockReading might be changed
unexpectedly by another thread while one thread is performing a task that
involves always using the current value of the field clockReading. Declaring the
field as volatile ensures that a write operation will always be performed on the
master field variable, and a read operation will always return the correct current
value.

class VitalControl {
/] ...
volatile Tong clockReading;
// Two successive reads might give different results.

3
Table4.5 Summary of Other Modifiers for Members
Modifiers Fields Methods
static Defines a class variable. Defines a class method.
final Defines a constant. The method cannot be overridden.
abstract Not applicable. No method body is defined. Its
class must also be designated
abstract.
synchronized Not applicable. Only one thread at a time can
execute the method.
native Not applicable. Declares that the method is
implemented in another language.
transient The value in the field will Not applicable.
not be included when the
object is serialized.
volatile The compiler will not Not applicable.
attempt to optimize access
to the value in the field.

‘ é PGJC3.book Page 154 Tuesday, November 25, 2008 9:10 PM

Al

154

4.19 Which statements about the use of modifiers are true?

4.20

Review Questions

Select the two correct answers.

(a) If no accessibility modifier (public, protected, or private) is specified for a
member declaration, the member is only accessible by classes in the package
of its class and by subclasses of its class in any package.

(b) You cannot specify accessibility of local variables. They are only accessible
within the block in which they are declared.

(c) Subclasses of a class must reside in the same package as the class they extend.

(d) Local variables can be declared static.

(e) The objects themselves do not have any accessibility modifiers, only the

object references do.

Given the following source code, which comment line can be uncommented with-

out introducing errors?

abstract class MyClass {
abstract void fQ;
final void g0 {}

//final void hQ {}

protected static int i;
private int j;
}

final class MyOtherClass extends MyClass {
//MyOtherClass(int n) { m = n; }

public static void main(String[] args) {
MyClass mc = new MyOtherClass();
}
void fO {}
void hQ {}
//void kO { i++; 3
//void 10 { j++; }
int m;

}
Select the one correct answer.

@@ (1)
(b) (2)
(@ @)
(d) 4)

/7 D

/1 @)

/7 (3)
/(4

CHAPTER 4: ACCESS CONTROL

ﬁ

*%

‘ é PGJC3.book Page 155 Tuesday, November 25, 2008 9:10 PM é
4.10: OTHER MODIFIERS FOR MEMBERS 155

4.21

4.22

4.23

What would be the result of compiling and running the following program?

class MyClass {
static MyClass ref;
String[] arguments;

public static void main(String[] args) {
ref = new MyClass(Q);
ref.func(args);

}

public void func(String[] args) {
ref.arguments = args;
}
}

Select the one correct answer.

(a) The program will fail to compile, since the static method main() cannot have a
call to the non-static method func().

(b) The program will fail to compile, since the non-static method func() cannot
access the static variable ref.

(c) The program will fail to compile, since the argument args passed to the static
method main() cannot be passed to the non-static method funcQ.

(d) The program will compile, but will throw an exception when run.

(e) The program will compile and run successfully.

Given the following member declarations, which statement is true?

int a; /7
static int a; // (2)
int fO { return a; } // (3)
static int £ { return a; } // (4

Select the one correct answer.

(a) Declarations (1) and (3) cannot occur in the same class declaration.
(b) Declarations (2) and (4) cannot occur in the same class declaration.
(c) Declarations (1) and (4) cannot occur in the same class declaration.
(d) Declarations (2) and (3) cannot occur in the same class declaration.

Which statement is true?

Select the one correct answer.

(a) A static method can call other non-static methods in the same class by using
the this keyword.

(b) A class may contain both static and non-static variables, and both static and
non-static methods.

(c) Each object of a class has its own instance of the static variables declared in
the class.

(d) Instance methods may access local variables of static methods.

(e) All methods in a class are implicitly passed the this reference as argument,
when invoked.

*%

4~ 4

‘ é PGJC3.book Page 156 Tuesday, November 25, 2008 9:10 PM

Al

156

4.24

4.25

4.26

4.27

CHAPTER 4: ACCESS CONTROL

What, if anything, is wrong with the following code?

abstract class MyClass {
transient int j;
synchronized int k;

final void MyClass() {}

static void Q) {}
}

Select the one correct answer.

(a) The class MyClass cannot be declared abstract.

(b) The field j cannot be declared transient.

(c) The field k cannot be declared synchronized.

(d) The method MyClass() cannot be declared final.

(e) The method f() cannot be declared static.

(f) Nothing is wrong with the code; it will compile successfully.

Which one of these is not a legal member declaration within a class?

Select the one correct answer.

(a) static int a;

(b) final Object[] fudge = { null };

(c) abstract int t;

(d) native void sneeze();

(e) final static private double PI = 3.14159265358979323846;

Which statements about modifiers are true?

Select the two correct answers.

(a) Abstract classes can declare final methods.

(b) Fields can be declared native.

(c) Non-abstract methods can be declared in abstract classes.
(d) Classes can be declared native.

(e) Abstract classes can be declared final.

Which statement is true?

Select the one correct answer.

(a) The values of transient fields will not be saved during serialization.

(b) Constructors can be declared abstract.

(c) The initial state of an array object constructed with the statement int[] a =
new int[10] will depend on whether the array variable a is a local variable or a
field.

(d) A subclass of a class with an abstract method must provide an implementa-
tion for the abstract method.

(e) Only static methods can access static members.

%

—

ﬁ

*

*%

‘ é PGJC3.book Page 157 Tuesday, November 25, 2008 9:10 PM

PROGRAMMING EXERCISE 157

Chapter Summary

The following information was included in this chapter:

e the structure of a Java source file

¢ defining, using, and deploying packages

¢ explanation of class scope for members, and block scope for local variables

¢ discussion of accessibility (default, public) and other modifiers (abstract, final)
for reference types

e applicability of member accessibility (default, public, protected, private) and
other member modifiers (static, final, abstract, synchronized, native, transient,
volatile)

Programming Exercise

4.1 Design a class for a bank database. The database should support the following
operations:

o deposit a certain amount into an account

o withdraw a certain amount from an account

o get the balance (i.e., the current amount) in an account
o transfer an amount from one account to another

The amount in the transactions is a value of type doubTe. The accounts are identified
by instances of the class Account that is in the package com.megabankcorp.records.
The database class should be placed in a package called com.megabankcorp.system.

The deposit, withdraw, and balance operations should not have any implemen-
tation, but allow subclasses to provide the implementation. The transfer opera-
tion should use the deposit and withdraw operations to implement the transfer.
It should not be possible to alter this operation in any subclass, and only classes
within the package com.megabankcorp. system should be allowed to use this oper-
ation. The deposit and withdraw operations should be accessible in all packages.
The balance operation should only be accessible in subclasses and classes within
the package com.megabankcorp.syster.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

