
2

19
Language Fundamentals

Exam Objectives

• Identify correctly constructed package declarations, import statements, class
declarations (of all forms, including inner classes), interface declarations,
method declarations (including the main method that is used to start
execution of a class), variable declarations, and identifiers.
❍ For defining and using packages, see Section 4.6.
❍ For class declarations, see Section 4.2.
❍ For nested classes, see Chapter 7.
❍ For interface declarations, see Section 6.4.
❍ For method declarations, see Section 4.3.

• Identify classes that correctly implement an interface where that interface is
either java.lang.Runnable or a fully specified interface in the question.
❍ For interface implementation, see Section 6.4.
❍ For implementation of java.lang.Runnable, see Section 9.3.

• State the correspondence between index values in the argument array
passed to a main method and command line arguments.
❍ See Section 3.23.

• Identify all Java programming language keywords. Note: There will not be
any questions regarding esoteric distinctions between keywords and
manifest constants.

• State the effect of using a variable or array element of any kind, when no
explicit assignment has been made to it.
❍ For array elements, see Section 4.1.

• State the range of all primitive data types, and declare literal values for String
and all primitive types using all permitted formats, bases and representations.
❍ See also Appendix G.

Supplementary Objectives

• State the wrapper classes for primitive data types.

20 CHAPTER 2: LANGUAGE FUNDAMENTALS
2.1 Basic Language Elements

Like any other programming language, the Java programming language is defined
by grammar rules that specify how syntactically legal constructs can be formed using
the language elements, and by a semantic definition that specifies the meaning of
syntactically legal constructs.

Lexical Tokens

The low-level language elements are called lexical tokens (or just tokens for short)
and are the building blocks for more complex constructs. Identifiers, numbers,
operators, and special characters are all examples of tokens that can be used to
build high-level constructs like expressions, statements, methods, and classes.

Identifiers

A name in a program is called an identifier. Identifiers can be used to denote classes,
methods, variables, and labels.

In Java an identifier is composed of a sequence of characters, where each character
can be either a letter, a digit, a connecting punctuation (such as underscore _), or any
currency symbol (such as $, ¢, ¥, or £). However, the first character in an identifier
cannot be a digit. Since Java programs are written in the Unicode character set (see
p. 23), the definitions of letter and digit are interpreted according to this character
set.

Identifiers in Java are case sensitive, for example, price and Price are two different
identifiers.

Examples of Legal Identifiers:

number, Number, sum_$, bingo, $$_100, mål, grüß

Examples of Illegal Identifiers:

48chevy, all@hands, grand-sum

The name 48chevy is not a legal identifier as it starts with a digit. The character @ is
not a legal character in an identifier. It is also not a legal operator so that all@hands
cannot not be interpreted as a legal expression with two operands. The character -
is also not a legal character in an identifier. However, it is a legal operator so grand-
sum could be interpreted as a legal expression with two operands.

Keywords

Keywords are reserved identifiers that are predefined in the language and cannot be
used to denote other entities. All the keywords are in lowercase, and incorrect
usage results in compilation errors.

2.1: BASIC LANGUAGE ELEMENTS 21
Keywords currently defined in the language are listed in Table 2.1. In addition,
three identifiers are reserved as predefined literals in the language: the null refer-
ence and the Boolean literals true and false (see Table 2.2). Keywords currently
reserved, but not in use, are listed in Table 2.3. All these reserved words cannot be
used as identifiers. The index contains references to relevant sections where cur-
rently defined keywords are explained.

Literals

A literal denotes a constant value, that is, the value a literal represents remains
unchanged in the program. Literals represent numerical (integer or floating-point),
character, boolean or string values. In addition, there is the literal null that repre-
sents the null reference.

Table 2.1 Keywords in Java

abstract default implements protected throw

assert do import public throws

boolean double instanceof return transient

break else int short try

byte extends interface static void

case final long strictfp volatile

catch finally native super while

char float new switch

class for package synchronized

continue if private this

Table 2.2 Reserved Literals in Java

null true false

Table 2.3 Reserved Keywords not Currently in Use

const goto

Table 2.4 Examples of Literals

Integer 2000 0 -7

Floating-point 3.14 -3.14 .5 0.5

Character 'a' 'A' '0' ':' '-' ')'

Boolean true false

String "abba" "3.14" "for" "a piece of the action"

22 CHAPTER 2: LANGUAGE FUNDAMENTALS
Integer Literals

Integer data types are comprised of the following primitive data types: int, long,
byte, and short (see Section 2.2).

The default data type of an integer literal is always int, but it can be specified as
long by appending the suffix L (or l) to the integer value. Without the suffix, the
long literals 2000L and 0l will be interpreted as int literals. There is no direct way to
specify a short or a byte literal.

In addition to the decimal number system, integer literals can also be specified in
octal (base 8) and hexadecimal (base 16) number systems. Octal and hexadecimal
numbers are specified with 0 and 0x (or 0X) prefix respectively. Examples of deci-
mal, octal and hexadecimal literals are shown in Table 2.5. Note that the leading 0
(zero) digit is not the uppercase letter O. The hexadecimal digits from a to f can also
be specified with the corresponding uppercase forms (A to F). Negative integers
(e.g. -90) can be specified by prefixing the minus sign (-) to the magnitude of the
integer regardless of number system (e.g., -0132 or -0X5A). Number systems and
number representation are discussed in Appendix G. Java does not support literals
in binary notation.

Floating-point Literals

Floating-point data types come in two flavors: float or double.

The default data type of a floating-point literal is double, but it can be explicitly
designated by appending the suffix D (or d) to the value. A floating-point literal can
also be specified to be a float by appending the suffix F (or f).

Floating-point literals can also be specified in scientific notation, where E (or e)
stands for Exponent. For example, the double literal 194.9E-2 in scientific notation is
interpreted as 194.9*10-2 (i.e., 1.949).

Table 2.5 Examples of Decimal, Octal, and Hexadecimal Literals

Decimal Octal Hexadecimal

8 010 0x8

10L 012L 0XaL

16 020 0x10

27 033 0x1B

90L 0132L 0x5aL

-90 -0132 -0X5A

2147483647 (i.e., 231-1) 017777777777 0x7fffffff

-2147483648 (i.e., -231) -020000000000 -0x80000000

1125899906842624L (i.e., 250) 040000000000000000L 0x4000000000000L

2.1: BASIC LANGUAGE ELEMENTS 23
Examples of double Literals

0.0 0.0d 0D
0.49 .49 .49D
49.0 49. 49D
4.9E+1 4.9E+1D 4.9e1d 4900e-2 .49E2

Examples of float Literals

0.0F 0f
0.49F .49F
49.0F 49.F 49F
4.9E+1F 4900e-2f .49E2F

Note that the decimal point and the exponent are optional and that at least one
digit must be specified.

Boolean Literals

The primitive data type boolean represents the truth-values true or false that are
denoted by the reserved literals true or false, respectively.

Character Literals

A character literal is quoted in single-quotes ('). All character literals have the
primitive data type char.

Characters in Java are represented by the 16-bit Unicode character set, which sub-
sumes the 8-bit ISO-Latin-1 and the 7-bit ASCII characters. In Table 2.6, note that
digits (0 to 9), upper-case letters (A to Z), and lower-case letters (a to z) have contig-
uous Unicode values. Any Unicode character can be specified as a four-digit hexa-
decimal number (i.e., 16 bits) with the prefix \u.

Table 2.6 Examples of Unicode Values

Character Literal Character Literal using
Unicode value

Character

' ' '\u0020' Space

'0' '\u0030' 0

'1' '\u0031' 1

'9' '\u0039' 9

'A' '\u0041' A

'B' '\u0042' B

'Z' '\u005a' Z

'a' '\u0061' a

'b' '\u0062' b

Continues

24 CHAPTER 2: LANGUAGE FUNDAMENTALS
Escape Sequences

Certain escape sequences define special character values as shown in Table 2.7. These
escape sequences can be single-quoted to define character literals. For example, the
character literals '\t' and '\u0009' are equivalent. However, the character literals
'\u000a' and '\u000d' should not be used to represent newline and carriage return
in the source code. These values are interpreted as line-terminator characters by
the compiler, and will cause compile time errors. One should use the escape
sequences '\n' and '\r', respectively, for correct interpretation of these characters
in the source code.

We can also use the escape sequence \ddd to specify a character literal by octal
value, where each digit d can be any octal digit (0–7), as shown in Table 2.8. The
number of digits must be three or fewer, and the octal value cannot exceed \377,
that is, only the first 256 characters can be specified with this notation.

'z' '\u007a' z

‘Ñ’ '\u0084' Ñ

‘å’ '\u008c' å

‘ß’ '\u00a7' ß

Table 2.7 Escape Sequences

Escape Sequence Unicode Value Character

\b \u0008 Backspace (BS)

\t \u0009 Horizontal tab (HT or TAB)

\n \u000a Linefeed (LF) a.k.a., Newline (NL)

\f \u000c Form feed (FF)

\r \u000d Carriage return (CR)

\' \u0027 Apostrophe-quote

\" \u0022 Quotation mark

\\ \u005c Backslash

Table 2.6 Examples of Unicode Values (Continued)

Character Literal Character Literal using
Unicode value

Character

2.1: BASIC LANGUAGE ELEMENTS 25
String Literals

A string literal is a sequence of characters, which must be quoted in quotation
marks and which must occur on a single line. All string literal are objects of the
class String (see Section 10.5, p. 407).

Escape sequences as well as Unicode values can appear in string literals:

In (1), the tab character is specified using the escape sequence and the Unicode
value respectively. In (2), the single apostrophe need not be escaped in strings, but
it would be if specified as a character literal('\''). In (3), the double apostrophes in
the string must be escaped. In (4), we use the escape sequence \n to insert a
newline. Printing these strings would give the following result:

Here comes a tab. And here comes another one !
What's on the menu?
"String literals are double-quoted."
Left!
Right!

One should also use the string literals "\n" and "\r", respectively, for correct inter-
pretation of the characters "\u000a" and "\u000d" in the source code.

White Spaces

A white space is a sequence of spaces, tabs, form feeds, and line terminator charac-
ters in a Java source file. Line terminators can be newline, carriage return, or car-
riage return-newline sequence.

A Java program is a free-format sequence of characters that is tokenized by the com-
piler, that is, broken into a stream of tokens for further analysis. Separators and
operators help to distinguish tokens, but sometimes white space has to be inserted
explicitly as separators. For example, the identifier classRoom will be interpreted as
a single token, unless white space is inserted to distinguish the keyword class from
the identifier Room.

Table 2.8 Examples of Escape Sequence \ddd

Escape Sequence \ddd Character Literal

'\141' 'a'

'\46' '&'

'\60' '0'

"Here comes a tab.\t And here comes another one\u0009!
"What's on the menu?"
"\"String literals are double-quoted.\""
"Left!\nRight!"

(1)
(2)
(3)
(4)

26 CHAPTER 2: LANGUAGE FUNDAMENTALS
White space aids not only in separating tokens, but also in formatting the program
so that it is easy for humans to read. The compiler ignores the white spaces once
the tokens are identified.

Comments

A program can be documented by inserting comments at relevant places. These
comments are for documentation purposes and are ignored by the compiler.

Java provides three types of comments to document a program:

• A single-line comment: // ... to the end of the line

• A multiple-line comment: /* ... */

• A documentation (Javadoc) comment: /** ... */

Single-line Comment

All characters after the comment-start sequence // through to the end of the line
constitute a single-line comment.

// This comment ends at the end of this line.
int age; // From comment-start sequence to the end of the line is a comment.

Multiple-line Comment

A multiple-line comment, as the name suggests, can span several lines. Such a com-
ment starts with /* and ends with */.

/* A comment
 on several
 lines.
*/

The comment-start sequences (//, /*, /**) are not treated differently from other
characters when occurring within comments, and are thus ignored. This means
trying to nest multiple-line comments will result in compile time error:

/* Formula for alchemy.
 gold = wizard.makeGold(stone);
 /* But it only works on Sundays. */
*/

The second occurrence of the comment-start sequence /* is ignored. The last occur-
rence of the sequence */ in the code is now unmatched, resulting in a syntax error.

Documentation Comment

A documentation comment is a special-purpose comment that when placed before
class or class member declarations can be extracted and used by the javadoc tool to
generate HTML documentation for the program. Documentation comments are

2.1: BASIC LANGUAGE ELEMENTS 27
usually placed in front of classes, interfaces, methods and field definitions. Groups
of special tags can be used inside a documentation comment to provide more
specific information. Such a comment starts with /** and ends with */:

/**
 * This class implements a gizmo.
 * @author K.A.M.
 * @version 2.0
 */

For details on the javadoc tool, see the documentation for the tools in the Java 2
SDK.

Review Questions

2.1 Which of the following is not a legal identifier?

Select the one correct answer.
(a) a2z
(b) ödipus
(c) 52pickup
(d) _class
(e) ca$h
(f) total#

2.2 Which statement is true?

Select the one correct answer.
(a) new and delete are keywords in the Java language.
(b) try, catch, and thrown are keywords in the Java language.
(c) static, unsigned, and long are keywords in the Java language.
(d) exit, class, and while are keywords in the Java language.
(e) return, goto, and default are keywords in the Java language.
(f) for, while, and next are keywords in the Java language.

2.3 Is this a complete and legal comment?

/* // */

Select the one correct answer.
(a) No, the block comment (/* ... */) is not ended since the single-line comment

(// ...) comments out the closing part.
(b) It is a completely valid comment. The // part is ignored by the compiler.
(c) This combination of comments is illegal and the compiler will reject it.

28 CHAPTER 2: LANGUAGE FUNDAMENTALS
2.2 Primitive Data Types

Figure 2.1 gives an overview of the primitive data types in Java.

Primitive data types in Java can be divided into three main categories:

• Integral types—represent signed integers (byte, short, int, long) and unsigned
character values (char)

• Floating-point types (float, double)—represent fractional signed numbers

• Boolean type (boolean)—represent logical values

Primitive data values are not objects. Each primitive data type defines the range of
values in the data type, and operations on these values are defined by special
operators in the language (see Chapter 3).

Each primitive data type also has a corresponding wrapper class that can be used
to represent a primitive value as an object. Wrapper classes are discussed in
Section 10.3.

Integer Types

Figure 2.1 Primitive Data Types in Java

Table 2.9 Range of Integer Values

Data Type Width
(bits)

Minimum value
MIN_VALUE

Maximum value
MAX_VALUE

byte 8 -27 (-128) 27-1 (+127)

short 16 -215 (-32768) 215-1 (+32767)

int 32 -231 (-2147483648) 231-1 (+2147483647)

long 64 -263 (-9223372036854775808L) 263-1 (+9223372036854775807L)

Boolean type Numeric types

Integral types Floating-point types

Character type Integer types

charboolean shortbyte int long float double

Primitive data types

2.2: PRIMITIVE DATA TYPES 29
Integer data types are byte, short, int, and long (see Table 2.9). Their values are
signed integers represented by 2’s complement (see Section G.4, p. 598).

Character Type

Characters are represented by the data type char (see Table 2.10). Their values are
unsigned integers that denote all the 65536 (216) characters in the 16-bit Unicode
character set. This set includes letters, digits, and special characters.

The first 128 characters of the Unicode set are the same as the 128 characters of the
7-bit ASCII character set, and the first 256 characters of the Unicode set correspond
to the 256 characters of the 8-bit ISO Latin-1 character set.

Floating-point Types

Floating-point numbers are represented by the float and double data types.

Floating-point numbers conform to the IEEE 754-1985 binary floating-point stand-
ard. Table 2.11 shows the range of values for positive floating-point numbers, but
these apply equally to negative floating-point numbers with the '-' sign as prefix.
Zero can be either 0.0 or -0.0.

Since the size for representation is finite, certain floating-point numbers can only
be represented as approximations. For example, the value of the expression (1.0/
3.0) is represented as an approximation due to the finite number of bits used.

Table 2.10 Range of Character Values

Data
Type

Width (bits) Minimum Unicode value Maximum Unicode value

char 16 0x0 (\u0000) 0xffff (\uffff)

Table 2.11 Range of Floating-point Values

Data Type Width
(bits)

Minimum Positive Value
MIN_VALUE

Maximum Positive Value
MAX_VALUE

float 32 1.401298464324817E-45f 3.402823476638528860e+38f

double 64 4.94065645841246544e-324 1.79769313486231570e+308

30 CHAPTER 2: LANGUAGE FUNDAMENTALS
Boolean Type

The data type boolean represents the two logical values denoted by the literals true
and false (see Table 2.12).

Boolean values are produced by all relational (see Section 3.9), conditional (see
Section 3.12) and boolean logical operators (see Section 3.11), and are primarily used
to govern the flow of control during program execution.

Table 2.13 summarizes the pertinent facts about the primitive data types: their
width or size, which indicates the number of the bits required to store a primitive
value; their range (of legal values), which is specified by the minimum and the
maximum values permissible; and the name of the corresponding wrapper class.

Review Questions

2.4 Which of the following do not denote a primitive data value in Java?

Select the two correct answers.
(a) "t"
(b) 'k'
(c) 50.5F
(d) "hello"
(e) false

Table 2.12 Boolean Values

Data Type Width True Value Literal False Value Literal

boolean not applicable true false

Table 2.13 Summary of Primitive Data Types

Data Type Width (bits) Minimum Value, Maximum Value Wrapper Class

boolean not applicable true, false (no ordering implied) Boolean

byte 8 -27, 27-1 Byte

short 16 -215, 215-1 Short

char 16 0x0, 0xffff Character

int 32 -231, 231-1 Integer

long 64 -263, 263-1 Long

float 32 ±1.40129846432481707e-45f,
±3.402823476638528860e+38f

Float

double 64 ±4.94065645841246544e-324,
±1.79769313486231570e+308

Double

2.3: VARIABLE DECLARATIONS 31
2.5 Which of the following primitive data types are not integer types?

Select the three correct answers.
(a) Type boolean
(b) Type byte
(c) Type float
(d) Type short
(e) Type double

2.6 Which integral type in Java has the exact range from -2147483648 (-231) to
2147483647 (231-1), inclusive?

Select the one correct answer.
(a) Type byte
(b) Type short
(c) Type int
(d) Type long
(e) Type char

2.3 Variable Declarations

A variable stores a value of a particular type. A variable has a name, a type, and a
value associated with it. In Java, variables can only store values of primitive data
types and references to objects. Variables that store references to objects are called
reference variables.

Declaring and Initializing Variables

Variable declarations are used to specify the type and the name of variables. This
implicitly determines their memory allocation and the values that can be stored in
them. We show some examples of declaring variables that can store primitive
values:

char a, b, c; // a, b and c are character variables.
double area; // area is a floating-point variable.
boolean flag; // flag is a boolean variable.

The first declaration above is equivalent to the following three declarations:

char a;
char b;
char c;

A declaration can also include initialization code to specify an appropriate initial
value for the variable:

int i = 10, // i is an int variable with initial value 10.
 j = 101; // j is an int variable with initial value 101.
long big = 2147483648L; // big is a long variable with specified initial value.

32 CHAPTER 2: LANGUAGE FUNDAMENTALS
Object Reference Variables

An object reference is a value that denotes an object in Java. Such reference values
can be stored in variables and used to manipulate the object denoted by the refer-
ence value.

A variable declaration that specifies a reference type (i.e., a class, an array, or an
interface name) declares an object reference variable. Analogous to the declaration
of variables of primitive data types, the simplest form of reference variable decla-
ration only specifies the name and the reference type. The declaration determines
what objects a reference variable can denote. Before we can use a reference variable
to manipulate an object, it must be declared and initialized with the reference value
of the object.

Pizza yummyPizza; // Variable yummyPizza can reference objects of class Pizza.
Hamburger bigOne, // Variable bigOne can reference objects of class Hamburger,
 smallOne; // and so can variable smallOne.

It is important to note that the declarations above do not create any objects of class
Pizza or Hamburger. The declarations only create variables that can store references
to objects of these classes.

A declaration can also include an initializer to create an object whose reference can
be assigned to the reference variable:

Pizza yummyPizza = new Pizza("Hot&Spicy"); // Declaration with initializer.

The reference variable yummyPizza can reference objects of class Pizza. The keyword
new, together with the constructor call Pizza("Hot&Spicy"), creates an object of class
Pizza. The reference to this object is assigned to the variable yummyPizza. The newly
created object of class Pizza can now be manipulated through the reference stored
in this variable.

Initializers for initializing fields in objects, classes, and interfaces are discussed in
Section 8.2.

Reference variables for arrays are discussed in Section 4.1.

Lifetime of Variables

Lifetime of a variable, that is, the time a variable is accessible during execution, is
determined by the context in which it is declared. We distinguish between lifetime
of variables in three contexts:

• Instance variables—members of a class and created for each object of the class. In
other words, every object of the class will have its own copies of these varia-
bles, which are local to the object. The values of these variables at any given
time constitute the state of the object. Instance variables exist as long as the
object they belong to exists.

2.4: INITIAL VALUES FOR VARIABLES 33
• Static variables—also members of a class, but not created for any object of the
class and, therefore, belong only to the class (see Section 4.10, p. 144). They are
created when the class is loaded at runtime, and exist as long as the class exists.

• Local variables (also called method automatic variables)—declared in methods and
in blocks and created for each execution of the method or block. After the exe-
cution of the method or block completes, local (non-final) variables are no
longer accessible.

2.4 Initial Values for Variables

Default Values for Fields

Default values for fields of primitive data types and reference types are listed in
Table 2.14. The value assigned depends on the type of the field.

If no initialization is provided for a static variable either in the declaration or in a
static initializer block (see Section 8.2, p. 336), it is initialized with the default value
of its type when the class is loaded.

Similarly, if no initialization is provided for an instance variable either in the dec-
laration or in an instance initializer block (see Section 8.2, p. 338), it is initialized
with the default value of its type when the class is instantiated.

The fields of reference types are always initialized with the null reference value, if
no initialization is provided.

Example 2.1 illustrates default initialization of fields. Note that static variables are
initialized when the class is loaded the first time, and instance variables are initial-
ized accordingly in every object created from the class Light.

Table 2.14 Default Values

Data Type Default Value

boolean false

char '\u0000'

Integer (byte, short, int,
long)

0L for long, 0 for others

Floating-point (float,
double)

0.0F or 0.0D

Reference types null

34 CHAPTER 2: LANGUAGE FUNDAMENTALS
Example 2.1 Default Values for Fields

public class Light {
 // Static variable
 static int counter; // Default value 0 when class is loaded.

 // Instance variables
 int noOfWatts = 100; // Explicitly set to 100.
 boolean indicator; // Implicitly set to default value false.
 String location; // Implicitly set to default value null.

 public static void main(String[] args) {
 Light bulb = new Light();
 System.out.println("Static variable counter: " + Light.counter);
 System.out.println("Instance variable noOfWatts: " + bulb.noOfWatts);
 System.out.println("Instance variable indicator: " + bulb.indicator);
 System.out.println("Instance variable location: " + bulb.location);
 return;
 }
}

Output from the program:

Static variable counter: 0
Instance variable noOfWatts: 100
Instance variable indicator: false
Instance variable location: null

Initializing Local Variables of Primitive Data Types

Local variables are not initialized when they are created at method invocation, that
is, when the execution of a method is started. They must be explicitly initialized
before being used. The compiler will report attempts to use uninitialized local
variables.

Example 2.2 Flagging Uninitialized Local Variables of Primitive Data Types

public class TooSmartClass {
 public static void main(String[] args) {
 int weight = 10, thePrice; // Local variables

 if (weight < 10) thePrice = 1000;
 if (weight > 50) thePrice = 5000;
 if (weight >= 10) thePrice = weight*10; // Always executed.
 System.out.println("The price is: " + thePrice); // (1)
 }
}

2.4: INITIAL VALUES FOR VARIABLES 35
In Example 2.2, the compiler complains that the local variable thePrice used in the
println statement at (1) may not be initialized. However, it can be seen that at run-
time the local variable thePrice will get the value 100 in the last if-statement, before
it is used in the println statement. The compiler does not perform a rigorous analy-
sis of the program in this regard. It only compiles the body of a conditional state-
ment if it can deduce the condition to be true. The program will compile correctly
if the variable is initialized in the declaration, or if an unconditional assignment is
made to the variable. Replacing the declaration of the local variables in Example
2.2 with the following declaration solves the problem:

 int weight = 10, thePrice = 0; // Both local variables initialized.

Initializing Local Reference Variables

Local reference variables are bound by the same initialization rules as local varia-
bles of primitive data types.

Example 2.3 Flagging Uninitialized Local Reference Variables

public class VerySmartClass {
 public static void main(String[] args) {
 String importantMessage; // Local reference variable

 System.out.println("The message length is: " + importantMessage.length());
 }
}

In Example 2.3, the compiler complains that the local variable importantMessage used
in the println statement may not be initialized. If the variable importantMessage is set
to the value null, the program will compile. However, at runtime, a NullPointerEx-
ception will be thrown since the variable importantMessage will not denote any
object. The golden rule is to ensure that a reference variable, whether local or not,
is assigned a reference to an object before it is used, that is, ensure that it does not
have the value null. The program compiles and runs if we replace the declaration
with the following declaration, which creates a string literal and assigns its refer-
ence to the local reference variable importantMessage:

 String importantMessage = "Initialize before use!";

Arrays and their default values are discussed in Section 4.1 on page 101.

36 CHAPTER 2: LANGUAGE FUNDAMENTALS
Review Questions

2.7 Which of the following lines are valid declarations?

Select the three correct answers.
(a) char a = '\u0061';
(b) char 'a' = 'a';
(c) char \u0061 = 'a';
(d) ch\u0061r a = 'a';
(e) ch'a'r a = 'a';

2.8 Given the following code within a method, which statement is true?

int a, b;
b = 5;

Select the one correct answer.
(a) Local variable a is not declared.
(b) Local variable b is not declared.
(c) Local variable a is declared but not initialized.
(d) Local variable b is declared but not initialized.
(e) Local variable b is initialized but not declared.

2.9 In which of these variable declarations will the variable remain uninitialized
unless explicitly initialized?

Select the one correct answer.
(a) Declaration of an instance variable of type int.
(b) Declaration of a static variable of type float.
(c) Declaration of a local variable of type float.
(d) Declaration of a static variable of type Object.
(e) Declaration of an instance variable of type int[].

2.5 Java Source File Structure

The structure of a skeletal Java source file is depicted in Figure 2.2. A Java source
file can have the following elements that, if present, must be specified in the fol-
lowing order:

1. An optional package declaration to specify a package name. Packages are dis-
cussed in Section 4.6.

2.5: JAVA SOURCE FILE STRUCTURE 37
2. Zero or more import declarations. Since import declarations introduce class
and interface names in the source code, they must be placed before any type
declarations. The import statement is discussed in Section 4.6.

3. Any number of top-level class and interface declarations. Since these declara-
tions belong to the same package, they are said to be defined at the top level,
which is the package level.

The classes and interfaces can be defined in any order. Class and interface dec-
larations are collectively known as type declarations. Technically, a source file
need not have any such definitions, but that is hardly useful.

The Java 2 SDK imposes the restriction that at the most one public class defini-
tion per source file can be defined. If a public class is defined, the file name
must match this public class. If the public class name is NewApp, then the file
name must be NewApp.java.

Classes are discussed in Section 4.2, and interfaces are discussed in Section 6.4.

Note that except for the package and the import statements, all code is encapsulated
in classes and interfaces. No such restriction applies to comments and white space.

Figure 2.2 Java Source File Structure

// Filename: NewApp.java

// PART 1: (OPTIONAL) package declaration
package com.company.project.fragilePackage;

// PART 2: (ZERO OR MORE) import declarations
import java.io.*;
import java.util.*;

// PART 3: (ZERO OR MORE) top-level class and interface declarations
public class NewApp { }

class AClass { }

interface IOne { }

class BClass { }

interface ITwo { }
// ...
// end of file

38 CHAPTER 2: LANGUAGE FUNDAMENTALS
Review Questions

2.10 What will be the result of attempting to compile this class?

import java.util.*;

package com.acme.toolkit;

public class AClass {
 public Other anInstance;
}

class Other {
 int value;
}

Select the one correct answer.
(a) The class will fail to compile, since the class Other has not yet been declared

when referenced in class AClass.
(b) The class will fail to compile, since import statements must never be at the

very top of a file.
(c) The class will fail to compile, since the package declaration can never occur

after an import statement.
(d) The class will fail to compile, since the class Other must be defined in a file

called Other.java.
(e) The class will fail to compile, since the class Other must be declared public.
(f) The class will compile without errors.

2.11 Is an empty file a valid source file?

Answer true or false.

2.6 The main() Method

The mechanics of compiling and running Java applications using the Java 2 SDK
are outlined in Section 1.10. The Java interpreter executes a method called main in
the class specified on the command line. Any class can have a main() method, but
only the main() method of the class specified to the Java interpreter is executed to
start a Java application.

The main() method must have public accessibility so that the interpreter can call it
(see Section 4.9, p. 138). It is a static method belonging to the class, so that no object
of the class is required to start the execution (see Section 4.10, p. 144). It does not
return a value, that is, it is declared void (see Section 5.4, p. 176). It always has an
array of String objects as its only formal parameter. This array contains any argu-
ments passed to the program on the command line (see Section 3.23, p. 95). All this
adds up to the following definition of the main() method:

2.6: THE MAIN() METHOD 39
 public static void main(String[] args) {
 // ...
 }

The above requirements do not exclude specification of additional modifiers (see
Section 4.10, p. 144) or any throws clause (see Section 5.9, p. 201). The main() method
can also be overloaded like any other method (see p. 116). The Java interpreter
ensures that the main() method, that complies with the above definition is the start-
ing point of the program execution.

Review Questions

2.12 Which of these are valid declarations of the main() method in order to start the
execution of a Java application?

Select the two correct answers.
(a) static void main(String[] args) { /* ... */ }
(b) public static int main(String[] args) { /* ... */ }
(c) public static void main(String args) { /* ... */ }
(d) final public static void main(String[] arguments) { /* ... */ }
(e) public int main(Strings[] args, int argc) { /* ... */ }
(f) static public void main(String args[]) { /* ... */ }

2.13 Which of the following are reserved keywords?

Select the three correct answers.
(a) public
(b) static
(c) void
(d) main
(e) String
(f) args

Chapter Summary

The following topics were discussed in this chapter:

• basic language elements: identifiers, keywords, literals, white spaces, and
comments

• primitive data types: integral, floating-point, and Boolean

• converting numbers between decimal, octal, and hexadecimal systems

• lifetime of fields and local variables

• declaration and initialization of variables, including reference variables

• usage of default values for fields

40 CHAPTER 2: LANGUAGE FUNDAMENTALS
• structure of a valid Java source file

• declaration of the main() method whose execution starts the application

Programming Exercises

2.1 The following program has several errors. Modify it so that it will compile and
run without errors. (See Section 4.6 on page 129 for compiling and running code
from packages.)

import java.util.*;

package com.acme;

public class Exercise1 {
 int counter;

 void main(String[] args) {
 Exercise1 instance = new Exercise1();
 instance.go();
 }

 public void go() {
 int sum;
 int i = 0;
 while (i<100) {
 if (i == 0) sum = 100;
 sum = sum + i;
 i++;
 }
 System.out.println(sum);
 }
}

2.2 The following program has several errors. Modify it so that it will compile and
run without errors.

// Filename: Temperature.java
PUBLIC CLASS temperature {
 PUBLIC void main(string args) {
 double fahrenheit = 62.5;
 / Convert /
 double celsius = f2c(fahrenheit);
 System.out.println(fahrenheit + 'F = ' + celsius + 'C');
 }

 double f2c(float fahr) {
 RETURN (fahr - 32) * 5 / 9;
 }
}

	Language Fundamentals
	2.1 Basic Language Elements
	Lexical Tokens
	Identifiers
	Examples of Legal Identifiers:
	Examples of Illegal Identifiers:

	Keywords
	Table 2.1 Keywords in Java
	Table 2.2 Reserved Literals in Java
	Table 2.3 Reserved Keywords not Currently in Use

	Literals
	Table 2.4 Examples of Literals

	Integer Literals
	Table 2.5 Examples of Decimal, Octal, and Hexadecimal Literals

	Floating-point Literals
	Examples of double Literals
	Examples of float Literals

	Boolean Literals
	Character Literals
	Table 2.6 Examples of Unicode Values
	Escape Sequences
	Table 2.7 Escape Sequences
	Table 2.8 Examples of Escape Sequence \ddd

	String Literals
	White Spaces
	Comments
	Single-line Comment
	Multiple-line Comment
	Documentation Comment

	2.2 Primitive Data Types
	Figure 2.1 Primitive Data Types in Java
	Integer Types
	Table 2.9 Range of Integer Values

	Character Type
	Table 2.10 Range of Character Values

	Floating-point Types
	Table 2.11 Range of Floating-point Values

	Boolean Type
	Table 2.12 Boolean Values
	Table 2.13 Summary of Primitive Data Types

	2.3 Variable Declarations
	Declaring and Initializing Variables
	Object Reference Variables
	Lifetime of Variables

	2.4 Initial Values for Variables
	Default Values for Fields
	Table 2.14 Default Values
	Example 2.1 Default Values for Fields

	Initializing Local Variables of Primitive Data Types
	Example 2.2 Flagging Uninitialized Local Variables of Primitive Data Types

	Initializing Local Reference Variables
	Example 2.3 Flagging Uninitialized Local Reference Variables

	2.5 Java Source File Structure
	Figure 2.2 Java Source File Structure

	2.6 The main() Method

