
SECTION 5.10: ASSERTIONS 195

Excerpt from the
forthcoming Second Edition

of
A Programmer’s Guide to

Java Certification:
A Comprehensive Primer

Khalid A. Mughal
Rolf W. Rasmussen

Publisher: Addison-Wesley
http://www.ii.uib.no/~khalid/pgjc/jcbook/

(Dated: 14-January-2003)

5.10 Assertions

Assertions in Java can be used to document and validate assumptions made about
the state of the program at designated locations in the code. Each assertion con-
tains a boolean expression which is expected to be true when the assertion is exe-
cuted. If this assumption is false, the system throws a special assertion error. The
assertion facility uses the exception handling mechanism to propagate the error.
The assertion facility can be enabled or disabled at runtime.

The assertion facility is an invaluable aid in implementing correct programs, i.e.
programs that adhere to their specification. It should not be confused with the
exception handling mechanism which aids in developing robust programs, i.e. pro-
grams that handle unexpected conditions gracefully. Used judiciously, the two
mechanisms facilitate programs that are reliable.

assert Statement and AssertionError Class

The following two forms of the assert statement can be used to specify assertions:

assert <boolean expression> ; // the simple form

196 CHAPTER 5: FLOW CONTROL, ASSERTIONS AND EXCEPTION HANDLING

assert <boolean expression> : <message expression> ; // the augmented form

If assertions are enabled (p. 199), the execution of an assert statement proceeds as
shown in Figure 5.8. The two forms are essentially equivalent to the following code
respectively:

if (<assertions enabled> && !<boolean expression>) // the simple form
 throw new AssertionError();

if (<assertions enabled> && !<boolean expression>) // the augmented form

 throw new AssertionError(<message expression>);

If assertions are enabled, then <boolean expression> is evaluated. If its value is true,
execution continues normally after the assert statement. However, if it is false, an
AssertionError is thrown and propagated. In the simple form, the AssertionError
does not provide any detailed message about the assertion failure.

The augmented form provides a <message expression> which can be used to provide
a detailed error message. In the augmented form, if the assertion is false, the <mes-
sage expression> is evaluated and its value passed to the appropriate AssertionError
constructor. The <message expression> must evaluate to a value, i.e. either a primi-
tive or a reference value. The AssertionError constructor invoked converts the
value to a textual representation. In particular, the <message expression> cannot call
a method that is declared void. The compiler will flag this as an error.

Lines (2), (3) and (4) in class Speed (Example 5.15) are assertion statements. In this
particular context of calculating the speed, it is required that the values fulfil the
criteria in lines (2), (3) and (4) in the private method calcSpeed(). Lines (2) and (4)
use the simple form:

assert distance >= 0.0; // (2)
...
assert speed >= 0.0; // (4)

Figure 5.8 Execution of the simple assert statement (when assertions are enabled)

Evaluate boolean
expression

[false]

[true]

Throw an AssertionError

Normal execution continues. Execution is aborted and
AssertionError propagated.

SECTION 5.10: ASSERTIONS 197

Line (3) uses the augmented form:

assert time > 0.0 : "Time is not a positive value: " + time; // (3)

Line (3) is equivalent to the following line of code, assuming assertions have been
enabled at runtime:

if (time <= 0.0) throw new AssertionError("Time is not a positive value: " + time);

The java.lang.AssertionError class is a subclass of java.lang.Error (Figure 5.6). This
makes AssertionError exceptions unchecked. They could be explicitly caught and
handled using the try-catch construct. The execution would then continue nor-
mally, as one would expect. However, since Error exceptions are seldom caught
and handled by the program, the same applies to AssertionError exceptions. Catch-
ing these exceptions would defeat the whole purpose of the assertion facility.

In addition to the default constructor (which is invoked by the simple assert form),
the AssertionError class provides seven single-parameter constructors: six for the
primitive datatypes and one for object references. The type of the <message expres-
sion> used in the augmented assertion statement determines which of the over-
loaded constructors is invoked. It is not possible to query the AssertionError object
for the actual value passed to the constructor. However, the method getMessage()
will return the textual representation of the value.

Example 5.15 Assertions

public class Speed {

 public static void main(String[] args) {
 Speed objRef = new Speed();
 double speed = objRef.calcSpeed(-12.0, 3.0); // (1a)
 // double speed = objRef.calcSpeed(12.0, -3.0); // (1b)
 // double speed = objRef.calcSpeed(12.0, 2.0); // (1c)
 // double speed = objRef.calcSpeed(12.0, 0.0); // (1d)
 System.out.println("Speed (km/h): " + speed);
 }

 /** Requires distance >= 0.0 and time > 0.0 */
 private double calcSpeed(double distance, double time) {
 assert distance >= 0.0; // (2)
 assert time >0.0 : "Time is not a positive value: " + time; // (3)
 double speed = distance / time;
 assert speed >= 0.0; // (4)
 return speed;
 }
}

198 CHAPTER 5: FLOW CONTROL, ASSERTIONS AND EXCEPTION HANDLING

Compiling Assertions

The assertion facility was introduced in J2SE 1.4. At the same time, two new
options for the javac compiler were introduced for dealing with assertions in the
source code:

• Option -source 1.4
The javac compiler distributed with the Java SDK v1.4 will only compile asser-
tions if the option -source 1.4 is used on the command-line:

>javac -source 1.4 Speed.java

This also means that incorrect use of the keyword assert will be flagged as an
error, for example if assert is used as an identifier. The following program

public class Legacy {
 public static void main(String[] args) {
 int assert = 2003;
 System.out.println("The year is: " + assert);
 }
}

when compiled, results in two errors:

>javac -source 1.4 Legacy.java
Legacy.java:4: as of release 1.4, assert is a keyword, and may not be used as an
 identifier
 int assert = 2003;
 ^
Legacy.java:5: as of release 1.4, assert is a keyword, and may not be used as an
 identifier
 System.out.println("The year is: " + assert);
 ^
2 errors

• Option -source 1.3
The default behavior of the javac compiler is equivalent to using the option -
source 1.3 on the command-line.

>javac -speed 1.3 Speed.java
Speed.java:14: warning: as of release 1.4, assert is a keyword, and may not be used
as an identifier
 assert distance >= 0.0; // (2)
 ^
Speed.java:15: ';' expected
 assert distance >= 0.0; // (2)
 ^
...
9 errors
3 warnings

The compiler will reject assert statements. It will also warn about the use of the
keyword assert as an identifier. In other words, source code that contains the
keyword assert as an identifier will compile (barring any other errors), but it
will also result in a warning. Compiling and running the Legacy class above gives
the following results:

SECTION 5.10: ASSERTIONS 199

>javac -source 1.3 Legacy.java
Legacy.java:4: as of release 1.4, assert is a keyword, and may not be used as an
 identifier
 int assert = 2003;
 ^
Legacy.java:5: as of release 1.4, assert is a keyword, and may not be used as an
 identifier
 System.out.println("The year is: " + assert);
 ^
2 warnings
>java Legacy
The year is: 2003

Runtime Enabling and Disabling of Assertions

Enabling assertions means they will be executed at runtime. By default, assertions
are disabled. Their execution is then effectively equivalent to empty statements.
This means that disabled assertions carry insignificant performance penalty,
although they add storage overhead to the byte code of a class. Typically, assertions
are enabled during development and left disabled once the program is deployed.

Two switches are provided to enable and disable assertions with various granular-
ities in a java command. The switch -enableassertions, or its short form -ea, enables
assertions, and the switch -disableassertions, or its short form -da, disables asser-
tions at various granularities. The granularities that can be specified are shown in
Table 5.2. Assertion execution for all non-system classes

The -ea option means that all non-system classes loaded during the execution of the
program have their assertions enabled. A system class is a class that is in the Java
platform libraries. For example, classes in the java.* packages are system classes.
A system class is loaded directly by the JVM.

Table 5.2 Granularities for enabling and disabling assertions at runtime

Argument Granularity

-ea
-da

Applies to all non-system classes.

-ea:<package name>...
-da:<package name>...

Applies to the named package and its subpackages.

-ea:...
-da:...

Applies to the unnamed package in the current working
directory.

-ea:<class name>
-da:<class name>

Applies to the named class.

200 CHAPTER 5: FLOW CONTROL, ASSERTIONS AND EXCEPTION HANDLING

Note that class files not compiled with a J2SE 1.4-compatible compiler are not
affected, whether assertions are enabled or disabled. Also, once a class has been
loaded and initialized at runtime, its assertion status cannot be changed.

Assuming that the file Speed.java has been compiled with the -source 1.4 option,
all assertions in non-system classes required for execution (of which Speed class is
one) can be enabled, and the program run as follows:

>java -ea Speed
java.lang.AssertionError

at Speed.calcSpeed(Speed.java:14)
at Speed.main(Speed.java:6)

Exception in thread "main"

Since the distance is negative in line (1a), the assertion in line (2) fails in Example
5.15. An AssertionError is thrown, which is propagated, being finally caught by the
default exception handler and resulting in the stack trace being printed on the ter-
minal.

All assertions (in all non-system classes) can be disabled during the execution of
the Speed class:

>java -da Speed
Speed (km/h): -4.0

In this case, this is effectively equivalent to running the program with neither the
-ea nor the -da options:

>java Speed
Speed (km/h): -4.0

If we comment out line (1a) and uncomment line (1b) in Example 5.15, and run the
program with the options enabled, we get the following behavior from the pro-
gram:

>java -ea Speed
java.lang.AssertionError: Time is not a positive value: -3.0

at Speed.calcSpeed(Speed.java:15)
at Speed.main(Speed.java:7)

Exception in thread "main"

We see that the value of the <message expression> in the augmented assertion in line
(3) is written on the terminal, together with the stack trace, because this assertion
failed. The augmented form is recommended, as it allows a detailed error message
to be included in reporting the assertion failure.

Assertion execution at the package level

Assume that we have a program called Trickster in the unnamed package, that
uses the package hierarchy for the wizard package shown in Figure 4.3 on p. 137.

The following command-line will only enable assertions for all classes in the pack-
age wizard.pandorasBox and its subpackage wizard.pandorasBox.artifacts. The
assertions in the class Trickster are not enabled :

SECTION 5.10: ASSERTIONS 201

>java -ea:wizard.pandorasBox... Trickster

Without the ... notation, the package name will be interpreted as a class name (see
below). Non-existent package names specified in the command-line are silently
accepted, but simply have no consequences under execution.

The following command-line will only enable assertions in the unnamed package,
and thereby the assertions in the class Trickster, since this class resides in the
unnamed package:

>java -ea:... Trickster

Note that the package switch applies to the package specified and all its subpack-
ages, recursively.

Assertion execution at the class level

The following command-line will only enable assertions in the Trickster class:

>java -ea:Trickster Tricksters

The following command-line will only enable assertions in the named class wiz-
ard.pandorasBox.artifacts.Ailment and no other class:

>java -ea:wizard.pandorasBox.artifacts.Ailment Trickster

A java command can contain multiple instances of the switches, each specifying its
own granularity. The switches are then processed in order of their specification
from left to right, before any classes are loaded. The latter switches take priority
over former switches. This allows a fine-grained control of what assertions are ena-
bled at runtime. The following command-line will enable assertions for all classes
in the package wizard.pandorasBox and its subpackage wizard.pandorasBox.arti-
facts, but disable them in the class wizard.pandorasBox.artifacts.Ailment:

>java -ea:wizard.pandorasBox... -da:wizard.pandorasBox.artifacts.Ailment Trickster

The following switches all enable assertions in the class wizard.spells.Baldness:

It is worth noting that inheritance (Section 6.1, p. 240) has no affect on the execu-
tion of assertions. Assertions are enabled or disabled on per-class basis. Whether
assertions in the superclass will be executed through code inherited by the sub-
class, depends entirely on the superclass. In the following command-line, asser-
tions from the superclass wizard.pandorasBox.artifacts.Ailment will not be executed,
although assertions for the subclass wizard.spells.Baldness are enabled:

>java -ea -da:wizard.pandorasBox.artifacts.Ailment Trickster

>java -ea

>java -ea:wizard...

>java -ea:wizard.spells...

>java -ea:wizard.spells.Baldness

Trickster

Trickster

Trickster

Trickster

202 CHAPTER 5: FLOW CONTROL, ASSERTIONS AND EXCEPTION HANDLING

Assertion execution for all system classes

In order to enable or disable assertions in all system classes, we can use the switches
shown in Table 5.3. Enabling assertions in system classes can be useful to shed light
on internal errors reported by the JVM. In the following command-line, the first
switch will enable assertions for all system classes. The second switch will enable
assertions in the package wizard and its subpackages wizard.pandorasBox, wiz-
ard.pandorasBox.artifacts and wizard.spells, but the third switch will disable them
in the package wizard.pandorasBox.artifacts:

>java -esa -ea:wizard... -da:wizard.pandorasBox.artifacts... Trickster

Using Assertions

Assertions should have no side effects which can produce adverse behavior in the
code once they are disabled. The assertion facility is a defensive mechanism, mean-
ing that it should only be used to test the code, and should not be employed after
the code is delivered. The program should exhibit the same behavior whether
assertions are enabled or disabled. The program should not rely on any computa-
tions done within an assertion statement. With assertions enabled, the following
statement would be executed:

assert reactor.controlCoreTemperature();

but if assertions were disabled, it could have dire consequences.

Assertions should also not be used to validate information supplied by a client. A
typical example is argument checking in public methods. Argument checking is
part of such a method’s contract, which could be violated if the assertions were dis-
abled. Another drawback is that assertion failures can only provide limited infor-
mation, in the form of an AssertionError, about the cause of any failure.
Appropriate argument checking can provide more suitable information about
erroneous arguments, in the form of specific exceptions such as IllegalArgumentEx-
ception, IndexOutOfBoundsException or NullPointerException.

The rest of this section illustrates useful idioms that employ assertions.

Internal Invariants

Very often assumptions about the program are documented as comments in the
code. The following code makes the assumption, in line (1), that variable status
must be negative for the else clause to be executed:

Table 5.3 Options for enabling and disabling assertions in all system classes at runtime

Option Short form Description

-enablesystemassertions -esa Enable assertions in all system classes.

-disablesystemassertions -dsa Disable assertions in all system classes.

SECTION 5.10: ASSERTIONS 203

int status = ref1.compareTo(ref2);
if (status == 0) {
 ...
} else if (status > 0) {
 ...
} else { // (1) status must be negative.
 ...
}

This assumption is an internal invariant and can be verified using an assertion, as
shown in line (2) below:

int status = ref1.compareTo(ref2);
if (status == 0) {
 ...
} else if (status > 0) {
 ...
} else {
 assert status < 0 : status; // (2)
 ...
}

Often an alternative action is chosen, based on a value which is guaranteed to be
one of a small set of predefined values. A switch statement with no default clause
is a typical example. The value of the switch expression is guaranteed to be one of
the case labels, and the default case is omitted, as the following code shows:

switch (trinityMember) {
 case Housefather:
 ...
 break;
 case THE_SON:
 ...
 break;
 case THE_HOLY_GHOST:
 ...
 break;
}

A default clause that executes an assertion can be used to formulate this invariant:

 default:
 assert false : trinityMember;

If assertions are enabled, an AssertionError will signal the failure in case the trinity
no longer holds.

However, the above idiom causes a compile time error in a non-void method if all
case labels return a value and no return statement follows the switch statement:

 switch (trinityMember) {
 case THE_FATHER:
 return psalm101;
 case THE_SON:
 return psalm102;
 case THE_HOLY_GHOST:

204 CHAPTER 5: FLOW CONTROL, ASSERTIONS AND EXCEPTION HANDLING

 return psalm103;
 default:
 assert false: trinityMember;
 }
 return psalm100; // (3) Compile time error if commented out.

Without line (3) and with assertions disabled, the method could return without a
value, violating the fact that it is a non-void method. Explicitly throwing an Asser-
tionError rather than using an assert statement in the default clause, would be a
better option in this case:

 default:
 throw new AssertionError(trinityMember);

Control Flow Invariants

Control flow invariants can be used to test assumptions about the flow of control
in the program. The following idiom can be employed to explicitly test that certain
locations in the code will never be reached:

 assert false : "This line should never be reached.";

If program control does reach this statement, assertion failure will detect it.

In the following code, the assumption is that execution never reaches the end of the
method declaration indicated by line (1):

 private void securityMonitor() {
 // ...
 while (alwaysOnDuty) {
 // ...
 if (needMaintenance)
 return;
 // ...
 }
 // (1) This line should never be reached.
 }

The assertion above can be inserted after the comment at line (1) to check the
assumption.

Care should be taken in using this idiom, as the compiler can flag the assert state-
ment at this location as being unreachable. For example, if the compiler can deduce
that the while condition will always be true, it will flag the assert statement as
being unreachable.

Preconditions and Postconditions

The assertion facility can be used to practise a limited form of programming-by-con-
tract. For example, the assertion facility can be used to check that methods comply
with their contract.

Preconditions define assumptions for the proper execution of a method when it is
invoked. As discussed earlier, preconditions on public methods should not be

SECTION 5.10: ASSERTIONS 205

checked using assertions. For non-public methods, preconditions can be checked
at the start of method execution:

 private void adjustReactorThroughput(int increment) {
 // Precondition:
 assert isValid(increment) : "Throughput increment invalid.";
 // Proceed with the adjustment.
 // ...
 }

Section 9.4 (p. 349) provides an example of a lock-status precondition in a non-syn-
chronized method, where an assertion is used to check whether the current thread
holds a lock on a certain object.

Postconditions define assumptions about the successful completion of a method.
Postconditions in any method can be checked by assertions executed just before
returning from the method. For example, if the method adjustReactorThroughPut()
guarantees that the reactor core is in a stable state after its completion, we can
check this postcondition using an assertion:

 private void adjustReactorThroughput(int increment) {
 // Precondition:
 assert isValid(increment) : "Throughput increment invalid.";
 // Proceed with the adjustment.
 // ...
 // Postcondition -- the last action performed before returning.
 assert isCoreStable() : “Reactor core not stable.”;
 }

Section 7.4 (p. 306) provides an example using a local class where data can be saved
before doing a computation, so that it can later be used to check a postcondition.

Other uses

If minimizing the size of the class file is crucial, then the conditional compilation
idiom should be used to insert assertions in the source code:

 static final boolean compileAsserts = false;
 ...
 if (compileAsserts)
 assert whatEverYouWant; // Not compiled if compileAsserts is false.
 ...

It is possible to enforce that a class be loaded and initialized only if its assertions
are enabled. The idiom for this purpose uses a static initializer (Section 8.2, p. 326):

 static { // Static initializer
 boolean assertsAreEnabled = false; // (1)
 assert assertsAreEnabled = true; // (2) utilizing side effect
 if (!assertsAreEnabled) // (3)
 throw new AssertionError("Enable assertions!");
 }

Line (1) sets the local variable assertsAreEnabled to false. If assertions are enabled,
line (2) is executed. The assignment operator sets the variable assertsAreEnabled to

206 CHAPTER 5: FLOW CONTROL, ASSERTIONS AND EXCEPTION HANDLING

true as a side effect of evaluating the boolean expression which has the value true.
The assertion in line (2) is of course true. No exception is thrown by the if state-
ment in line (3). However, if assertions are disabled, line (2) is never executed. As
the variable assertsAreEnabled is false, the if statement in line (3) throws an excep-
tion. The static initializer is placed first in the class declaration, so that it is executed
first during class initialization.

Review questions

5.24 Assuming assertions are enabled, which of these assertion statements will throw
an error?

Select the two correct answers.
(a) assert true : true;

(b) assert true : false;

(c) assert false : true;
(d) assert false : false;

5.25 Which of the following are valid runtime options?

Select the two correct answers.
(a) -ae

(b) -enableassertions

(c) -source 1.4
(d) -disablesystemassertions
(e) -dea

5.26 What is the class name of the exception thrown by an assertion statement?

Select the one correct answer.
(a) Depends on the assertion statement.
(b) FailedAssertion
(c) AssertionException
(d) RuntimeException
(e) AssertionError
(f) Error

5.27 What can cause an assertion statement to be ignored?

Select the one correct answer.
(a) Nothing.
(b) Using appropriate compiler options.
(c) Using appropriate runtime options.
(d) Using both appropriate compiler and runtime options.

SECTION 5.10: ASSERTIONS 207

5.28 Given the following method, which of these statements will throw an exception,
assuming assertions are enabled?

static int inv(int value) {
 assert value > -50 : value < 100;
 return 100/value;
}

Select the two correct answers.
(a) inv(-50);

(b) inv(0);

(c) inv(50);

(d) inv(100);

(e) inv(150);

5.29 Which runtime options would cause assertions to be enabled for the class org.exam-
ple.ttp.Bottle?

Select the two correct answers.
(a) -ea

(b) -ea:Bottle

(c) -ea:org.example

(d) -ea:org...

(e) -enableexceptions:org.example.ttp.Bottle

(f) -ea:org.example.ttp

5.30 What will be the result of compiling and running the following code with asser-
tions enabled?

public class TernaryAssertion {
 public static void assertBounds(int low, int high, int value) {
 assert (value > low ? value < high : false)
 : (value < high ? "too low" : "too high");
 }
 public static void main(String[] args) {
 assertBounds(100, 200, 150);
 }
}

Select the one correct answer.
(a) The compilation fails, because the method name assertBounds cannot begin

with the keyword assert.
(b) The compilation fails because the assert statement is invalid.
(c) The compilation succeeds and the program runs without errors.
(d) The compilation succeeds and an AssertionError with the error message "too

low" is thrown.
(e) The compilation succeeds and an AssertionError with the error message "too

high" is thrown.

208 CHAPTER 5: FLOW CONTROL, ASSERTIONS AND EXCEPTION HANDLING

5.31 Which of the following statements about the AssertionError class are true?

Select the two correct answers.
(a) It is a checked exception.
(b) It has a method named toString().
(c) It has a method named getErrorMessage().
(d) It can be caught by a try-catch construct.

5.32 Which of these classes is the direct superclass of AssertionError?

Select the one correct answer.
(a) Object

(b) Throwable

(c) Exception

(d) Error

(e) RuntimeError

5.33 Given the following command, which classes would have assertions enabled?

java -ea -da:com... net.example.LaunchTranslator

Select the two correct answers.
(a) com.example.Translator

(b) java.lang.String

(c) dot.com.Boom

(d) net.example.LaunchTranslator

(e) java.lang.AssertionError

Annotated Answers to Review Questions

5.24 (c) and (d)

Statements (c) and (d) will throw an error because the first expression is false.
Statement (c) will report true as the error message, while (d) will report false as the
error message.

5.25 (b) and (d)

5.26 (e)

The class of exceptions thrown by assertion statements is always AssertionError.

5.27 (c)

Assertions can be enabled or disabled at runtime, but the assert statements are
always compiled into bytecode.

SECTION 5.10: ASSERTIONS 209

5.28 (a) and (b)

Statement (a) will cause the assert statement to throw an AssertionError, since (-
50 > -50) evaluates to false. Statement (b) will cause the expression 100/value to
throw an ArithmeticException, since an integer division by zero is attempted.

5.29 (a) and (d)

Option (a) enables assertions for all non-system classes, while (d) enables asser-
tions for all classes in package org and its subpackages. Options (b), (c) and (f) try
to enable assertions in specifically named classes: Bottle, org.example and org.exam-
ple.ttp. Option (e) is not a valid runtime option.

5.30 (c)

The assert statement rightly asserts that 150 is greater than 100 and less than 200.

5.31 (b) and (d)

The AssertionError class, like all other error classes, is not a checked exception, and
not need to be declared using a throws-clause. After an AssertionError is thrown, it
is propagated exactly the same way as other exceptions, and can be caught by a
try-catch construct.

5.32 (d)

5.33 (c) and (d)

The command line enables assertions for all non-system classes, except for those in
the com package or one of its subpackages. Assertions are not enabled for the sys-
tem classes in (b) and (e).

