‘ %I:E PGJC4 _JSE8 OCA.book Page 27 Monday, June 20,2016 2:31 PM

t

Language Fundamentals .

[1.1] Define the scope of variables §2.4,p. 44
o Seealso §4.4, p. 114.

[2.1] Declare and initialize variables (including casting of §2.3,p. 40
primitive data types) §2.4,p. 42

o For casting of primitive data types, see §5.6, p. 160.

[2.2] Differentiate between object reference variables and §2.3,p.40
primitive variables

. Be able to identify the basic elements of the Java §2.1,p. 28
programming language: keywords, identifiers, literals, and | §2.2, p. 37
primitive data types

‘ %IS PGJC4 _JSE8 OCA.book Page 28 Monday, June 20,2016 2:31 PM

28

2.1

CHAPTER 2: LANGUAGE FUNDAMENTALS

Basic Language Elements

Like any other programming language, the Java programming language is defined
by grammar rules that specify how syntactically legal constructs can be formed using
the language elements, and by a semantic definition that specifies the meaning of
syntactically legal constructs.

Lexical Tokens

The low-level language elements are called lexical tokens (or just tokens) and are the
building blocks for more complex constructs. Identifiers, numbers, operators, and
special characters are all examples of tokens that can be used to build high-level
constructs like expressions, statements, methods, and classes.

Identifiers

A name in a program is called an identifier. Identifiers can be used to denote classes,
methods, variables, and labels.

In Java, an identifier is composed of a sequence of characters, where each character
can be either a letter or a digit. However, the first character in an identifier must
always be a letter, as explained later.

Since Java programs are written in the Unicode character set (p. 32), characters
allowed in identifier names are interpreted according to this character set. Use of
the Unicode character set opens up the possibility of writing identifier names in
many writing scripts used around the world. As one would expect, the characters
A-Z and a-z are letters, and characters from 0-9 are digits. A connecting punctuation
character (such as underscore _) and any currency symbol (such as §, ¢, ¥, or £) are also
allowed as letters in identifier names, but these characters should be used
judiciously.

Identifiers in Java are case sensitive. For example, price and Price are two different
identifiers.

Examples of Legal Identifiers
number, Number, sum_$, bingo, $$_100, _007, mal, gruR

Examples of lllegal Identifiers
48chevy, all@hands, grand-sum

The name 48chevy is not a legal identifier because it starts with a digit. The character
@ is not a legal character in an identifier. It is also not a legal operator, so that
all@hands cannot be interpreted as a legal expression with two operands. The char-
acter - is not a legal character in an identifier, but it is a legal operator; thus grand-sum
could be interpreted as a legal expression with two operands.

‘ %IS PGJC4 _JSE8 OCA.book Page 29 Monday, June 20,2016 2:31 PM

2.1: BASIC LANGUAGE ELEMENTS 29

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Keywords

Keywords are reserved words that are predefined in the language and cannot be
used to denote other entities. All Java keywords are lowercase, and incorrect usage
results in compile-time errors.

Keywords currently defined in the language are listed in Table 2.1. In addition,
three identifiers are reserved as predefined literals in the language: the null refer-
ence, and the boolean literals true and false (Table 2.2). Keywords currently
reserved, but not in use, are listed in Table 2.3. A reserved word cannot be used as
an identifier. The index contains references to relevant sections where currently
used keywords are explained.

Keywords in Java

abstract default if private this
assert do impTlements protected throw
boolean double import pubTic throws
break else instanceof return transient
byte enum int short try

case extends interface static void
catch final Tong strictfp volatile
char finally native super while
class float new switch

continue for package synchronized

Reserved Literals in Java

‘ null true false ‘

Reserved Keywords Not Currently in Use

‘ const goto ‘

Separators

Separators (also known as punctuators) are tokens that have meaning depending on
the context in which they are used; they aid the compiler in performing syntax and
semantic analysis of a program (Table 2.4). Depending on the context, brackets ([1),
parentheses (Q), and the dot operator (.) can also be interpreted as operators (§5.3,
p- 150). See the index entries for these separators for more details.

Separators in Java

{ } [] ()
;) d

‘ %IS PGJC4 _JSE8 OCA.book Page 30 Monday, June 20,2016 2:31 PM

30

Table 2.5

Table 2.6

CHAPTER 2: LANGUAGE FUNDAMENTALS

Literals

A literal denotes a constant value; in other words, the value that a literal represents
remains unchanged in the program. Literals represent numerical (integer or floating-
point), character, boolean, or string values. In addition, the literal nul11 represents
the null reference. Table 2.5 shows examples of literals in Java.

Examples of Literals

Integer 2000 0 -7

Floating-point 3.14 -3.14 .5 0.5

Character 'a' A 0" e o DN
Boolean true false

String "abba" "3.14" "for" "a piece of the action"

Integer Literals

Integer data types comprise the following primitive data types: int, long, byte, and
short (§2.2, p. 37).

The default data type of an integer literal is always int, but it can be specified as
Tong by appending the suffix L (or 1) to the integer value. The suffix L is often pre-
ferred because the suffix 1 and the digit 1 can be hard to distinguish. Without the
suffix, the Tong literals 2000L and OL will be interpreted as int literals. There is no
direct way to specify a short or a byte literal.

In addition to the decimal number system, integer literals can be specified in the
binary (base 2, digits 0-1), octal (base 8, digits 0-7), and hexadecimal (base 16, digits 0-9
and a-f) number systems. The digits a to f in the hexadecimal system correspond
to decimal values 10 to 15. Binary, octal, and hexadecimal numbers are specified
with 0b (or 0B), 0, and 0x (or 0X) as the base or radix prefix, respectively. Examples
of decimal, binary, octal, and hexadecimal literals are shown in Table 2.6. Note that
the leading 0 (zero) digit is not the uppercase letter 0. The hexadecimal digits from
a to f can also be specified with the corresponding uppercase forms (A to F). Negative
integers (e.g., -90) can be specified by prefixing the minus sign (-) to the magnitude
of the integer regardless of the number system (e.g., -0b1011010, -0132, or -0X5A).
Integer representation is discussed in §5.5, p. 154.

Examples of Decimal, Binary, Octal, and Hexadecimal Literals

Decimal Binary Octal Hexadecimal
8 0b1000 010 0x8

10L 0b1010L 012L Oxal

16 0b10000 020 0x10

27 0b11011 033 Ox1b

‘ %IS PGJC4 _JSE8 OCA.book Page 31 Monday, June 20,2016 2:31 PM

2.1: BASIC LANGUAGE ELEMENTS 31

Table 2.6 Examples of Decimal, Binary, Octal, and Hexadecimal Literals (Continued)

Decimal Binary Octal Hexadecimal
90L 0b1011010L 0132L 0x5aL
-90 -0b1011010 -0132 -0x5a
or or or
0b1111111111111111111111 037777777646 Oxffffffa6
1110100110
-1 -0bl -01 -0x1
or or or
0b1111111111111111111111 037777777777 OxFFFFffff
1111111111
2147483647 0b0111111111111111111111 017777777777 Ox7fFfffff
(i.e., 231-1) 1111111111
-2147483648 0b1000000000000000000000 020000000000 0x80000000
(i.e., -231) 0000000000
1125899906842624L 0b1000000000000000000000 040000000000000000L 0x4000000000000L
(i.e., 2%9) 000000000000000000000000
00000L

Floating-Point Literals
Floating-point data types come in two flavors: float or double.

The default data type of a floating-point literal is double, but it can be explicitly
designated by appending the suffix D (or d) to the value. A floating-point literal can
also be specified to be a float by appending the suffix F (or f).

Floating-point literals can also be specified in scientific notation, where E (or e)
stands for exponent. For example, the double literal 194.9E-2 in scientific notation is
interpreted as 194.9 x 10 (i.e., 1.949).

Examples of double Literals

0.0 0.0d oD
0.49 .49 .49D
49.0 49, 49D

4.9E+1 4.9E+1D 4.9eld 4900e-2 .49E2

Examples of float Literals

0.0F of
0.49F .49F
49.0F 49.F 49F

4.9E+1F 4900e-2f .49E2F

Note that the decimal point and the exponent are optional, and that at least one
digit must be specified. Also, for the examples of float literals presented here, the
suffix F is mandatory; if it was omitted, they would be interpreted as double literals.

‘ %IS PGJC4 _JSE8 OCA.book Page 32 Monday, June 20,2016 2:31 PM

32

CHAPTER 2: LANGUAGE FUNDAMENTALS

Underscores in Numerical Literals

The underscore character (_) can be used to improve the readability of numerical
literals in the source code. Any number of underscores can be inserted between the
digits that make up the numerical literal. This rules out underscores adjacent to the
sign (+, -), the radix prefix (0b, 0B, 0x, 0X), the decimal point (.), the exponent (e, E),
and the data type suffix (1, L, d, D, f, F), as well as before the first digit and after the
last digit. Note that octal radix prefix 0 is part of the definition of an octal literal and
is therefore considered the first digit of an octal literal.

Underscores in identifiers are treated as letters. For example, the names _XXL and
XXL are two distinct legal identifiers. In contrast, underscores are used as a nota-
tional convenience for numerical literals, being ignored by the compiler when used
in such literals. In other words, a numerical literal can be specified in the source
code using underscores between digits, such that 2_0_1_5 and 20__15 represent the
same numerical literal 2015 in source code.

Examples of Legal Use of Underscores in Numerical Literals
0b0111 1111 1111 1111 1111 1111 1111 1111

0_377_777_777 Oxff_ff_ff_ff
-123_456.00 1.2.345_678el_2
2009__08__13 49_03_01d

Examples of lllegal Use of Underscores in Numerical Literals

_0_b_0111111111221111113112211321132111211

0377777777 _O_x_fFFFFFFF_
+_123456_._00_ _12_.345678_e_12_
20090813 _490301_d_

Boolean Literals

The primitive data type boolean represents the truth values true and false that are
denoted by the reserved literals true and false, respectively.

Character Literals

A character literal is quoted in single quotes ('). All character literals have the prim-
itive data type char.

A character literal is represented according to the 16-bit Unicode character set,
which subsumes the 8-bit ISO-Latin-1 and the 7-bit ASCII characters. In Table 2.7,
note that digits (0 to 9), uppercase letters (A to Z), and lowercase letters (a to z) have
contiguous Unicode values. A Unicode character can always be specified as a four-
digit hexadecimal number (i.e., 16 bits) with the prefix \u.

‘ %IS PGJC4 _JSE8 OCA.book Page 33 Monday, June 20,2016 2:31 PM

2.1: BASIC LANGUAGE ELEMENTS 33

Table 2.7 Examples of Character Literals

Character literal using

Character literal Unicode value Character
v "\u0020' Space
0" "\u0030"' 0

1 "\u0031"' 1

9’ "\u0039' 9

A "\u0041' A

'B' "\u0042' B

'7' "\u005a’ z

'a' "\u0061' a

'b! "\u0062' b

'z! "\u007a’ z

"N "\u0084' N

'a' "\u008c' a

R "\u00a7' R

Escape Sequences

Certain escape sequences define special characters, as shown in Table 2.8. These escape
sequences can be single-quoted to define character literals. For example, the charac-
ter literals \t and \u0009 are equivalent. However, the character literals \u000a and
\u000d should not be used to represent newline and carriage return in the source
code. These values are interpreted as line-terminator characters by the compiler, and
will cause compile-time errors. You should use the escape sequences \n and \r,
respectively, for correct interpretation of these characters in the source code.

Table 2.8 Escape Sequences

Escape sequence Unicode value Character

\b \u0008 Backspace (BS)

\t \u0009 Horizontal tab (HT or TAB)

\n \u000a Linefeed (LF), also known as
newline (NL)

\f \u000c Form feed (FF)

\r \u000d Carriage return (CR)

\' \u0027 Apostrophe-quote, also known as
single quote

\" \u0022 Quotation mark, also known as
double quote

\\ \u005¢ Backslash

‘ %IS PGJC4 _JSE8 OCA.book Page 34 Monday, June 20,2016 2:31 PM

34

Table 2.9

CHAPTER 2: LANGUAGE FUNDAMENTALS

We can also use the escape sequence \ddd to specify a character literal as an octal
value, where each digit d can be any octal digit (0-7), as shown in Table 2.9. The
number of digits must be three or fewer, and the octal value cannot exceed \377; in
other words, only the first 256 characters can be specified with this notation.

Examples of Escape Sequence \ddd

Escape sequence \ddd Character literal

"\141' 'a'
1\461 &'
1\601 '

String Literals

A string literal is a sequence of characters that must be enclosed in double quotes
and must occur on a single line. All string literals are objects of the class String
(§8.4, p. 357).

Escape sequences as well as Unicode values can appear in string literals:

"Here comes a tab.\t And here comes another one\u0009!" (1)
"What's on the menu?" (2)
"\"String Titerals are double-quoted.\"" (3)
"Left!\nRight!" (4)
"Don't split (5)
me up!"

In (1), the tab character is specified using the escape sequence and the Unicode
value, respectively. In (2), the single apostrophe need not be escaped in strings, but
it would be if specified as a character literal ("\"'"). In (3), the double quotes in the
string must be escaped. In (4), we use the escape sequence \n to insert a newline.
The expression in (5) generates a compile-time error, as the string literal is split
over several lines. Printing the strings from (1) to (4) will give the following
result:

Here comes a tab. And here comes another one !
What's on the menu?

"String Tliterals are double-quoted."

Left!

Right!

One should also use the escape sequences \n and \r, respectively, for correct inter-
pretation of the characters \u000a (newline) and \u000d (form feed) in string literals.

‘ %IS PGJC4 _JSE8 OCA.book Page 35 Monday, June 20,2016 2:31 PM

2.1: BASIC LANGUAGE ELEMENTS 35

Whitespace

A whitespace is a sequence of spaces, tabs, form feeds, and line terminator charac-
ters in a Java source file. Line terminators include the newline, carriage return, or
a carriage return-newline sequence.

A Java program is a free-format sequence of characters that is tokenized by the com-
piler—that is, broken into a stream of tokens for further analysis. Separators and
operators help to distinguish tokens, but sometimes whitespace has to be inserted
explicitly as a separator. For example, the identifier c1assRoom will be interpreted as
a single token, unless whitespace is inserted to distinguish the keyword class from
the identifier Room.

Whitespace aids not only in separating tokens, but also in formatting the program
so that it is easy to read. The compiler ignores the whitespace once the tokens are
identified.

Comments

A program can be documented by inserting comments at relevant places in the
source code. These comments are for documentation purposes only and are
ignored by the compiler.

Java provides three types of comments that can be used to document a program:

* A single-line comment: // ... to the end of the 1line
¢ A multiple-line comment: /* ... */
¢ A documentation (Javadoc) comment: /¥* ... */’

Single-Line Comment

All characters after the comment-start sequence // through to the end of the line
constitute a single-line comment.

// This comment ends at the end of this Tine.
int age; // From comment-start sequence to the end of the Tine is a comment.

Multiple-Line Comment

A multiple-line comment, as the name suggests, can span several lines. Such a com-
ment starts with the sequence /* and ends with the sequence */.

/* A comment
on several
Tines.

*/

The comment-start sequences (//, /*, /**) are not treated differently from other
characters when occurring within comments, so they are ignored. This means that
trying to nest multiple-line comments will result in a compile-time error:

‘ %IS PGJC4 _JSE8 OCA.book Page 36 Monday, June 20,2016 2:31 PM

36

73

N
-

2.2

CHAPTER 2: LANGUAGE FUNDAMENTALS

/* Formula for alchemy.
gold = wizard.makeGold(stone);
/* But it only works on Sundays. */
*/
The second occurrence of the comment-start sequence /* is ignored. The last occur-
rence of the sequence */ in the code is now unmatched, resulting in a syntax error.

Documentation Comment

A documentation comment is a special-purpose multiple-line comment that is used
by the javadoc tool to generate HTML documentation for the program. Documen-
tation comments are usually placed in front of classes, interfaces, methods, and
field definitions. Special tags can be used inside a documentation comment to pro-
vide more specific information. Such a comment starts with the sequence /** and
ends with the sequence */:

Viii

%

This class implements a gizmo.
* @author K.A.M.
@version 4.0

*/

For details on the javadoc tool, see the tools documentation provided by the JDK.

Review Questions

Which of the following is not a legal identifier?

Select the one correct answer.
(a) a2z

(b) édipus

(c) 52pickup

(d) _class

(e) cash

(f) _8to5

Which of the following are not legal literals in Java?

Select the four correct answers.

(a) OXbad

(b) 0B_101_101

(c) 09

(d) +_825

(e) 1_2e4f

H "\x'

(g) "what\'s your fancy?"

‘ %IS PGJC4 _JSE8 OCA.book Page 37 Monday, June 20,2016 2:31 PM

t

2.2: PRIMITIVE DATA TYPES

2.3 Which statement is true?

Select the one correct answer.

(a) newand delete are keywords in the Java language.

(b) try, catch, and thrown are keywords in the Java language.

(c) static, unsigned, and Tong are keywords in the Java language.
(d) exit, class, and while are keywords in the Java language.

(e) return, goto, and default are keywords in the Java language.
(f) for, while, and next are keywords in the Java language.

2.4 Which of the following is not a legal comment in Java?

Select the one correct answer.

@ /% /1 */
(b) 7%/ 1/
() 7/ /% */
(d) /% /% #/
(€) /* /x x/ */
® 777/

2.2 Primitive Data Types

Figure 2.1 gives an overview of the primitive data types in Java.
Primitive data types in Java can be divided into three main categories:

o Integral types—represent signed integers (byte, short, int, Tong) and unsigned
character values (char)

* Floating-point types (float, double)—represent fractional signed numbers

® Boolean type (boolean)—represents logical values
Figure 2.1 Primitive Data Types in Java

Primitive data types

,////\

Boolean type Numeric types
Integral types Floating-point types
Character type Integer types
booTlean char byte short 1int long float double

Primitive data values are not objects. Each primitive data type defines the range of
values in the data type, and operations on these values are defined by special
operators in the language (Chapter 5, p. 143).

‘ %IS PGJC4 _JSE8 OCA.book Page 38 Monday, June 20,2016 2:31 PM

t

38

Table 2.10

Table 2.11

CHAPTER 2: LANGUAGE FUNDAMENTALS

Each primitive data type also has a corresponding wrapper class that can be used to
represent a primitive value as an object. Wrapper classes are discussed in §8.3, p. 346.

The Integer Types

The integer data types are byte, short, int, and long (Table 2.10). Their values are
signed integers represented by two’s complement (§5.5, p. 155).

Range of Integer Values

Width Minimum value Maximum value
Data type (bits) MIN_VALUE MAX_VALUE
byte 8 27 (-128) 27-1 (+127)
short 16 =215 (-32768) 215-1 (+32767)
int 32 231 (-2147483648) 2311 (+2147483647)
Tong 64 -26% (-9223372036854775808L) 2931 (+9223372036854775807L)

The char Type

The data type char represents characters (Table 2.11). Their values are unsigned
integers that denote all of the 65536 (21°) characters in the 16-bit Unicode character
set. This set includes letters, digits, and special characters.

Range of Character Values

Data
type Width (bits) Minimum Unicode value = Maximum Unicode value
char 16 0x0 (\u0000) Oxffff (\uffff)

The first 128 characters of the Unicode set are the same as the 128 characters of the
7-bit ASCII character set, and the first 256 characters of the Unicode set correspond
to the 256 characters of the 8-bit ISO Latin-1 character set.

The integer types and the char type are collectively called integral types.

The Floating-Point Types

Floating-point numbers are represented by the float and double data types.

Floating-point numbers conform to the IEEE 754-1985 binary floating-point stan-
dard. Table 2.12 shows the range of values for positive floating-point numbers, but
these apply equally to negative floating-point numbers with the minus sign (-) as
a prefix. Zero can be either 0.0 or -0.0.

SZ -

‘ %IS PGJC4 _JSE8 OCA.book Page 39 Monday, June 20,2016 2:31 PM

2.2: PRIMITIVE DATA TYPES 39

Table 2.12 Range of Floating-Point Values

Width Minimum positive value Maximum positive value
Data type (bits) MIN_VALUE MAX_VALUE
float 32 1.401298464324817E-45f 3.402823476638528860e+38f
double 64 4.94065645841246544e-324 1.79769313486231570e+308

Since the size for representation is a finite number of bits, certain floating-point
numbers can be represented only as approximations. For example, the value of the
expression (1.0/3.0) is represented as an approximation due to the finite number
of bits used to represent floating-point numbers.

The boolean Type

The data type boolean represents the two logical values denoted by the literals true
and false (Table 2.13).

Table 2.13 Boolean Values

Data type Width True value literal False value literal

boolean not applicable true false

Boolean values are produced by all relational (§5.11, p. 180), conditional (§5.14, p. 186),
and boolean logical operators (§5.13, p. 184), and are primarily used to govern the
flow of control during program execution.

Table 2.14 summarizes the pertinent facts about the primitive data types: their width
or size, which indicates the number of bits required to store a primitive value; their
range of legal values, which is specified by the minimum and the maximum values
permissible; and the name of the corresponding wrapper class (§8.3, p. 346).

Table 2.14 Summary of Primitive Data Types

Data type Width (bits) Minimum value, maximum value = Wrapper class
boolean not applicable true, false Boolean
byte 8 -27,27-1 Byte
short 16 =215 2151 Short
char 16 0x0, Oxffff Character
int 32 =231 2311 Integer
long 64 -263, 2681 Long
Continues

‘ %IS PGJC4 _JSE8 OCA.book Page 40 Monday, June 20,2016 2:31 PM

40

CHAPTER 2: LANGUAGE FUNDAMENTALS

Table 2.14 Summary of Primitive Data Types (Continued)

2

i
)

2.6

2.7

2.3

Data type Width (bits) Minimum value, maximum value =~ Wrapper class

float 32 +1.40129846432481707e-45f, Float
1+3.402823476638528860e+38f

double 64 +4.94065645841246544e-324, Double
+1.79769313486231570e+308

Review Questions

Which of the following do not denote a primitive data value in Java?

Select the two correct answers.
(a) "t"

(b) 1 k (]

(c) 50.5F

(d) "hello"

(e) false

Which of the following primitive data types are not integer types?

Select the three correct answers.

(a) boolean
(b) byte
(c) float
(d) short
(e) double

Which integral type in Java has the exact range from -2147483648 (i.e., -2°') to
2147483647 (i.e., 2°'-1), inclusive?

Select the one correct answer.
(a) byte

(b) short

(c) int

(d) Tong

(e) char

Variable Declarations

A variable stores a value of a particular type. A variable has a name, a type, and a
value associated with it. In Java, variables can store only values of primitive data
types and reference values of objects. Variables that store reference values of
objects are called reference variables (or object references or simply references).

SZ -

‘ %IS PGJC4 _JSE8 OCA.book Page 41 Monday, June 20,2016 2:31 PM

2.3: VARIABLE DECLARATIONS 41

Declaring and Initializing Variables

Variable declarations are used to specify the type and the name of variables. This
implicitly determines their memory allocation and the values that can be stored in
them. Examples of declaring variables that can store primitive values follow:

char a, b, c; // a, b and c are character variables.
double area; // area is a floating-point variable.
boolean flag; // flag is a boolean variable.

The first declaration is equivalent to the following three declarations:

char a;
char b;
char c;

A declaration can also be combined with an initialization expression to specify an appro-
priate initial value for the variable. Such declarations are called declaration statements.

int i = 10, // 1 is an int variable with initial value 10.
j = 0b101; // j is an int variable with initial value 5.
Tong big = 2147483648L; // big is a Tong variable with specified initial value.

Reference Variables

A reference variable can store the reference value of an object, and can be used to
manipulate the object denoted by the reference value.

A variable declaration that specifies a reference type (i.e., a class, an array, an inter-
face name, or an enum type) declares a reference variable. Analogous to the decla-
ration of variables of primitive data types, the simplest form of reference variable
declaration specifies the name and the reference type only. The declaration deter-
mines which objects can be referenced by a reference variable. Before we can use
a reference variable to manipulate an object, it must be declared and initialized
with the reference value of the object.

Pizza yummyPizza; // Variable yummyPizza can reference objects of class Pizza.
Hamburger bigOne, // Variable bigOne can reference objects of class Hamburger,
smallOne; // and so can variable smallOne.

It is important to note that the preceding declarations do not create any objects of
class Pizza or Hamburger. Rather, they simply create variables that can store reference
values of objects of the specified classes.

A declaration can also be combined with an initializer expression to create an
object whose reference value can be assigned to the reference variable:

Pizza yummyPizza = new Pizza("Hot&Spicy"); // Declaration statement

The reference variable yummyPizza can reference objects of class Pizza. The keyword
new, together with the constructor call Pizza("Hot&Spicy"), creates an object of the
class Pizza. The reference value of this object is assigned to the variable yummyPizza.
The newly created object of class Pizza can now be manipulated through the refer-
ence variable yummyPizza.

‘ %IS PGJC4 _JSE8 OCA.book Page 42 Monday, June 20,2016 2:31 PM

42 CHAPTER 2: LANGUAGE FUNDAMENTALS

2.4 Initial Values for Variables

This section discusses what value, if any, is assigned to a variable when no explicit
initial value is provided in the declaration.

Default Values for Fields

Default values for fields of primitive data types and reference types are listed in
Table 2.15. The value assigned depends on the type of the field.

Table 2.15 Default Values

Data type Default value
boolean false
char '\u0000"'

Integer (byte, short, int, Tong) OL for Tong, 0 for others
Floating-point (f1oat, double) 0.0F or 0.0D

Reference types null

If no explicit initialization is provided for a static variable, it is initialized with the
default value of its type when the class is loaded. Similarly, if no initialization is
provided for an instance variable, it is initialized with the default value of its type
when the class is instantiated. The fields of reference types are always initialized
with the nul1 reference value if no initialization is provided.

Example 2.1 illustrates the default initialization of fields. Note that static variables
are initialized when the class is loaded the first time, and instance variables are ini-
tialized accordingly in every object created from the class Light.

Example 2.1 Default Values for Fields

public class Light {
// Static variable
static int counter; // Default value 0 when class is loaded

// Instance variables:

int noOfWatts = 100; // Explicitly set to 100

boolean indicator; // Implicitly set to default value false
String Tlocation; // Implicitly set to default value null

public static void main(String[] args) {
Light bulb = new Light();
System.out.printin("Static variable counter: + Light.counter);
System.out.printin("Instance variable noOfWatts: " + bulb.noOfWatts);
System.out.printin("Instance variable indicator: " + bulb.indicator);
System.out.printin("Instance variable location: + bulb.Tlocation);

‘ %IS PGJC4 _JSE8 OCA.book Page 43 Monday, June 20,2016 2:31 PM

2.4: INITIAL VALUES FOR VARIABLES 43

Output from the program:

Static variable counter: 0
Instance variable noOfWatts: 100
Instance variable indicator: false
Instance variable Tlocation: null

Initializing Local Variables of Primitive Data Types

Local variables are variables that are declared in methods, constructors, and blocks
(Chapter 3, p. 47). They are not initialized implicitly when they are allocated mem-
ory at method invocation—that is, when the execution of a method begins. The
same applies to local variables in constructors and blocks. Local variables must be
explicitly initialized before being used. The compiler will report an error only if an
attempt is made to use an uninitialized local variable.

Example 2.2 Flagging Uninitialized Local Variables of Primitive Data Types

public class TooSmartClass {
public static void main(String[] args) {

int weight = 10, thePrice; // (1) Local variables
if (weight < 10) thePrice = 1000;
if (weight > 50) thePrice = 5000;
if (weight >= 10) thePrice = weight*10; // (2) Always executed
System.out.printin("The price is: " + thePrice); // (3) Compile-time error!
}
}

In Example 2.2, the compiler complains that the local variable thePrice used in the
println statement at (3) may not be initialized. However, at runtime, the local vari-
able thePrice will get the value 100 in the last if statement at (2), before it is used in
the printin statement. The compiler does not perform a rigorous analysis of the
program in this regard. It compiles the body of a conditional statement only if it
can deduce that the condition is true. The program will compile correctly if the
variable is initialized in the declaration, or if an unconditional assignment is made
to the variable.

Replacing the declaration of the local variables at (1) in Example 2.2 with the fol-
lowing declaration solves the problem:

int weight = 10, thePrice = 0; // (1') Both local variables initialized

Initializing Local Reference Variables

Local reference variables are bound by the same initialization rules as local vari-
ables of primitive data types.

‘ %IS PGJC4 _JSE8 OCA.book Page 44 Monday, June 20,2016 2:31 PM

44

CHAPTER 2: LANGUAGE FUNDAMENTALS

Example 23 Flagging Uninitialized Local Reference Variables

public class VerySmartClass {
public static void main(String[] args) {
String importantMessage; // Local reference variable

System.out.printin("The message length is: " +
importantMessage.length()); // Compile-time error!

In Example 2.3, the compiler complains that the local variable importantMessage
used in the println statement may not be initialized. If the variable important-
Message is set to the value null, the program will compile. However, a runtime
error (Nul1PointerException) will occur when the code is executed, because the vari-
able importantMessage will not denote any object. The golden rule is to ensure that a
reference variable, whether local or not, is assigned a reference value denoting an
object before it is used—that is, to ensure that it does not have the value nul1.

The program compiles and runs if we replace the declaration with the following
declaration of the local variable, which creates a string literal and assigns its refer-
ence value to the local reference variable importantMessage:

String importantMessage = "Initialize before use!";

Arrays and their default values are discussed in §3.4, p. 58.

Lifetime of Variables

The lifetime of a variable—that is, the time a variable is accessible during execution—
is determined by the context in which it is declared. The lifetime of a variable,
which is also called its scope, is discussed in more detail in §4.4, p. 114. We distin-
guish among the lifetimes of variables in three contexts:

e Instance variables—members of a class, which are created for each object of the
class. In other words, every object of the class will have its own copies of these
variables, which are local to the object. The values of these variables at any
given time constitute the state of the object. Instance variables exist as long as
the object they belong to is in use at runtime.

o Static variables—members of a class, but which are not created for any specific
object of the class and, therefore, belong only to the class (§4.4, p. 114). They are
created when the class is loaded at runtime, and exist as long as the class is
available at runtime.

e Local variables (also called method automatic variables)—declared in methods,
constructors, and blocks; and created for each execution of the method, con-
structor, or block. After the execution of the method, constructor, or block com-
pletes, local (non-final) variables are no longer accessible.

‘ %IS PGJC4 _JSE8 OCA.book Page 45 Monday, June 20,2016 2:31 PM

2.4: INITIAL VALUES FOR VARIABLES

D

/9]
=

o)

@

2.8

2.9

2.10

211

Review Questions

Which of the following declarations are valid?

Select the three correct answers.
(a) char a = '"\u0061';

(b) char 'a' = 'a';

(c) char \u0061 = 'a';

(d) ch\u0061lr a = 'a';

(e) ch'a'ra="a";

Given the following code within a method, which statement is true?

int i, j;
j=5

Select the one correct answer.

(a) Local variable i is not declared.
(b) Local variable j is not declared.
(c¢) Local variable i is declared but not initialized.
(d) Local variable j is declared but not initialized.
(e) Local variable j is initialized but not declared.

45

In which of these variable declarations will the variable remain uninitialized

unless it is explicitly initialized?
Select the one correct answer.

(a) Declaration of an instance variable of type int
(b) Declaration of a static variable of type float

(c) Declaration of a local variable of type float

(d) Declaration of a static variable of type Object
(e) Declaration of an instance variable of type int[]

What will be the result of compiling and running the following program?

public class Init {

String title;
boolean published;

static int total;
static double maxPrice;

public static void main(String[] args) {
Init initMe = new Init(Q);
double price;
if (true)
price = 100.00;

‘ %IS PGJC4 _JSE8 OCA.book Page 46 Monday, June 20,2016 2:31 PM

46

CHAPTER 2: LANGUAGE FUNDAMENTALS

+ initMe.title +
Init.total + "|" + Init.maxPrice +

System.out.printIn(

+ initMe.published +
"M 4 price + "|");

}
}

Select the one correct answer.

(a) The program will fail to compile.

(b) The program will compile, and print [nu11|false[0[0.0]0.0]| at runtime.
(c¢) The program will compile, and print [nul1|true|0]0.0[100.0| at runtime.
(d) The program will compile, and print | |false|0]0.0]0.0| at runtime.

(e) The program will compile, and print |nul1|false|0]0.0]100.0| at runtime.

Chapter Summary

The following topics were covered in this chapter:

* Basic language elements: identifiers, keywords, separators, literals, whitespace,
and comments

e Primitive data types: integral, floating-point, and boolean

¢ Notational representation of numbers in decimal, binary, octal, and hexadeci-
mal systems

¢ Declaration and initialization of variables, including reference variables
e Usage of default values for instance variables and static variables

¢ Lifetime of instance variables, static variables, and local variables

Programming Exercise

The following program has several errors. Modify the program so that it will
compile and run without errors.

// File: Temperature.java
PUBLIC CLASS temperature {
PUBLIC void main(string args) {
double fahrenheit = 62.5;
/ Convert /
double celsius = f2c(fahrenheit);
System.out.printin(fahrenheit + 'F' + " =" + Celsius + 'C');

}

double f2c(float fahr) {
RETURN (fahr - 32.0) * 5.0 / 9.0;
}

