
ATIJ JUnit - A Whole Lot of Testing Going On 1/51

JUnit - A Whole Lot of Testing Going On

Advanced Topics in Java

Khalid Azim Mughal
khalid@ii.uib.no

http://www.ii.uib.no/~khalid

Version date: 2006-09-04

ATIJ JUnit - A Whole Lot of Testing Going On 2/51

Overview

• Software Testing

• JUnit Overview

• Installing JUnit

• Writing Unit Tests

• Running Unit Tests

• Test Failures and Test Errors

• Running Unit Tests: GUI mode

• The assertFact() Methods

• Invoking Unit Test Methods

• Tests Using setUp() and
tearDown()

• Test Suites

• Running Selected Unit Tests

• Multiple Test Suites

• Repeating Tests

• Exception Handling

• Running Tests Concurrently

• Organizing Tests in Packages

• Running the Same Unit Test
Method Repeatedly

• Encapsulating Common
Behavior of Tests

ATIJ JUnit - A Whole Lot of Testing Going On 3/51

Software Testing
• Testing is the practice of ensuring that the software functions according to customer

requirements.
– Unit testing refers to testing a unit of code (usually methods in the interface of a

class) extensively in all possible ways.
– Regression testing refers to retesting the software exhaustively to make sure that any

new changes introduced have not broken the system.

• Refactoring is the practice of restructuring existing code for simplicity and clarity,
without changing its external behavior (http://www.refactoring.com/).

• Refactoring and testing are two vital activities emphasized in Extreme Programming
(http://www.extremeprogramming.org/).

• Refactoring and testing are necessary throughout the software development process.

• Automated testing is preferable as it allows the software to be tested as and when
changes are made.

• JUnit is a regression testing framework for implementing and running unit tests in
Java.

ATIJ JUnit - A Whole Lot of Testing Going On 4/51

JUnit Overview
• Framework for automating unit testing.

– Allows creation of unit tests.
– Allows execution of unit tests.

• A JUnit test case is a Java class containing one or more unit tests.
– A test case is a subclass of the junit.framework.TestCase class (also called a

fixture).
– A unit test is typically a public, void, no-parameter method named testSomething.
– A test suite is a collection of test cases.

• Tests can be run as individual test cases or entire test suites.
– Tests run in batch mode, i.e. there is no interaction with the user during the running

of the tests.
– Outcome of running a unit test is either pass or fail.

ATIJ JUnit - A Whole Lot of Testing Going On 5/51

Implementing Tests

• The class diagram shows 3 test cases (TestCaseA, TestCaseB, TestCaseC) and 2 test
suites (TestSuiteD, TestSuiteE).

• TestCaseA tests MyClassX and implements 3 unit tests: testA1(), testA2() and
testA3().

• TestCaseB tests MyClassX and MyClassY, and implements 2 unit tests: testB1() and
testB2().

• TestCaseC tests MyClassZ and implements 1 unit test: testC1().

• TestSuiteD runs the tests in all the 3 test cases.

• TestSuiteE runs the tests in the test cases TestCaseB and TestCaseC.

TestCaseB
testB1()
testB2()

junit.framework.TestCase

TestCaseC
testC1()

TestSuiteD
suite()

TestSuiteE
suite()

MyClassX MyClassY MyClassZ

TestCaseA
testA1()
testA2()
testA3()

<<tests>> <<tests>> <<tests>> <<tests>>

<<uses>><<uses>>

ATIJ JUnit - A Whole Lot of Testing Going On 6/51

Installing JUnit on Windows
• Download Junit (Junit3.8.1.zip) from the website http://junit.org/.

• Unzip the zip file there you want to install JUnit.
– This action creates a directory with the JUnit installation, say this directory is called
Junit3.8.1.

• Change the name of this directory to junit_home.
– This way a newer version of JUnit can be installed without having to go through

the rest of the procedure.
– Say the full path of this directory is C:\junit_home.

• Add the path of the junit.jar file in the junit_home directory to your CLASSPATH
environment variable, i.e. the path C:\junit_home\junit.jar should be added to
the CLASSPATH variable.

ATIJ JUnit - A Whole Lot of Testing Going On 7/51

Writing Simple Unit Tests with JUnit
Procedure for writing a test case:

1. Declare a subclass of the junit.framework.TestCase class.
– The name of the class can be any legal name which is meaningful in the given

context.

2. Declare one or more unit tests by implementing testSomething() methods in the
subclass.
– The name of the unit test method must have the prefix test, and Something usually

signifies what aspect the method will test.
– The JUnit framework requires that a test case has at least one unit test method.

3. Call assertFact() methods in each testSomething() method to perform the actual
testing.
– Various overloaded assertFact() methods are inherited by the subclass to test

different conditions.
– Typically, the assertEquals() method is used to assert that its two arguments are

equal.

ATIJ JUnit - A Whole Lot of Testing Going On 8/51

Example I
• An object of the class Comparison stores a secret number.

• The method compare() determines whether its argument is equal, greater or less
than the secret number.

• We will create tests to determine whether the compare() method is implemented
correctly.

ATIJ JUnit - A Whole Lot of Testing Going On 9/51

/** Comparison.java */
public class Comparison {
 /** The number to compare with */
 private final int SECRET;
 /** @param number the number to compare with */
 public Comparison(int number) {
 SECRET = number;
 }
 /**
 * Compares the guess with the number stored in the object.
 * @return the value 0 if the guess is equal to the secret;
 the value 1 if the guess is greater than the secret;
 and the value -1 if the guess is less than the secret.
 */
 public int compare(int guess) {
 int status = 0;
 if (guess > SECRET)
 status = 1;
 else if (guess < SECRET)
 status = -1;
 return status;
 }
}

ATIJ JUnit - A Whole Lot of Testing Going On 10/51

Writing Unit Tests
• The class TestComparison defines a test case consisting of 4 unit tests implemented

by the following methods:
 public void testEqual() { ... }
 public void testGreater() { ... }
 public void testLess() { ... }
 public void testAll() { ... }

– Each unit test method tests the result returned by the compare() method for
different guesses.

– The testAll() method tests all the conditions.

• In each unit test method, we create an object of class Comparison and test different
conditions using the assertEquals() method.
– The first argument of the assertEquals() method is the expected result.
– The actual result returned by the evaluation of the second argument is compared for

equality with the expected result by the assertEquals() method to determine
whether this assertion condition holds.

• Make sure that the junit.jar file with the JUnit framework is in the classpath of the
compiler when compiling test case classes.

ATIJ JUnit - A Whole Lot of Testing Going On 11/51

/** TestComparison.java */
import junit.framework.TestCase;
public class TestComparison extends TestCase { // (0) Test case
 public TestComparison(String testMethodName) { super(testMethodName); }
 public void testEqual() { // (1) Unit test
 Comparison firstOperand = new Comparison(2004);
 assertEquals(0, firstOperand.compare(2004));
 }
 public void testGreater() { // (2) Unit test
 Comparison firstOperand = new Comparison(2004);
 assertEquals(1, firstOperand.compare(2010));
 }
 public void testLess() { // (3) Unit test
 Comparison firstOperand = new Comparison(2004);
 assertEquals(-1, firstOperand.compare(2000));
 }
 public void testAll() { // (4) Unit test
 Comparison firstOperand = new Comparison(2004);
 assertEquals(0, firstOperand.compare(2004));
 assertEquals(1, firstOperand.compare(2010));
 assertEquals(-1, firstOperand.compare(2000));
 }
}

ATIJ JUnit - A Whole Lot of Testing Going On 12/51

Running Unit Tests: Text mode
>java junit.textui.TestRunner TestComparison
..F.F.F <=========== Progress line
Time: 0,01 <=========== Total time
There were 3 failures: <=========== Failures/errors
1) testGreater(TestComparison)junit.framework.AssertionFailedError: expected:<1> but was:<-1>
 at TestComparison.testGreater(TestComparison.java:13)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
2) testLess(TestComparison)junit.framework.AssertionFailedError: expected:<-1> but was:<1>
 at TestComparison.testLess(TestComparison.java:18)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
3) testAll(TestComparison)junit.framework.AssertionFailedError: expected:<1> but was:<-1>
 at TestComparison.testAll(TestComparison.java:24)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)

FAILURES!!!
Tests run: 4, Failures: 3, Errors: 0 <=========== Test Statistics

ATIJ JUnit - A Whole Lot of Testing Going On 13/51

Test Failures and Test Errors
• A test failure occurs when an assertFact() method fails.

– Indicated by a junit.framework.AssertionFailedError in the output, indicating
the expected and the actual result.

• A test error occurs when a testSomething() method throws an exception.
– Indicated by the appropriate exception in the output.

• Execution flow in case of failure or error:
– The current unit test method is aborted.
– Execution continuing with the next unit test method, if any.

ATIJ JUnit - A Whole Lot of Testing Going On 14/51

Running Unit Tests: GUI mode
>java junit.swingui.TestRunner TestComparison

Run the test case

Progress Bar

Run individual unit tests
Failures/Errors

Click

Message

Statistics

Total Time

ATIJ JUnit - A Whole Lot of Testing Going On 15/51

Running Unit Tests: GUI mode (cont.)
• Running the tests after correcting the program:

Test Hierarchy

All tests have passed.

 ...
 public int compare(int guess) {
 int status = 0;
 if (guess > SECRET)
 status = 1;
 else if (guess < SECRET)
 status = -1;
 return status;
 }
 ...

ATIJ JUnit - A Whole Lot of Testing Going On 16/51

The assertFact() Methods
• The assertFact() methods allow different conditions to be checked during testing.

• The assertFact() methods are defined in the junit.framework.Assert, and are
inherited by the junit.framework.TestCase subclass.

• All methods are static, void and overloaded.

• The String msg is printed if the test condition fails.

• In the first two assertEquals() methods below, Type1 can be one of the following:
boolean, byte, char, short, int, long, String and Object.

• In the last two assertEquals() methods, Type2 is either float or double.

• All occurrences of Type1 or Type2 in a parameter list must be of the same type.

junit.framework.Assert

assertEquals(Type1 exp, Type1 act)
assertEquals(String msg, Type1 exp, Type1 act)
assertEquals(Type2 exp, Type2 act, Type2 delta)
assertEquals(String msg, Type2 exp, Type2 act,
Type2 delta)

Compares two values for equality.
The test passes if the values are equal.
Floating-point values are compared for
equality within a delta.
Objects are compared for object value equality
by calling the equals() methods.

ATIJ JUnit - A Whole Lot of Testing Going On 17/51

assertTrue(boolean condition)

assertTrue(String msg, boolean condition)

The test passes if the boolean condition
expression evaluates to true.

assertFalse(boolean condition)

assertFalse(String msg, boolean condition)

The test passes if the boolean condition
expression evaluates to false.

assertNull(Object obj)

assertNull(String msg, Object obj)

The test passes if the reference obj is null.

assertNotNull(Object obj)

assertNotNull(String msg, Object obj)

The test passes if the reference obj is not null.

assertSame(Object exp, Object act)

assertSame(String msg, Object exp, Object act)

The test passes if the expression (exp == act)
is true, i.e. the references are aliases, denoting
the same object.

assertNotSame(Object exp, Object act)

assertNotSame(String msg, Object exp, Object act)

The test passes if the expression (exp == act)
is false, i.e. the references denote different
objects.

fail()

fail(String msg)

The current test is forced to fail. See section on
exception handling in unit testing.

junit.framework.Assert

ATIJ JUnit - A Whole Lot of Testing Going On 18/51

The assertFact() Methods (cont.)

public class TestComparison2 extends TestCase {
 ...
 public void testGreater() {
 Comparison firstOperand = new Comparison(2004);
 assertEquals("The guess should be greater than the secret number.",
 1, firstOperand.compare(2010));
 }
 ...
}

The optional String argument in an
assertFact() method should be used
to describe the assertion condition,
rather than why the assertion condition
failed.

ATIJ JUnit - A Whole Lot of Testing Going On 19/51

Using Equality Comparisons for Primitive Values
• The assertEquals() methods use the == operator to test the expected primitive

value with the actual primitive value for equality.

assertEquals(expectedRPM, actualRMP);
assertTrue("Identical revolutions per minute.", expectedRPM == actualRPM);

assertEquals("Returns the same letter.", 'a', str.charAt(0));
assertTrue("Returns the same letter.", 'a' == str.charAt(0));

• Floating-point numbers are compared for equality accurate to within a given delta.

assertEquals("Atomic Weight", // Message
 expectedAtomicWeight, // Expected result
 calculateAtomicWeight(), // Actual result.
 0.1E-10); // Delta

ATIJ JUnit - A Whole Lot of Testing Going On 20/51

Using Equality Comparisons for Objects
• The assertEquals() methods use the equals() method to test the expected object

with the actual object for equality, i.e. the method tests for object value equality.

assertEquals(expectedArrivalTimeObj, actualArrivalTimeObj);
assertEquals("Same criminal expected", suspect,
 crimeRegister.matchProfile(suspect));
assertEquals("Should have the same slogan.", // Message
 "Copy once, run everywhere!", // Expected result
 company.getSlogan()); // Actual result.

• The assertSame() methods use the == operator to test the expected object with the
actual object for equality, i.e. the method tests for object reference equality.

assertSame("Should find the same object.", key,
 lookup(keyObject)); // (1) Passes if aliases.
assertTrue("Should find the same object.",
 key == lookup(keyObject)); // Equivalent to (1).

ATIJ JUnit - A Whole Lot of Testing Going On 21/51

More Examples of assertFact() Methods
• Checking a Boolean condition.

assertTrue("The set should be empty.", set.getSize() == 0);
assertTrue("Value is non-negative.", actualValue > 0);
assertFalse("Value is non-negative.", actualValue <= 0);

• Checking for null values.

assertNull("No result from the query.", db.doQuery(query));
assertTrue("No result from the query.", db.doQuery(query) == null);

assertNotNull("Lookup should be successful.", db.doQuery(query));
assertTrue("Lookup should be successful.", db.doQuery(query) != null);
assertFalse("Lookup should be successful.", db.doQuery(query) == null);

• Causing explicit failure.

fail("Cannot proceed."); // The test always fails.

ATIJ JUnit - A Whole Lot of Testing Going On 22/51

Granularity of Unit Tests
• A unit test should only test conditions that are related to one piece of functionality.

• A unit test fails if an assertFact() method call fails, and the remaining conditions are
not checked.
– If the remaining conditions pertain to unrelated functionality, this functionality will

not be tested -- leading to bad test design.
– Factoring test conditions into appropriate unit tests ensures that these conditions

will be tested -- leading to a better test design.

• A unit test should be structured in such a way that if a test condition fails, the
remaining conditions will always fail.

ATIJ JUnit - A Whole Lot of Testing Going On 23/51

Invoking Unit Test Methods
• Each of the unit test methods in a test case is executed as follows:

– JUnit creates a new instance of the test case for each unit test method.
– JUnit calls the setUp() method in the test case.
– JUnit calls the unit test method.
– JUnit calls the tearDown() method in the test case.

• Consequence: instance fields in the test case object cannot be used to share state
between unit test methods.

• The setUp() and tearDown() methods can be used to avoid duplicate code in the unit
test methods.
– Use the setUp() method for duplicate code that creates any resources that each

unit test method needs.
– Use the tearDown() method for duplicate code that frees any resources that were

used to run each unit test method.

• The constructor of the test case class can also be employed to do the set up.
– The setUp() method is preferred as it provides better documentation of the testing

process.
– The setUp() method is called after the test case constructor has been called.

ATIJ JUnit - A Whole Lot of Testing Going On 24/51

/** TestComparison3.java */
import junit.framework.TestCase;
public class TestComparison3 extends TestCase {
 private Comparison firstOperand;
 ...
 public void setUp() {
 System.out.println("Setting up.");
 firstOperand = new Comparison(2004);
 }
 public void tearDown() {
 System.out.println("Tearing down.");
 firstOperand = null;
 }
 public void testEqual() {
 assertEquals("The secret number and guess should be equal.",
 0, firstOperand.compare(2004));
 }
 public void testGreater() {
 assertEquals("The guess should be greater than the secret number.",
 1, firstOperand.compare(2010));
 }
 ...
}

ATIJ JUnit - A Whole Lot of Testing Going On 25/51

Tests Using setUp() and tearDown()

On the console:
class TestComparison3:
Setting up.
class TestComparison3:
Tearing down.
class TestComparison3:
Setting up.
class TestComparison3:
Tearing down.
class TestComparison3:
Setting up.
class TestComparison3:
Tearing down.
class TestComparison3:
Setting up.
class TestComparison3:
Tearing down.

Corresponds to each
unit test method.

ATIJ JUnit - A Whole Lot of Testing Going On 26/51

Test Suites
• A test suite consists of test cases and other test suites.

• The test cases (and other test suites) in a test suite all run at once.

• JUnit runs the test defined by the suite() method in a test case:

import junit.framework.TestCase; // A test case defines multiple unit tests.
import junit.framework.Test; // Interface for tests that can be run.
import junit.framework.TestSuite; // A TestSuite is a Composite of Tests.

public class TestComparison4 extends TestCase {
 // ...
 public static Test suite() {
 return new TestSuite(TestComparison4.class);
 }
 // ...
}

• The parameter to the TestSuite constructor specifies the test case class whose
testSomething() methods are to be run.

• Default test suite: if no suite() method is defined in a test case class, reflection is used
to locate and run testSomething() methods in the test case class.

ATIJ JUnit - A Whole Lot of Testing Going On 27/51

Creating Test Suites
• Selecting unit tests to run.

public class TestComparison4 extends TestCase {
 public TestComparison4(String testMethodName) { // Mandatory in this case.
 super(testMethodName);
 }
 public void testEqual() { ... }
 public void testLess() { ... }
 ...
}

public class TestComparison5 extends TestCase {
 public static Test suite() {
 TestSuite mytestsuite = new TestSuite();
 // Adding 2 individual unit tests
 mytestsuite.addTest(new TestComparison4("testLess"));
 mytestsuite.addTest(new TestComparison3("testEqual"));
 return mytestsuite;
 }
}

– Only tests added to the test suite are run, in the order they were added to the suite.

ATIJ JUnit - A Whole Lot of Testing Going On 28/51

Running Selected Unit Tests

On the console:
class TestComparison4:
Setting up.
class TestComparison4:
Tearing down.
class TestComparison3:
Setting up.
class TestComparison3:
Tearing down.

Only the selected unit tests are run.

ATIJ JUnit - A Whole Lot of Testing Going On 29/51

Multiple Test Suites
• Combining multiple suites.

public class TestComparison6 extends TestCase {
 public static Test suite() {
 TestSuite mytestsuite = new TestSuite();
 // Adding test suites.
 mytestsuite.addTest(new TestSuite(TestComparison4.class));
 mytestsuite.addTest(new TestSuite(TestComparison3.class));
 // Adding 2 individual unit tests.
 mytestsuite.addTest(new TestComparison4("testLess"));
 mytestsuite.addTest(new TestComparison3("testEqual"));
 return mytestsuite;
 }
}

– Class TestComparison6 creates a test suite that comprises 2 test suites (created from
TestComparison4 and TestComparison3 test case classes) and 2 selected unit tests
(one from TestComparison4 and one from TestComparison3).

ATIJ JUnit - A Whole Lot of Testing Going On 30/51

Running Several Test Suites
On the console:
class TestComparison4:
Setting up.
class TestComparison4:
Tearing down.
class TestComparison4:
Setting up.
class TestComparison4:
Tearing down.
class TestComparison4:
Setting up.
class TestComparison4:
Tearing down.
class TestComparison4:
Setting up.
class TestComparison4:
Tearing down.
class TestComparison3:
Setting up.
class TestComparison3:
Tearing down.
class TestComparison3:
Setting up.
class TestComparison3:
Tearing down.
class TestComparison3:
Setting up.
class TestComparison3:
Tearing down.
class TestComparison3:
Setting up.

2 Test Cases

2 Unit Tests

ATIJ JUnit - A Whole Lot of Testing Going On 31/51

Example II
• Test utility methods in the ArrayUtil class.

public class ArrayUtil {
 public static void insertionSort(Comparable[] array) { ... }
 public static int binSearch(Comparable[] array, Comparable key) { ... }
 public static void printArray(Comparable[] array, String prompt) { ... }
}

• Test case for the sorting method insertionSort().
public class TestSort extends TestCase {
 Comparable[] array;
 public void setUp() {
 array = new Comparable[] { "This", "is", "not", "so", "difficult" };
 }
 public void testOrder() {
 ArrayUtil.insertionSort(array);
 for (int i = 1; i < array.length; i++) {
 int status = array[i-1].compareTo(array[i]);
 assertTrue("Not sorted. Check index: " + i, status <= 0);
 }
 }
}

ATIJ JUnit - A Whole Lot of Testing Going On 32/51

• Test case for the binary search method binSearch().
public class TestSearch extends TestCase {
 Comparable[] array;
 public void setUp() {
 array = new Comparable[] {
 "Cola 0.5l", "Cola 0.33l", "Pepsi 0.5l",
 "Solo 0.5l", "Cola 1.0l", "7Up 0.33l" };
 ArrayUtil.insertionSort(array);
 }
 public void testFound() {
 Comparable key = "Solo 0.5l";
 int index = ArrayUtil.binSearch(array, key);
 assertEquals("Key should in the array: " + key, key, array[index]);
 }
 public void testIndex() {
 Comparable key = "Pepsi 1.0l"; // A key not in the array.
 int index = ArrayUtil.binSearch(array, key);
 assertTrue("Index should be negative: " + index, index < 0);
 key = "Solo 0.5l"; // A key in the array.
 index = ArrayUtil.binSearch(array, key);
 assertTrue("Index should be non-negative: " + index, index >= 0);
 }
}

ATIJ JUnit - A Whole Lot of Testing Going On 33/51

• Test suite for running all the test for class ArrayUtil.
import junit.framework.*;
public class TestUtil extends TestCase {
 public static Test suite() {
 TestSuite mytestsuite = new TestSuite();
 mytestsuite.addTest(new TestSuite(TestSort.class));
 mytestsuite.addTest(new TestSuite(TestSearch.class));
 return mytestsuite;
 }
}

ATIJ JUnit - A Whole Lot of Testing Going On 34/51

Repeating Tests
• Decorator class RepeatedTest allows whole test cases and individual unit tests to be

run repeatedly a finite number of times.

/** TestRepeats.java */
import junit.framework.*;
import junit.extensions.RepeatedTest; // A Decorator for tests.

public class TestRepeats extends TestCase {
 public static Test suite() {
 TestSuite mytestsuite = new TestSuite();
 // Repeat a whole test case. TestSearch has 2 unit tests, each repeated 3 times.
 mytestsuite.addTest(new RepeatedTest(new TestSuite(TestSearch.class),3));

 // Repeat a single unit test case. In this case,5 times.
 mytestsuite.addTest(new RepeatedTest(new TestSort("testOrder"),5));
 return mytestsuite;
 }
}

ATIJ JUnit - A Whole Lot of Testing Going On 35/51

Repeating Tests (cont.)

Each repeated 3 times.

Repeated 5 times.

ATIJ JUnit - A Whole Lot of Testing Going On 36/51

Exception Handling
• Any uncaught exceptions thrown by the code which is being tested will be caught by

JUnit and reported.
– It is superfluous catching these exceptions in the test code.

package myDotCom;
public class Item implements Comparable {
 Item(String itemName, int quantity) {
 if (quantity < 0)
 throw new IllegalArgumentException("Quantity should be 0 or greater.");
 this.itemName = itemName;
 this.quantity = quantity;
 }
 ...
}
--
package myDotCom;
public class TestItem extends junit.framework.TestCase {
 public void setUp() {
 item1 = new Item("Cola 0.5l", -1);
 }
 ...
}

ATIJ JUnit - A Whole Lot of Testing Going On 37/51

Reporting of Exceptions

Stack Trace

ATIJ JUnit - A Whole Lot of Testing Going On 38/51

Testing for Exceptions: the fail() method
• Testing whether an exception is thrown or not can be done using a try-catch block

and the fail() method.
package myDotCom;
public class Item implements Comparable {
 Item(String itemName, int quantity) {
 // Does not check for negative quantity.
 this.itemName = itemName;
 this.quantity = quantity;
 }
 ...
}

package myDotCom;
public class TestException extends junit.framework.TestCase {
 public void testNegativeQuantity() {
 try {
 Item item = new Item("Cola 0.5l", -1);
 fail("Expected IllegalArgumentException when quantity is negative");
 } catch (IllegalArgumentException iae) {
 // Test passed if the exception was thrown.
 }
 }
}

ATIJ JUnit - A Whole Lot of Testing Going On 39/51

Testing for Exceptions: the fail() method (cont.)

The expected exception was
NOT thrown.
The call to the fail() method
fails the test.

ATIJ JUnit - A Whole Lot of Testing Going On 40/51

Testing for Exceptions (cont.)
package myDotCom;
public class Item implements Comparable {
 Item(String itemName, int quantity) {
 if (quantity < 0)
 throw new IllegalArgumentException("Quantity should be 0 or greater.");
 this.itemName = itemName;
 this.quantity = quantity;
 }
 ...
}

The expected exception was thrown.
It was caught and ignored in the unit
test method.
The test passes.

ATIJ JUnit - A Whole Lot of Testing Going On 41/51

Running Tests Concurrently
• Tests can be run in their own thread using the junit.extensions.ActiveTestSuite

class.

public class TestConcurrent extends TestCase {
 public static Test suite() {
 TestSuite mytestsuite = new ActiveTestSuite();
 // Repeat a whole test case. TestSearch has 2 unit tests, each repeated 3 times.
 mytestsuite.addTest(new RepeatedTest(new TestSuite(TestSearch.class),3));

 // Repeat a single unit test case. In this case,5 times.
 mytestsuite.addTest(new RepeatedTest(new TestSort("testOrder"),5));
 return mytestsuite;
 }
}

• The example above uses 2 threads to run the 2 test suites, not 11 threads for the 11 unit
tests.

• Useful technique for handling threading problems.

ATIJ JUnit - A Whole Lot of Testing Going On 42/51

Organizing Tests in Packages
• Aim: run all tests in a package and its subpackages.

• Organization: each package provides a test case that creates a test suite that contains
all tests in the current package and its subpackages.

myJUnitExamples

myDotCom*.class*.java AllTestsMyJUnitExamples.class

AllTestsMyDotCom.class

Test*.class

...

... Test*.class*.class

ATIJ JUnit - A Whole Lot of Testing Going On 43/51

Organizing Tests in Packages (cont.)
public class AllTestsMyJUnitExamples extends TestCase {
 public static Test suite() {
 TestSuite mytestsuite = new TestSuite();
 // Add tests from the current package.
 mytestsuite.addTest(new TestSuite(TestComparison4.class));
 mytestsuite.addTest(TestUtil.suite());
 // Add tests from all subpackages.
 mytestsuite.addTest(myDotCom.AllTestsMyDotCom.suite());
 return mytestsuite;
 }
}

package myDotCom;
import junit.framework.*;
public class AllTestsMyDotCom extends TestCase {
 public static Test suite() {
 TestSuite mytestsuite = new TestSuite();
 mytestsuite.addTest(new TestSuite(myDotCom.TestItem.class));
 return mytestsuite;
 }
}

ATIJ JUnit - A Whole Lot of Testing Going On 44/51

Running Tests in Packages

Current package

Subpackage

ATIJ JUnit - A Whole Lot of Testing Going On 45/51

Running A Unit Test Method Repeatedly
• Purpose: test a method with a wide range of input data.

• Example: test the equals() method of a class (myDotCom.Item) for the following 6
cases.
o1.equals(null) // false for null comparison
o1.equals(someOtherClassObject) // false for objects of different classes
o1.equals(o1) // true for reflexivity
o1.equals(o2) // (1) true for objects with the same state
o2.equals(o1) // (2) true for objects with the same state
 // Both (1) and (2) are true for symmetry of objects with
 // the same state.
o1.equals(o3) // false for objects of same class which have different states

ATIJ JUnit - A Whole Lot of Testing Going On 46/51

Procedure for Creating a Test Suite for Testing a Method Repeatedly
1. Specify a test case by subclassing the TestCase class.

public class TestEquals extends TestCase { ... }

2. Specify a nested static class to encapsulate the input data for a test and the expected
result.
 private static class TestData {
 Object obj1;
 Object obj2;
 boolean expectedResult;
 public TestData(Object o1, Object o2, boolean expectedResult) {
 this.obj1 = o1;
 this.obj2 = o2;
 this.expectedResult = expectedResult;
 }
 }

3. Specify the following fields:
 /** Instance field to distinguish each unique input data. */
 private int testNumber;
 /** Static array with data for each unique input. */
 private static TestData[] testArray;

ATIJ JUnit - A Whole Lot of Testing Going On 47/51

4. Specify a constructor for the test case that takes an extra argument.

 /** A unique test number is passed to the constructor to identify
 the input data for a given test. */
 public TestEquals(String testMethodName, int testNumber) {
 super(testMethodName);
 this.testNumber = testNumber;
 }

5. Implement the actual unit test method that will be run.

 /** Unit test method called repeatedly for each instance of the test case. */
 public void testEquals() {
 // The testNumber identifies the input data for this test.
 TestData td = testArray[this.testNumber];
 // The method which is called.
 boolean result = td.obj1.equals(td.obj2);
 // Condition to check the result of the test.
 assertEquals("Test number " + this.testNumber + ": ",
 td.expectedResult, result);
 }

ATIJ JUnit - A Whole Lot of Testing Going On 48/51

6. Implement the suite() method which iterates over the input data, creating an
instance of the unit test method for each set of input data to test.

 /** Creates the test data and the test suite that contains the instances
 of the unit test method with a unique test number. */
 public static Test suite() {
 createData();
 TestSuite mytestsuite = new TestSuite();
 for(int i = 0; i < testArray.length; i++) {
 mytestsuite.addTest(new TestEquals("testEquals",i));
 }
 return mytestsuite;
 }

7. Create the input data for each case to test.

 /** Sets up the input data in the test array for each unit test. */
 public static void createData() {
 Object obj1 = new myDotCom.Item("Kola", 10);
 Object obj2 = new myDotCom.Item("Kola", 10);
 Object obj3 = new myDotCom.Item("Kola", 15);
 Object someOtherObject = new Integer(4);

ATIJ JUnit - A Whole Lot of Testing Going On 49/51

 testArray = new TestData[] {
 new TestData(obj1, null, false), // null comparison
 new TestData(obj1, someOtherObject, false), // Not same type
 new TestData(obj1, obj1, true), // Reflexive
 new TestData(obj1, obj2, true), // (1) Symmetric
 new TestData(obj2, obj1, true), // (2) Symmetric
 new TestData(obj1, obj3, false) // Same type
 };
 }

• The procedure tests each case regardless of whether a test has failed.

• Test input data can be obtained from external sources.

ATIJ JUnit - A Whole Lot of Testing Going On 50/51

Running the Same Unit Test Method Repeatedly

2 combinations did not pass.

ATIJ JUnit - A Whole Lot of Testing Going On 51/51

Encapsulating Common Behavior of Tests
• The common behavior can be encapsulated into a subclass of the TestCase class.

• This subclass can be abstract and can have protected methods that the customized
test cases can override.
public abstract class CommonTestCase extends TestCase {
 public CommonTestCase(String testMethodName) {
 super(testMethodName);
 initializeStuff();
 }
 protected void initializeStuff() { /*...*/ }
 // ...
}

public class TestCaseSpecific extends CommonTestCase {
 public TestCaseSpecific(String testMethodName) {
 super(testMethodName);
 }
 public void testStuff() { /*...*/ }
 // ...
}

