

J ava Re i f i cat ion

Michele OrrùMichele Orrù
presents:

Java Reification: how is changed
working with Arrays from the

introduction of Generics

taken from:
Java Generics and Collections
Maurice Naftalin & Philip Wadler

O'REILLY publications

J ava Re i f i cat ion
a r r a y c r e a t i o n

Arrays reify their component types:
this means that informations about their

component types are available at run-time.

J ava Re i f i cat ion
a r r a y c r e a t i o n

We can take this example:

Integer[] ints = new Integer[] {1,2,3};
Number[] nums = ints;
nums[2] = 3.14; // array store exception

The exception is thrown because the
assignment is not valid: the assigned

double value is not compatible with the
reified type of the array.

J ava Re i f i cat ion
a r r a y c r e a t i o n

Another example:
import java.util.*;
class Annoying {
 public static <T> T[] toArray(Collection<T> c) {
 T[] a = new T[c.size()]; // compile-time error
 int i=0; for (T x : c) a[i++] = x;
 return a;
 }
}

Arrays must reify their component types: of
course a type variable is not a reifiable type.

J ava Re i f i cat ion
a r r a y c r e a t i o n

Another example with the
same compilation error:

import java.util.*;
class AlsoAnnoying {
 public static List<Integer>[] twoLists() {
 List<Integer> a = Arrays.asList(1,2,3);
 List<Integer> b = Arrays.asList(4,5,6);
 return new List<Integer>[] {a, b}; // compile-time
 // error
 }
}

Arrays must reify their component types: of
course a a parameterized type is not a

reifiable type.

J ava Re i f i cat ion
a r r a y c r e a t i o n

So...

is not possible to create arrays with
Generics, because generics are

implemented via erasure.

The best way to proceed instead to use
arrays is to use data structures from the

Collections Framework.

J ava Re i f i cat ion
 T h e P r i n c i p l e o f T r u t h i n A d v e r t i s i n g

How to convert a collection to array?

....

J ava Re i f i cat ion
 T h e P r i n c i p l e o f T r u t h i n A d v e r t i s i n g

The easy way to think is to cast every
component of the collection to a generic

type T[].

But???

....

J ava Re i f i cat ion
 T h e P r i n c i p l e o f T r u t h i n A d v e r t i s i n g

The result is an unchecked cast, that can
lead in more complex problems than a

simple warning.
import java.util.*;
class Wrong {
 public static <T> T[] toArray(Collection<T> c) {
 T[] a = (T[])new Object[c.size()]; // unchecked cast(COMPILE
 // TIME)
 int i=0; for (T x : c) a[i++] = x;
 return a;
 }
 public static void main(String[] args) {
 List<String> strings = Arrays.asList("one","two");
 String[] a = toArray(strings); // class cast error (RUNTIME)
 }
}

J ava Re i f i cat ion
 T h e P r i n c i p l e o f T r u t h i n A d v e r t i s i n g

Let's see how the things work with type
erasure, to better understand the errors:

import java.util.*;
class Wrong {
 public static Object[] toArray(Collection c) {
 Object[] a = (Object[])new Object[c.size()]; // unchecked cast
 int i=0; for (Object x : c) a[i++] = x;
 return a;
 }
 public static void main(String[] args) {
 List strings = Arrays.asList(args);
 String[] a = (String[])toArray(strings); // class cast error
 }
}

The array in the main method contains only strings, but its reified
type indicates that it is an array of Object, so the cast fails.

J ava Re i f i cat ion
 T h e P r i n c i p l e o f T r u t h i n A d v e r t i s i n g

To avoid the previous problem, we have to
follow the Principle of Truth in

Advertising: the reified type of an
array must be a subtype of the erasure

of its static type.

Using the previous example, the run-time
error on class cast was because Object

(reified type of the array) is not a subtype
of String (the erasure of its static type).

J ava Re i f i cat ion
 T h e P r i n c i p l e o f T r u t h i n A d v e r t i s i n g

The previous error reveal another problem..

The cast-iron guarantee is not properly
respected: in theory no cast inserted by
erasure can fail, but as we seen before, in

practice can happen.

This is why code that generates unchecked
warnings must be written with extreme

care!!!

J ava Re i f i cat ion
 T h e P r i n c i p l e o f T r u t h i n A d v e r t i s i n g

A way to solve the problem: reflection is used to
allocate a new array with the same reified type as the

old, if the array is NOT big enough to hold the
collection.

import java.util.*;
class Right {
 public static <T> T[] toArray(Collection<T> c, T[] a) {
 if (a.length < c.size())
 a = (T[])java.lang.reflect.Array.newInstance
(a.getClass().getComponentType(), c.size()); // unchecked cast
 int i=0; for (T x : c) a[i++] = x;
 if (i < a.length) a[i] = null;
 return a;
 }
 public static void main(String[] args) {
 List<String> strings = Arrays.asList("one", "two");
 String[] a = toArray(strings, new String[0]);
 assert Arrays.toString(a).equals("[one, two]");
 String[] b = new String[] { "x","x","x","x" };
 toArray(strings, b);
 assert Arrays.toString(b).equals("[one, two, null, x]");
 } }

J ava Re i f i cat ion
 T h e P r i n c i p l e o f T r u t h i n A d v e r t i s i n g

An alternative to using an array to create an array
is to use an instance of class Class.

Instances of the class Class represent information
about a class at run time.

In Java 5, the class Class has been made generic,
and now has the form Class<T>.

We can define a variant of our previous method
that accepts a class token of type Class<T>

rather than an array of type T[].

J ava Re i f i cat ion
 T h e P r i n c i p l e o f o f I n d e c e n t E x p o s u r e

There exist another important principle to
help us working with arrays, The Principle

of of Indecent Exposure, that says:
never publicly expose an array where

the components do not have a reifiable
type (we add...especially

if we write a library)

Why???

....

J ava Re i f i cat ion
 T h e P r i n c i p l e o f o f I n d e c e n t
E x p o s u r e

Let's see an example:

List<Integer>[] intLists
 = (List<Integer>[])new List[] {Arrays.asList(1)};

// unchecked cast
List<? extends Number>[] numLists = intLists;
numLists[0] = Arrays.asList(1.01);
int n = intLists[0].get(0); // class cast exception

J ava Re i f i cat ion
 T h e P r i n c i p l e o f o f I n d e c e n t
E x p o s u r e

Let's see another example defining a simple
library:

DeceptiveLibrary.java:
import java.util.*;
public class DeceptiveLibrary {
 public static List<Integer>[] intLists(int size) {
 List<Integer>[] intLists =
 (List<Integer>[]) new List[size]; // unchecked cast
 for (int i = 0; i < size; i++)
 intLists[i] = Arrays.asList(i+1);
 return ints;
 }
}

In compile time (javac -Xlint:unchecked) only the
unchecked cast is shown, so we can think that is

innocuous...

J ava Re i f i cat ion
 T h e P r i n c i p l e o f o f I n d e c e n t
E x p o s u r e

The class below uses the previous library:
InnocentClient.java:
import java.util.*;
public class InnocentClient {
 public static void main(String[] args) {
 List<Integer>[] intLists = DeceptiveLibrary.intLists(1);
 List<? extends Number>[] numLists = intLists;
 numLists[0] = Arrays.asList(1.01);
 int i = intLists[0].get(0); // class cast error!
 }
}

As you can see the previous library
was NOT so innocuous...

J ava Re i f i cat ion
 T h e P r i n c i p l e o f o f I n d e c e n t
E x p o s u r e

Resuming:

The Principle of Truth in Advertising
requires that the run-time type of an

array is properly reified.

The Principle of Indecent Exposure
requires that the compile-time type of an

array must be reifiable.

J ava Re i f i cat ion
h o w t o d e f i n e a n A r r a y L i s t

There are very few cases in which is more
useful declare arrays instead of collections.

One situation in which we NEED to use
arrays is with ArrayList.

J ava Re i f i cat ion
h o w t o d e f i n e a n A r r a y L i s t

 Implementations of those type of data
structures like ArrayList need to be written

with care, as they necessarily involve use of
unchecked casts.

We will see in the IDE how the Principles of
Indecent Exposure and of Truth in

Advertising figure in the implementation.

J ava Re i f i cat ion
a r r a y c r e a t i o n a n d v a r a r g s

Do you remember the new notation of
Java 5 for varargs???

...

Well, using the ellipsis (...) we are able to
create methods that can accept an

indefinite number of arguments packing
them into an array.

Useful, no???

J ava Re i f i cat ion
a r r a y c r e a t i o n a n d v a r a r g s

The bad news is that such implementation
suffer to the same problems that involve

reification as other arrays.

J ava Re i f i cat ion
a r r a y c r e a t i o n a n d v a r a r g s

Let's take java.util.Arrays.asList method,
declared as following:

public static <E> List<E> asList(E... arr)

And let's see some examples:
 List<Integer> a = Arrays.asList(1, 2, 3);

it could be declared also as
List<Integer> a = Arrays.asList(new Integer[] { 1, 2, 3 });

No problems until now...

But...

J ava Re i f i cat ion
a r r a y c r e a t i o n a n d v a r a r g s

If we consider this example:
List<List<Integer>> x = Arrays.asList(a, b);

and we try to declare it, as before, in the
equivalent way:

List<List<Integer>> x =
Arrays.asList(new List<Integer>[] { a, b });

...we will have an unchecked generic
array creation WARNING at compile time,

because List<Integer> is not a reifiable type

J ava Re i f i cat ion
a r r a y c r e a t i o n a n d v a r a r g s

So...???

Never use varargs facilities when we are
not sure if the arguments will be or not

reifiable types.

All these problems with varargs would not
exists now if the designers had been used a

collection instead and array: T... to be
equivalent to List<T> rather than T[].

J ava Re i f i cat ion
A r r a y s a s a D e p r e c a t e d T y p e ?

Why use arrays if collections have the following
features:

➢ more precise typing, means that more errors can
be detected at compile-time;

➢ more flexibility, in the declaration and during the
use, large choice of methods and convenience

algorithms;

➢ any type elements, instead of arrays that should
have only reifiable types.

J ava Re i f i cat ion
A r r a y s a s a D e p r e c a t e d T y p e ?

There are some places in Java 5 where the
use of collections instead of arrays would

be preferred, like:
➢ varargs with their possible arguments of

non-reifiable type, as we've analyze before;

➢ Principle of Indecent Exposure violated in
Java libraries like

TypeVariable<Class<T>>[] java.lang.Class.getTypeParameters()
TypeVariable<Method>[] java.lang.Reflect.Method.getTypeParameters()

J ava Re i f i cat ion
A r r a y s a s a D e p r e c a t e d T y p e ?

Some comments of the work done by Java 5 designers:

➢ If the designers had been willing to restrict the notion of reified
type, they could have simplified it by including raw types (such
as List), but excluding types with unbounded wildcards (NOTE

THAT THE ACTUAL SITUATION IS NOT LIKE THAT);

➢ also if only reifiable types are permitted with arrays, anyway is
possible to bypass this restriction casting to an array type

that is not reifiable, violating the cast-iron guarantee and
creating unchecked warnings.

➢ Use of lists could be made easier by permitting Java
programmers to write l[i] as an abbreviation for l.get(i),

and l[i] = v as an abbreviation for l.put(i,v). (Some people like
this sort of "syntactic sugar," while others think of it as

"syntactic rat poison.")

J ava Re i f i cat ion
A r r a y s a s a D e p r e c a t e d T y p e ?

After all these considerations, why not
consider arrays as deprecated types, ans

use ONLY collections?

