
Java Concurrency in practice

Chapter: 12
Bjørn Christian Sebak (bse069@student.uib.no)

Karianne Berg (karianne@ii.uib.no)

INF329 – Spring 2007

mailto:bse069@student.uib.no
mailto:karianne@ii.uib.no


Testing Concurrent Programs

 Conc. programs have a degree of non-
determinism

 Most conc. tests are either safety tests 
or liveness tests

 Problem: Test code can introduce 
timing & sync. artefacts that masks 
bugs that otherwise might break the 
program



Measuring performance

Three ways:
 Throughput: Rate of which conc. tasks 

completes
 Responsiveness: Delay between 

request and completion
 Scalability: Performance when adding 

more resources (cpus, memory, etc)



12.1 Testing for correctness

 Start with basic unit tests NOT related 
to conc. helpful in discovering non-
conc. related bugs

 See BoundedBuffer.java



12.1.2 Testing blocking 
methods

 Test for blocking methods should 
succeed only if the thread does NOT 
proceed (similar to testing for 
exceptions)

 Strategy: Start a blocking activity in a 
separate thread, wait until block, 
interrupt it and assert that the blocking 
method completed (threw 
InterruptedException)

 See BoundedBufferTest.java



12.1.3 Testing safety

 Run tests on multi-CPU-systems to 
increase diversity of potential 
interleavings.

 To maximize the chance of detecting 
timing-sensitive races, have more 
threads than CPUs (always some 
threads running and some switched 
out). 

 See PutTake.java & PutTakeTest.java



12.1.4 Testing resource 
management

 Tests for detecting resource leaks
 Storage leaks can prevent the garbage 

collector from doing its job 
 Easy to test with heap-inspection tools
 See TestLeak.java 



12.1.5 Using callbacks

 Callbacks made at known points in an 
objects life cycle are good opportunities 
to assess invariants

 Ex: One way to test a thread pool is to 
have a counter every time a thread is 
created. Useful when testing pool 
behaviour (like that the thread pool 
increase in size when demand for 
execution increases



12.1.6 Generating more 
interleavings

 One way to increase more interleavings 
 is to use Thread.yield to encourage 
more context switches when accessing 
shared state.

 This way one might activate timing-
sensitive bugs. 

 To avoid cluttering production code 
with Thread.yield, one might use AOP 
to weave in test code dynamically



12.2 Testing for performance

 Performance tests seek to measure 
end-to-end performance metrics for 
representative use cases

 A common goal of perf. testing is 
finding optimal values for various 
bounds, like number of threads, size of 
pools, etc

 Show demo PutTakeWithTimer.java



12.2.2 Comparing multiple 
algorithms

 BoundedBuffer is no match for 
ArrayBlockingQueue or 
LinkedBlockingQueue

 Reason is that these two have fewer 
points of contention



12.3 Avoiding performance 
pitfalls

 In theory, developing performance 
tests are easy – find a typical usage 
scenario, make a program that runs for 
some time, and analyse the result.

 In practice, there are a number of 
things that can happen and ruin your 
test results



12.3.1 Garbage collection

 Timing of GC is unpredictable, might 
run during a test and ruin your result

 Two main strategies to avoid this:
 Make sure GC isn't running during a test 

(-verbose:gc to find out)
 Run the test longer, and let GC be a part of 

the result. Since GC will also run during 
production, this is more realistic.



12.3.2 Dynamic compilation

 Java is dynamically compiled, making 
perf. testing harder

 JVM will turn often used parts of 
bytecode into machine code in to 
improve performance, making timing 
unpredictable.

 Timing tests should only run after all 
code is turned into machine code 
(make the test run long enough)



12.3.3 Unrealistic sampling of 
code paths

 The JVM is permitted to use information 
specific to the execution to make better 
code

 Compiling method M in one program 
might generate different code in 
another

 Always mix tests for multi-threaded 
performance with tests for single-
threaded performance



12.3.4 Unrealistic degree of 
contention

 As we saw in the BoundedBuffer test, 
producer & consumer operated on the 
collection (take/put).

 But they didn't actually DO anything 
with the items

 In an actual application, there will 
therefore be less contention than were 
measured in the tests



12.3.5 Dead code elimination

 Code that does not affect the outcome 
of operations will be eliminated by the 
JVMs optimizer.

 A problem since most tests don't 
actually do much useful work.

 This will speed up your tests and affect 
your test results

 Solution: Every computed result must 
be used somehow



12.4 Complementary testing 
approaches

 Finding all bugs is unrealistic goal, but 
testing increases confidence in code

 Manual code reviews by experts is the 
most effective approach

 Use of static analysis tools, tools that 
analyse code without executing it.
 Inconsistent sync., unreleased locks and 

spin loops, etc
 AOP: Only limited use for conc. testing, 

most AOP frameworks do not support 
pointcuts at synch. points.



12.4.4 Profiling tools
 Tools that analyse thread execution 

and their lifecycle can help spot 
bottlenecks in code.

 Note that monitoring tools can affect 
the performance and your test result!

 Demo of NetBeans Profiler, profiling 
PutTakeWithTimer.java


