
Java Concurrency in practice

Chapter: 12
Bjørn Christian Sebak (bse069@student.uib.no)

Karianne Berg (karianne@ii.uib.no)

INF329 – Spring 2007

mailto:bse069@student.uib.no
mailto:karianne@ii.uib.no


Testing Concurrent Programs

 Conc. programs have a degree of non-
determinism

 Most conc. tests are either safety tests 
or liveness tests

 Problem: Test code can introduce 
timing & sync. artefacts that masks 
bugs that otherwise might break the 
program



Measuring performance

Three ways:
 Throughput: Rate of which conc. tasks 

completes
 Responsiveness: Delay between 

request and completion
 Scalability: Performance when adding 

more resources (cpus, memory, etc)



12.1 Testing for correctness

 Start with basic unit tests NOT related 
to conc. helpful in discovering non-
conc. related bugs

 See BoundedBuffer.java



12.1.2 Testing blocking 
methods

 Test for blocking methods should 
succeed only if the thread does NOT 
proceed (similar to testing for 
exceptions)

 Strategy: Start a blocking activity in a 
separate thread, wait until block, 
interrupt it and assert that the blocking 
method completed (threw 
InterruptedException)

 See BoundedBufferTest.java



12.1.3 Testing safety

 Run tests on multi-CPU-systems to 
increase diversity of potential 
interleavings.

 To maximize the chance of detecting 
timing-sensitive races, have more 
threads than CPUs (always some 
threads running and some switched 
out). 

 See PutTake.java & PutTakeTest.java



12.1.4 Testing resource 
management

 Tests for detecting resource leaks
 Storage leaks can prevent the garbage 

collector from doing its job 
 Easy to test with heap-inspection tools
 See TestLeak.java 



12.1.5 Using callbacks

 Callbacks made at known points in an 
objects life cycle are good opportunities 
to assess invariants

 Ex: One way to test a thread pool is to 
have a counter every time a thread is 
created. Useful when testing pool 
behaviour (like that the thread pool 
increase in size when demand for 
execution increases



12.1.6 Generating more 
interleavings

 One way to increase more interleavings 
 is to use Thread.yield to encourage 
more context switches when accessing 
shared state.

 This way one might activate timing-
sensitive bugs. 

 To avoid cluttering production code 
with Thread.yield, one might use AOP 
to weave in test code dynamically



12.2 Testing for performance

 Performance tests seek to measure 
end-to-end performance metrics for 
representative use cases

 A common goal of perf. testing is 
finding optimal values for various 
bounds, like number of threads, size of 
pools, etc

 Show demo PutTakeWithTimer.java



12.2.2 Comparing multiple 
algorithms

 BoundedBuffer is no match for 
ArrayBlockingQueue or 
LinkedBlockingQueue

 Reason is that these two have fewer 
points of contention



12.3 Avoiding performance 
pitfalls

 In theory, developing performance 
tests are easy – find a typical usage 
scenario, make a program that runs for 
some time, and analyse the result.

 In practice, there are a number of 
things that can happen and ruin your 
test results



12.3.1 Garbage collection

 Timing of GC is unpredictable, might 
run during a test and ruin your result

 Two main strategies to avoid this:
 Make sure GC isn't running during a test 

(-verbose:gc to find out)
 Run the test longer, and let GC be a part of 

the result. Since GC will also run during 
production, this is more realistic.



12.3.2 Dynamic compilation

 Java is dynamically compiled, making 
perf. testing harder

 JVM will turn often used parts of 
bytecode into machine code in to 
improve performance, making timing 
unpredictable.

 Timing tests should only run after all 
code is turned into machine code 
(make the test run long enough)



12.3.3 Unrealistic sampling of 
code paths

 The JVM is permitted to use information 
specific to the execution to make better 
code

 Compiling method M in one program 
might generate different code in 
another

 Always mix tests for multi-threaded 
performance with tests for single-
threaded performance



12.3.4 Unrealistic degree of 
contention

 As we saw in the BoundedBuffer test, 
producer & consumer operated on the 
collection (take/put).

 But they didn't actually DO anything 
with the items

 In an actual application, there will 
therefore be less contention than were 
measured in the tests



12.3.5 Dead code elimination

 Code that does not affect the outcome 
of operations will be eliminated by the 
JVMs optimizer.

 A problem since most tests don't 
actually do much useful work.

 This will speed up your tests and affect 
your test results

 Solution: Every computed result must 
be used somehow



12.4 Complementary testing 
approaches

 Finding all bugs is unrealistic goal, but 
testing increases confidence in code

 Manual code reviews by experts is the 
most effective approach

 Use of static analysis tools, tools that 
analyse code without executing it.
 Inconsistent sync., unreleased locks and 

spin loops, etc
 AOP: Only limited use for conc. testing, 

most AOP frameworks do not support 
pointcuts at synch. points.



12.4.4 Profiling tools
 Tools that analyse thread execution 

and their lifecycle can help spot 
bottlenecks in code.

 Note that monitoring tools can affect 
the performance and your test result!

 Demo of NetBeans Profiler, profiling 
PutTakeWithTimer.java


