
Stratego/XT 0.16:
Components for Transformation Systems

Martin Bravenboer

Karl Trygve Kalleberg

Rob Vermaas

Eelco Visser

Technical Report UU-CS-2005-052

Department of Information and Computing Sciences
Universiteit Utrecht

December, 2005



Copyright c© 2005 Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas,
Eelco Visser

Preprint of: M. Bravenboer, K. T. Kalleberg, R. Vermaas and E. Visser
Stratego/XT 0.16: Components for Transformation Systems. In J. Hatcliff and
F. Tip, editors, Proceedings of the 2006 ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-Based Program Manipulation (PEPM’06), January
9 – 10, Charleston, South Carolina, USA.

Address:

Department of Information and
Computing Sciences
Universiteit Utrecht
P.O.Box 80089
3508 TB Utrecht
The Netherlands

Martin Bravenboer
martin@cs.uu.nl
http://www.cs.uu.nl/
∼martin

Eelco Visser
visser@acm.org
http://www.cs.uu.nl/
∼visser
(corresponding author)

Machina
Utrecht
The Netherlands

Rob Vermaas
rob@levellers.nl

Department of Informatics
University of Bergen
Postboks 7800
N-5020 Bergen
Norway

Karl Trygve Kalleberg
karltk@ii.uib.no
http://www.ii.uib.no/
∼karltk

http://www.cs.uu.nl/~martin
http://www.cs.uu.nl/~martin
http://www.cs.uu.nl/~visser
http://www.cs.uu.nl/~visser
http://www.ii.uib.no/~karltk
http://www.ii.uib.no/~karltk


Stratego/XT 0.16: Components for

Transformation Systems

Martin Bravenboer Karl Trygve Kalleberg Rob Vermaas
Universiteit Utrecht University of Bergen Machina

martin@cs.uu.nl karltk@ii.uib.no rob@levellers.nl

Eelco Visser
Universiteit Utrecht

visser@acm.org

December, 2005

Stratego/XT is a language and toolset for program transformation. The
Stratego language provides rewrite rules for expressing basic transformations,
programmable rewriting strategies for controlling the application of rules, con-
crete syntax for expressing the patterns of rules in the syntax of the object
language, and dynamic rewrite rules for expressing context-sensitive transfor-
mations, thus supporting the development of transformation components at a
high level of abstraction. The XT toolset offers a collection of flexible, reusable
transformation components, as well as declarative languages for deriving new
components. Complete program transformation systems are composed from
these components. In this paper we give an overview of Stratego/XT 0.16.

1 Introduction

Stratego/XT is a development environment for creating stand-alone transforma-
tion systems. It combines Stratego, a language for implementing transformations
based on the paradigm of programmable rewriting strategies, with XT, a col-
lection of reusable components and tools for the development of transformation
systems. In general, Stratego/XT is intended for the analysis, manipulation
and generation of programs, though its features make it useful for transforming
any structured documents. In practice, Stratego/XT has been used to build
many types of transformation systems including compilers, interpreters, static
analyzers, domain-specific optimizers, code generators, source code refactorers,
documentation generators, and document transformers. These systems involved
numerous types of transformations, including desugaring of syntactic abstrac-
tions; assimilation of language embeddings [7]; bound variable renaming; opti-
mizations, such as function inlining; data-flow transformations such as constant
propagation, copy propagation, common-subexpression elimination, and partial
evaluation [4, 14]; instruction selection [6]; and several analyses including type
checking [5] and escaping variables analysis.

In this paper, we give an overview of Stratego/XT. In Section 2 we describe
the transformation infrastructure provided by the XT toolset. In Section 3



Stratego/XT 0.16: Components for Transformation Systems

we sketch the technical foundations of the Stratego language. In Section 4
we outline the experience with using Stratego/XT in concrete projects. In
Section 5 we describe the availability of software, documentation, and support.
Along the way we refer to previous publications for further information about
implemenation aspects and applications of Stratego/XT. These publications also
provide discussions of the relation to other systems.

2 The XT Transformation Tools

XT [10] is a collection of generic, reusable tools serving two purposes. First,
it provides several domain-specific languages designed for the development of
language-specific transformation components. Second, XT contains ready-made,
generic components. The existing and generated components all fit together in
a flexible and scalable component model. XT relies on the SDF parsing tech-
nology, providing a parser generator and a scannerless, generalized-LR parser
(SGLR) [15]. XT extends the SDF distribution with tools for unit testing gram-
mars; a well-formedness checker for ASTs; a pretty-print generator based on the
Box layout language [8]; and XML conversion tools.

The syntax definition language SDF is central to XT. It is used to specify the
syntax of programming languages in a declarative way. Different code generators
take the syntax definition as input, deriving several artifacts: a parser which
directly constructs an AST from a source code file, a format checker for such
ASTs (used to determine the correctness of subsequent transformations on the
AST), a Stratego signature (data declaration) for the AST, and a pretty-printer
for turning ASTs back into text.

Figure 1 depicts the architecture of a transformation system and shows how
XT facilitates the development of its components. The Parser and Pretty-Printer
in the pipeline are entirely derived from the SDF definition. The SDF gram-
mar enjoys its central position in this picture for a good reason. Unlike most
other grammar formalisms, it is highly modular and declarative. This allows the
formalism to easily scale to large language declarations, but more interestingly,
it also allows for easy language composition and embedding, see Section 4 for
details. The Transform component (which may be a series of components), is
written in the Stratego language, described next.

Components are connected using the Annotated Term Format (ATerms) [2],
an exchange format that supports easy persistence of terms used to represent
programs.

3 The Stratego Language

In transformation systems built with Stratego/XT, transformation components
are implemented using the Stratego language [20, 18, 4]. Stratego provides
rewrite rules for expressing basic transformations, programmable rewriting strate-
gies for controlling the application of rules, concrete syntax for expressing the
patterns of rules in the syntax of the object language, and dynamic rewrite rules
for expressing context-sensitive transformations.

2



Stratego/XT 0.16: Components for Transformation Systems

Parse

program

Transform Pretty-Print

Parser
Generator

Parse Table

Signature
Generator

Signature

Pretty-Printer
Generator

Pretty-Print
Table

program

Syntax
Definition

Figure 1: Transformation infrastructure

Terms Stratego programs transform terms that are essentially of the form
c(t1, ..., tn), i.e. the application of a constructor c to zero or more terms ti.
Terms are equivalent to trees and are used to represent parse or abstract syntax
trees of programs, or any other structured documents. The terms used internally
are equivalent to the ATerms used for exchange between tools. Thus, Stratego
programmers directly manipulate ATerms.

Stratego is agnostic to the producers and consumers of terms, i.e. Strat-
ego is not concerned with turning programs into terms (parsing), or vice versa
(unparsing). This means that a Stratego program can be connected with any
parsers and unparsers, not just with parsers/unparsers produced from SDF defi-
nitions. This allows existing front-ends to be used in combination with Stratego,
as long as the front-end is adapted to produce ATerms.

Rewrite Rules Rewrite rules are the basic units of transformation. A rewrite
rule has the form R : p1 → p2, where R is the name of the rule, p1 the left-hand
side pattern of the rule and p2 the right-hand side pattern. A pattern is a term
with variables. Applying a rule R to a term t, entails matching p1 against t,
binding the variables in the pattern. If they match, the rule replaces t with the
instantiation of the right-hand side p2, replacing its variables with the terms
found during matching. When matching fails, the application of a rule fails as
well.

Rewriting Strategies Traditional term rewriting is the exhaustive applica-
tion of a set of rewrite rules to a term until no more rules apply. This procedure
is usually not adequate for program transformation, however. One rule may
be the inverse of another, leading to non-termination, or different rule applica-

3



Stratego/XT 0.16: Components for Transformation Systems

tion orders may give different results (non-confluence). Stratego sidesteps these
issues by allowing the programmer to declare the order of application using
programmable rewriting strategies [20]. Strategies are composed from rules and
other strategies using combinators. For example, the left-choice combinator s1

<+ s2 first tries to apply strategy s1 and if that fails, applies strategy s2. Prim-
itive strategies include id which always succeeds and fail, which always fails.
Stratego provides combinators for composing generic traversals, which are used
to traverse a term, controlling where in the term a transformation should be
applied. An example of such a generic traversal is topdown(s), which traverses
an entire term and applies strategy s in pre-order. If s fails at any point, so does
topdown. topdown(s <+ id) will traverse the tree, apply s wherever possible
and ignore any failures. Stratego is not the only language which uses the concept
of strategies. See [19] for a survey of strategies in program transformation.

Dynamic Rules Rewrite rules are context-free, i.e. only have access to the
term to which they are applied. To express context-sensitive transformations,
Stratego has introduced dynamic rewrite rules [4, 14], which allow the definition
of rewrite rules at run-time. Such rules can inherit information from the context
in which they are defined and propagate this to the location where they are
applied.

Concrete Syntax Finally, Stratego supports the use of concrete syntax [17]
in the patterns of rewrite rules. That is, rather than expressing abstract syntax
tree patterns using nested constructor applications, one can use the concrete
syntax of the object language. For example, a pattern, matching an assignment
of an expression to a variable, may be expressed as Assign(Var(x ), e ) using
terms, and may be written as |[ x := e ]| using concrete syntax.

Example The features of Stratego are illustrated in Figure 2, which defines
a flow-sensitive, intraprocedural constant propagation transformation for an im-
perative language with assignments and structured control flow, as illustrated
by the following transformation:

(a := 1;
if foo()
then (b := a + 1)
else (b := 2; a := 3);
b := a + b)

⇒

(a := 1;
if foo()
then (b := 2)
else (b := 2; a := 3);
b := a + 2)

The rewrite rules EvalBinOp and EvalIf express constant folding. Typically
there would be many more constant folding rules for the constructs of a language.

4



Stratego/XT 0.16: Components for Transformation Systems

The propconst strategy traverses a function body in a bottom-up manner
using the generic traversal combinator all, applying constant folding rules af-
ter transforming subterms. That is, the expression all(s) denotes a one-level
traversal that applies the strategy s to each direct subterm of the subject term.
Thus, all(propconst) recursively applies the propconst strategy to the sub-
terms. The other elements of the choice handle special cases, where a uniform
traversal is not appropriate.

The PropConst rule is defined dynamically during the transformation and
replaces variable occurrences with their constant value.

The propconst-assign strategy matches assignment statements, transform-
ing the right-hand side with a recursive invocation of propconst, but not the
left-hand side; replacing the left-hand side variable with a constant would not
be correct. Next the propconst-assign strategy inspects the result e of trans-
forming the right-hand side. If it is a constant value, the PropConst rule is
defined to rewrite occurrences of the variable x to the constant right-hand side
of the assignment. In case the expression is not a constant, the rule is undefined,
to prevent propagation of a value previously associated with the variable.

The propconst-if and propconst-while strategies define flow-sensitive
propagation through control flow constructs [4, 14]. The s1/PropConst\s2 op-
erator applies the strategies s1 and s2 strategies sequentially, for each using the
same set of dynamic rules for PropConst. Afterwards it takes the intersection
of the rule-sets resulting from each invocation. Thus, only those rules consistent
with both branches are kept. Similarly, /PropConst\*s performs a fixed point
iteration until the PropConst rule-set is stable.

4 Experience

Stratego/XT is being applied in a number of research and industrial projects.
The experience from these projects has been influential on the design and im-
plementation of Stratego/XT.

Stratego/XT Stratego and the XT tools are bootstrapped, that is, they are
used in their own implementation. The 0.16 release of Stratego/XT counts well
over 50K lines of Stratego code. Additionally, many extensions and utilities
have been built using Stratego/XT, including the Stratego Shell, an interactive
interpreter for Stratego; xDoc, a Javadoc-like source code documentation system
for Stratego code; and Aspect Stratego [12], a language extension to Stratego
which adds pointcuts and advice.

Java Besides generic tools, it is important to have ready-made components for
specific programming languages. For Java, we have developed a modular Java
1.5 syntax definition, a high-quality pretty-printer, a disambiguation phase, an
extensible type checker (including generics), an extensive reflection library for
use in Stratego, and tools for reading and writing Java bytecode to terms. These
tools are used in the implementation of language embeddings, a recently added
application area of Stratego/XT [7, 3]. Extensions of Java with domain-specific
languages for user-interfaces and regular expressions are available. JavaJava [5]
is an advanced code generation tool, based on the extensible type checker and
the GLR parsing technology used in Stratego/XT.

5



Stratego/XT 0.16: Components for Transformation Systems

EvalBinOp :

|[ i + j ]| -> |[ k ]| where <add>(i ,j ) => k

EvalIf :

|[ if 0 then e1 else e2 ]| -> |[ e2 ]|

propconst =

PropConst

<+ propconst-assign

<+ propconst-if

<+ propconst-while

<+ all(propconst); try(EvalBinOp <+ EvalIf)

propconst-assign =

|[ x := <propconst => e > ]|

; if <is-value> e

then rules( PropConst : |[ x ]| -> |[ e ]| )

else rules( PropConst :- |[ x ]| ) end

propconst-if =

|[ if <propconst> then <id> else <id> ]|

; (EvalIf; propconst

<+ (|[ if <id> then <propconst> else <id> ]|

/PropConst\

|[ if <id> then <id> else <propconst> ]|))

propconst-while =

|[ while <id> do <id> ]|

; (|[ while <propconst> do <id> ]|; EvalWhile

<+ /PropConst\*

|[ while <propconst> do <propconst> ]|)

Figure 2: Flow-sensitive constant propagation

Also, we have developed an AspectJ grammar, wich is a modular extension of
the Java syntax definition. Thus, the AspectJ grammar only defines the syntax
extensions to Java provided by AspectJ, and is programmed against the public
interface of the Java grammar. This sort of language composition is possible
because of the scannerless, GLR nature of the SGLR parser.

C/C++ The Transformers project at LRDE, EPITA, France has produced a
disambiguating front-end for C99, and is doing the same for C++ 2003. Disam-
biguation of both languages requires semantic analysis, which is implemented in
an attribute grammar extension to SDF, which in turn is implemented in Strat-
ego. CodeBoost [1] is a source-to-source optimizer for C++ code, developed
at the University of Bergen, Norway, supporting domain-specific optimization
of numerical software. Codeboost includes a semantic analyser for substantial
parts of C++, written entirely in Stratego. Proteus [22] is a C/C++ transfor-
mation framework, based on Stratego, constructed at Lucent, USA. It compiles
a high-level transformation language (YATL) to Stratego. Compared to Code-
Boost, it relies on a different C++ parser, retains layout and deals gracefully

6



Stratego/XT 0.16: Components for Transformation Systems

with pre-processor directives.

Miscellaneous Stratego/XT has been used to build several other (experi-
mental) compilers and front-ends. OctaveC is a compiler for Octave, a clone
of Matlab. It includes loop vectorization, and partial evaluation [13]. Tiger in
Stratego is a demonstration compiler that includes all aspects of compilation,
from type checking, via optimizations, to instruction selection. Prolog Tools
provides a language front-end and DSL embedding for Prolog [9]. Spoofax [11]
is an Eclipse plugin that provides content-aware, syntax highlighting editors for
SDF and Stratego. Our BibTEX transformation tools provide extractions and
refactorings on BibTEX bibliography files.

5 Availability

Software Stratego/XT is an open source project, distributed under the GNU
LGPL license. This license allows closed source transformation systems based
on Stratego/XT. The Subversion source code repository is publicly readable.
From this repository integration releases are generated for a number of different
platforms after every commit by a continuous build system. This buildfarm
helps with testing portability and backwards compatibility. Additionally, many
satellite projects, such as the Java front-end, are continuously tested against
the integration releases. For each major release, source drops and binaries for
most popular platforms and operating systems are produced.

Documentation The primary source of documentation is the manual. It
offers an extensive introduction of the XT architecture, and also a complete
Stratego tutorial. The tutorial includes several program transformation exam-
ples shown on a small, imperative language. The reference material includes
complete manual pages for all the XT command-line tools, and online API doc-
umentation of the library, which is also available for download.

Support The Stratego/XT website [21] contains pointers to mailing lists for
users and developers, a wiki, release pages, documentation and issue tracking.
Additionally, the developers are available for questions or chat on IRC.

6 Discussion

Previous Work Compared to earlier publications about Stratego/XT [10,
16, 18] we have gained new experience with the development of transformation
systems for Java, C, Octave, and BibTEX. Motivated by these projects new
language constructs such as dynamic rules and concrete object syntax have
matured. Stratego/XT now also provides new tools for testing, validating, and
debugging, to help in developing reliable transformation systems.

Usability Being a research project, Stratego/XT has enjoyed rapid evolution
but lagging and incomplete documentatiton. In the last few years, the system
has reached a new level of maturity and stability, allowing us to document core
parts of the system. Creating complete documentation is a huge effort, given the

7



Stratego/XT 0.16: Components for Transformation Systems

size of system, but we are working on improving the situation for our developers,
with manual pages for all tools, improved API documentation, and an extensive
manual with examples. Still, users need to invest time learning the foundations,
the Stratego language and the XT tools. We are continually working on making
the initial learning curve small.

Reuse Stratego/XT promotes reuse at all levels of granularity [18]. First, the
focus on transformation components strongly promotes reuse of large-grained
components. In many cases, users of Stratego/XT do not start with the de-
velopment of a parser, but can immediately get started with the actual trans-
formation. Stratego/XT has a varied selection of actively developed front-ends
(Section 4). Second, the focus on domain-specific languages for different phases
of a transformation system is a substantial time saver. In this way, implemen-
tations are more abstract, easier to maintain, and easier to read. Third, the
extensive Stratego library, with its generic traversals, generic transformations
for scoping, control- and data-flow and many other convenience functions for
program transformation allows developers to write their transformations con-
cisely.

7 Conclusion

Stratego/XT has considerably matured in the last few years of intensive develop-
ment and research. We have been successful in exploring the implementation of
individual transformations, and the range of transformations that we know how
to encode effectively and elegantly grows. Along the way we keep discovering
better idioms and abstractions for implementing transformations.

The goal of Stratego/XT is to support a wide-range of transformations and
to provide a new level of abstraction for the implementation of transformation
systems by third parties. Experience shows that external users can succesfully
build non-trivial transformation systems on top of Stratego/XT.

8 Acknowledgements

Many people have contributed to the development of Stratego/XT over the
years. Hayco de Jong, Jurgen Vinju, and Mark van den Brand at CWI do a
great job as maintainers of the ATerm library and SDF/SGLR, projects which
are all fundamental parts of Stratego/XT. Bas Luttik co-invented generic traver-
sal strategies with Eelco Visser; Zino Benaissa and Andrew Tolmach were in-
volved in the design of the very first version of Stratego; Merijn de Jonge and
Joost Visser co-developed the first version of the XT toolset; Karina Olmos and
Arthur van Dam were involved in the design and implementation of dynamic
rules; The redesign of dynamic rules reported in those papers was triggered by
Ganesh Sittampalam at the Stratego User Days in 2004. Patricia Johann was
involved in the design and correctness proof of innermost fusion; Anya Bagge
developed CodeBoost, one of the first big applications of Stratego/XT. Eelco
Dolstra has been an indispensable resource for tracing bugs in the back-end,
and has also provided the Nix build-farm that plays a crucial role in our devel-
opment and deployment process. Jan Heering and Magne Haveraaen provided

8



Stratego/XT 0.16: Components for Transformation Systems

moral support and employed Stratego in the Saga/CodeBoost project at the
Univerity of Bergen. Martin Bravenboer has acted as the release manager for
Stratego/XT in the later years, and made many other contributions, including
the format checking tools, the Stratego Shell, and the Dryad Java compiler. Rob
Vermaas developed the xDoc documentation system and has been an active de-
veloper of Stratego/XT and OctaveC for several years. Karl Trygve Kalleberg
helped develop CodeBoost, wrote the AspectStratego language and the Spoofax
editor. He actively helps maintain Stratego/XT.

Stratego/XT is the brainchild of Eelco Visser, who has been intimately in-
volved in all extensions and additions to the language and toolset since its
inception.

Finally, the feedback from our users has been a constant source for im-
provements. The Transformers group at Epita led by Akim Demaille are early
adopters of our improvements and extensions, have contributed many bugre-
ports and improvements, and invest a lot of effort in the development of C/C++
transformation system based on Stratego/XT. Daniel Waddington’s Proteus
group at Lucent Bell Labs has shown us that people can build complex trans-
formation systems with Stratego/XT without our involvement, even before we
had proper documentation. Several generations of students in the courses on
Software Generation, High-Performance Compilers, and Program Transforma-
tion at Universiteit Utrecht have provided valuable feedback and sometimes
innovations. Their suffering through imperfect implementation and lack of doc-
umentation have not been in vain. About 15 of those students ended up doing a
master’s thesis project related to Stratego/XT, contributing to the system and
research.

We would also like to thank the anonymous reviewers for comments on early
versions of this article.

References

[1] O. S. Bagge, K. T. Kalleberg, M. Haveraaen, and E. Visser. Design of
the CodeBoost transformation system for domain-specific optimisation of
C++ programs. In D. Binkley and P. Tonella, editors, 3rd IEEE Itl Work-
shop on Source Code Analysis and Manipulation (SCAM’03), pages 65–74,
Amsterdam, The Netherlands, Sep 2003. IEEE Comp. Soc. Press.

[2] M. G. J. van den Brand, H. de Jong, P. Klint, and P. Olivier. Efficient
annotated terms. Software, Practice & Experience, 30(3):259–291, 2000.

[3] M. Bravenboer, R. de Groot, and E. Visser. Metaborg in action: Exam-
ples of domain-specific language embedding and assimilation using Strat-
ego/XT. In Proceedings of the Summer School on Generative and Trans-
formational Techniques in Software Engineering (GTTSE’05), Braga, Por-
tugal, July 2005.

[4] M. Bravenboer, A. van Dam, K. Olmos, and E. Visser. Program trans-
formation with scoped dynamic rewrite rules. Fundamenta Informaticae,
69:1–56, 2005.

[5] M. Bravenboer, R. Vermaas, J. Vinju, and E. Visser. Generalized type-
based disambiguation of meta programs with concrete object syntax. In

9



Stratego/XT 0.16: Components for Transformation Systems

R. Glück and M. Lowry, editors, Proc. of Fourth Itl Conference on Gener-
ative Programming and Component Engineering (GPCE’05), volume 3676
of LNCS, pages 157–172, Tallin, Estonia, Sep 2005. Springer.

[6] M. Bravenboer and E. Visser. Rewriting strategies for instruction selec-
tion. In S. Tison, editor, Rewriting Techniques and Applications (RTA’02),
volume 2378 of LNCS, pages 237–251, Copenhagen, Denmark, July 2002.
Springer.

[7] M. Bravenboer and E. Visser. Concrete syntax for objects. Domain-
specific language embedding and assimilation without restrictions. In
D. C. Schmidt, editor, Proc. the 19th ACM SIGPLAN Conference on
Object-Oriented Programing, Systems, Languages, and Applications (OOP-
SLA’04), pages 365–383, Vancouver, Canada, October 2004. ACM Press.

[8] M. de Jonge. A pretty-printer for every occasion. In I. Ferguson, J. Gray,
and L. Scott, editors, Proceedings of the 2nd International Symposium on
Constructing Software Engineering Tools (CoSET2000). University of Wol-
longong, Australia, 2000.

[9] B. Fischer and E. Visser. Retrofitting the AutoBayes program synthe-
sis system with concrete object syntax. In C. Lengauer et al., editors,
Domain-Specific Program Generation, volume 3016 of LNCS, pages 239–
253. Spinger-Verlag, 2004.

[10] M. de Jonge, E. Visser, and J. Visser. XT: A bundle of program transfor-
mation tools. In M. G. J. van den Brand and D. Perigot, editors, Workshop
on Language Descriptions, Tools and Applications (LDTA’01), volume 44
of ENTCS. Elsevier, April 2001.

[11] K. T. Kalleberg. www.spoofax.org.

[12] K. T. Kalleberg and E. Visser. Combining aspect-oriented and strate-
gic programming. In N. M.-O. Horatiu Cirstea, editor, Proceedings of the
6th International Workshop of Rule-Based Programming (RULE), ENTCS,
Nara, Japan, April 2005. Elsevier.

[13] K. Olmos and E. Visser. Turning dynamic typing into static typing by
program specialization. In D. Binkley and P. Tonella, editors, Third
IEEE International Workshop on Source Code Analysis and Manipula-
tion (SCAM’03), pages 141–150, Amsterdam, The Netherlands, September
2003. IEEE Computer Society Press.

[14] K. Olmos and E. Visser. Composing source-to-source data-flow transfor-
mations with rewriting strategies and dependent dynamic rewrite rules.
In R. Bodik, editor, 14th International Conference on Compiler Construc-
tion (CC’05), volume 3443 of LNCS, pages 204–220. Springer-Verlag, April
2005.

[15] E. Visser. Syntax Definition for Language Prototyping. PhD thesis, Uni-
versity of Amsterdam, September 1997.

10

http://www.spoofax.org


Stratego/XT 0.16: Components for Transformation Systems

[16] E. Visser. Stratego: A language for program transformation based on
rewriting strategies. System description of Stratego 0.5. In A. Middeldorp,
editor, Rewriting Techniques and Applications (RTA’01), volume 2051 of
LNCS, pages 357–361. Springer, May 2001.

[17] E. Visser. Meta-programming with concrete object syntax. In D. Batory,
C. Consel, and W. Taha, editors, Generative Programming and Component
Engineering (GPCE’02), volume 2487 of LNCS, pages 299–315, Pittsburgh,
PA, USA, October 2002. Springer-Verlag.

[18] E. Visser. Program transformation with Stratego/XT: Rules, strategies,
tools, and systems in StrategoXT-0.9. In C. Lengauer et al., editors,
Domain-Specific Program Generation, volume 3016 of LNCS, pages 216–
238. Spinger-Verlag, June 2004.

[19] E. Visser. A survey of strategies in rule-based program transformation
systems. J. Sym. Comp., 40(1):831–873, 2005. Special issue on Reduction
Strategies in Rewriting and Programming.

[20] E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building program optimizers
with rewriting strategies. In Proceedings of the third ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP’98), pages 13–26.
ACM Press, September 1998.

[21] E. Visser et al. www.stratego-language.org.

[22] D. G. Waddington and B. Yao. High fidelity C++ code transformation.
In Proceedings of the 5th workshop on Language Descriptions, Tools and
Applications, ENTCS. Elsevier, April 2005.

11

http://www.stratego-language.org

	Introduction
	The XT Transformation Tools
	The Stratego Language
	Experience
	Availability
	Discussion
	Conclusion
	Acknowledgements

