
Center-oriented Algorithms for the Minimum

Energy Broad- and Multicast Problem in

Wireless Ad hoc Networks

Joanna Bauer a,1,∗, Kemal Altinkemer b Dag Haugland a

a Department of Informatics, University of Bergen, PB. 7800, 5020 Bergen,

Norway, Tel: +47 55584094, Fax: +47 55584199

b Krannert School of Management, Purdue University, 403 W. State Street, West

Lafayette, IN 47907, USA

Abstract

Quickly finding low-energy multicast routings is vital for a wireless system’s energy

efficiency. Therefore, key aspects for heuristics for the minimum energy multicast

problem (MEMP) are time complexity (measured in the numbers |V | and |A| of net-

working devices and their possible power assignments, respectively) and deviation

from optimum. Following a center-oriented approach, we develop the STSuS and

STESuS algorithms (time complexity O(|V |2) and O(|V |2 log |V |), respectively), and

analyze their performance in numerical simulations. They deviate from optimum by

only ≈ 11% and ≈ 7.5%, respectively, and thereby outperform the well-known MIP

(O(|V |2), ≈ 22% deviation) and many other algorithms significantly.
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1 Introduction

Wireless ad hoc (i.e. “off-the-cuff”) mesh networks enable wireless devices to

communicate without access to a backbone structure as for example the Inter-

net or base stations. This enables a wide range of powerful applications, from

instant conferencing between notebook PC users to emergency and military

services as for example disaster rescue work, disease outbreak detection and

monitoring, forest fire detection, weather forecasting, control of smart home

appliances, ubiquitous computing, and homeland security (Perkins, 2000).

Warneke et al. (2001) introduced the idea of smart dust, devices equipped

with a sensor and wireless communication, which would, following Moore’s

Law (Moore, 1998) eventually become as small and inexpensive that they

can be scattered over an area to monitor for example temperature or move-

ments. In such a scenario, energy is a scarce resource, as such tiny devices can

only carry a tiny energy source, and not be recharged. The Minimum Energy

Multicast Problem (MEMP) addressed in this paper is of high importance to

any application seeking to set up an energy efficient wireless network without

base infrastructure. Three specific applications and the state of the technical

prerequisites are explained in detail in Section 7.

In many applications of wireless systems, a minimum energy multicast routing

has to be computed repeatedly and quickly. To establish a multicast routing, a

transmission power must be assigned to each network unit. The coverage area
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of a unit is given by the power assigned to it, and therefore the power needed

to cover a set of receiving units is not the sum, but the maximum of the power

needed to cover any of them. The power needed at one unit to cover another

unit grows at least quadratically with the distance. Consequently, comput-

ing a minimum energy multicast routing is NP-hard (Cagalj et al., 2002).

Therefore, the energy efficiency of applications depend on efficient routing al-

gorithms. The efficiency of an algorithm is in general evaluated by the solution

quality, and, as better solutions can be obtained by more computations, by

its time complexity. Both aspects of the minimum energy multicast problem

have therefore attracted intensive research. An overview can be found in the

survey of Guo and Yang (2007).

A common approach is to represent the network as a graph G = (V,A) and

identify a routing arborescence, which is a directed tree with all arcs oriented

away from the root. Thus, a directed path (the routing) from the root to

any destination node is defined. The power consumption of a node in the

arborescence is determined by the length of the most expensive outgoing arc.

Most proposed heuristics follow the scheme of constructing an arborescence

by starting with the source and in every step greedily adding at least one node

according to a certain decision rule. The most frequently cited such algorithm

is the Multicast Incremental Power (MIP) algorithm presented by Wieselthier

et al. (2002). MIP is called BIP for broadcast. The average performance ratio

of MIP is approximately 1.22. MIP has O(|V |2) time complexity (Bauer et

al., 2009). To the best of our knowledge, MIP is the algorithm with the best

average performance ratio within this time complexity.

An inherent weakness of MIP is that its greedy nature makes it biased towards
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overly high arborescences. In this paper, we strive to overcome this weakness

by a center-oriented algorithms. We first study a simple algorithm which we

call Star. It assigns to the source a sufficiently high power to cover all destina-

tions, the solution arborescence thus being a star. Our experiments show that

if the source is located centrally in the network, the star arborescence is more

energy efficient than the solution produced by MIP. However, when the source

is located more peripherally, the star gives a weak solution. These observa-

tions call for an approach referred to as center-oriented algorithms. The idea

is to first choose a node which in some sense is positioned centrally in the net-

work. A route between the source and this center node is established, usually

by constructing the shortest path from the source to the center node. Then,

a routing from the center node to all remaining destinations is determined.

This algorithm, which we call ST, outputs arborescences with about half the

power consumption of the Star arborescences. We improve the ST arbores-

cence by applying the successive shrink (SuS) algorithm, which was presented

by Yuan et al. (2008), to the center node. SuS subsequently disconnects the

most power demanding child from the center node and assigns a new parent to

it. This yields algorithm STSuS. It has O(|V |2) time complexity, and a better

average performance ratio than MIP. We improve the STSuS arborescence by

introducing an enhanced SuS move: After a new parent for the most power

demanding child of the center is chosen, this new parent is allowed to increase

its power further if this results in a total power saving. This yields algorithm

STESuS of time complexity O(|V |2 log |V |).

Kang and Poovendran (2004) present a first approach to center-oriented broad-

cast algorithms (COBRA). They propose several algorithms, of which a version

named COBRA-EWMA performs best. The main difference between center-
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oriented algorithms and greedy tree-construction algorithms like MIP is that

the latter construct arborescences neglecting the location of the destinations.

Thus, they can run off in a wrong direction. MIP’s worst-case-instance by

Wan et al. (2004) is a drastic example of this behavior. Our algorithms, on

the contrary, start off with a reasonably good solution, which then is refined.

The presentation begins with introducing notation in Section 2. In Section 3,

we develop the simple center-oriented algorithm ST and review (Kang and

Poovendran, 2004). In Sects. 4 and 5, we subsequently refine ST to STSuS and

STESuS. All sections discuss the time complexity of the proposed algorithms.

Section 6 presents the results of our numerical experiments and the resulting

observations, and Section 7 shows possible applications. The paper is ended

with concluding remarks.

2 Preliminaries

A problem instance is given by a directed graph G = (V,A), where the nodes

represent the networking units, a source s ∈ V , a set of destinations D ⊆ V ,

and power requirements c ∈ RA. We assume G to be complete.

A solution to an instance can be given by an s-arborescence T = (VT , AT ) with

node set VT ⊆ V and arc set AT ⊆ A. An s-arborescence is a directed tree

where s ∈ VT , and all arcs are oriented away from s. In T , every v ∈ VT \ {s}

has a parent πv(T ), and every v ∈ VT has a (possibly empty) set Γv(T ) of

children and a (possibly empty) set ∆v(T ) of descendants. A node v ∈ VT is

called active, if v ∈ D or D ∩∆v(T ) 6= ∅. For any set S ⊆ VT , we denote by
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S̃(T ) the subset of S containing exactly the active nodes in S, and we define

pv(S) =


0 if S̃(T ) = ∅

max
w∈S̃(T )

{cvw} otherwise

We use pv(T ) as a short hand notation for pv(Γv(T )), that is, pv(T ) is the

power necessary for v to reach all its active children in T . Consequently, we

define the cost of T as pT =
∑
v∈VT

pv(T ). The minimum energy multicast

problem can then be formulated as

[MEMP] Find an s-arborescence T such that D ⊆ VT and pT is minimized.

An algorithm links node w to node v by adding (v, w) and w to the current

s-arborescence T . If w is active, this may lead to an increase in pv(T ). If

v has been inactive, additional power might also be required at upstream

nodes of v. The total additional power needed at all nodes in T if v becomes

active is called the induced power Iv(T ) of v in T . If v is active, we have

Iv(T ) = 0. We furthermore call the node γv(T ) ∈ Γv(T ) that determines the

power assignment at v (that is, pv(T ) = cvγv(T )) the critical child of v. Ties

are broken by a consistent tie-braking rule, such that every node has at most

one critical child. We let hv(T ) be the number of nodes of the s-v-path in T .

We denote by Φv = (VΦv , AΦv) the shortest s-v-path in G for every node v ∈ V ,

by pΦv =
∑

(i,j)∈AΦv
cij the power consumption of Φv, and by Φ = (V,

⋃
v∈V AΦv)

the shortest-path-arborescence of G with root s.

Table B.1 on page 34 summarizes the introduced terms and abbreviations,

and Table C.1 on page 36 summarizes the introduced notation.
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2.1 Test Instances

In order to evaluate the presented algorithms, we apply them to generated test

instances. The set “|V |/|D|” refers to 100 instances with |V | nodes and |D| des-

tinations, generated by distributing the nodes on a square using the standard

C++ pseudo-random number generator rand(). A realistic cost function for

MEMP (Wieselthier et al., 2000) is to set cvw = κdαvw, where dvw is the distance

between v and w, κ is a positive constant and α is an environment-dependent

parameter in [2, 4]. We use this cost function for all test instances. We set κ

to 1 and α to 2, as for these values the lower bound of |V | − 2− o(1) on the

approximation ratio of MIP was derived by Wan et al. (2004). However, the

algorithms presented in this paper can be applied to instances with arbitrary

cost functions.

For any specific instance I, we let popt(I) and pA(I) denote the power con-

sumption of the optimal solution to I and the solution to I determined by

algorithm A, respectively.

3 The Shortest Trunk Algorithm

3.1 Motivation

The simplest algorithm for solving MEMP is the Star algorithm. It links every

destination to the source, the resulting s-arborescence being a star. It has

O(|D|) time complexity. Clearly, the performance of the Star can be quite

bad, as for example pStar(S) = 2.55popt(S) for the sample instance S taken
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out of the test instance set |25|/|5|. In S, node 0 is the source, and nodes

1, . . . , 5 are the destinations (Fig. 1).

However, it is likewise clear that the bad performance of the Star applied to S

is due to the position of s, at the boundary of the deploy region of the instance.

If the position of s is favorable to the Star, then the results are surprisingly

good: We generated test sets |25|/|5|, |25|/|12|, and |25|/|24|, where we let

the source be positioned at the center of the square in which the instance is

deployed. For every instance, we determined the optimal solution using integer

programming (Bauer et al., 2008), and the multicast arborescences generated

by MIP and Star. In Table 1, the averaged power consumptions are given in

columns 3-5. The table shows that the simple Star outperforms MIP for the

instance sets |25|/|12| and |25|/|24|. This makes the Star a promising base for

developing a MEMP algorithm.
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Fig. 1. Star(S)

Table 1. Performance of MIP and Star on

instances with source in the center

|V | |D| opt MIP Star

25 5 19.81 25.61 29.13

12 27.68 38.55 34.99

24 32.53 48.40 38.61

3.2 The Shortest Trunk (ST) Algorithm

A straightforward idea to improve the Star to handle general locations of the

source is to determine a node z which is positioned “centrally” in the instance,
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connect it to s, and make z the center of a star covering the remaining nodes.

We define as an (s, z)-trunk any s-arborescence where all edges are incident to

a node on the path from s to z. For G, s, z and c, we define as a shortest (s, z)-

trunk any (s, z)-trunk where the path from s to z equals a shortest s-z-path

in G with cost function c.

A simple MEMP-algorithm is given by finding the s-arborescence T that min-

imizes pT subject to the constraints:

• T covers D

• for some z ∈ V , T consists of a shortest (s, z)-trunk and a star centered at

z.

For every z ∈ V , we let Dz be the set of destinations covered by the shortest

(s, z)-trunk defined by Φ: Dz = {d ∈ D|∃(v, w) ∈ AΦz : cvw ≥ cvd} . Then, the

s-arborescence satisfying the above constraints has cost pΦz +pz(D\Dz). This

leads to the Shortest-Trunk (ST) algorithm.

ST(G = (V,E), s ∈ V,D ⊂ V, c ∈ RE)

1 construct Φ

2 find z ∈ argmin{pΦz + pz(D \Dz) : z ∈ V }

3 T = (VT , AT )← ({s}, ∅)

4 let s = v0, . . . , vk = z be the nodes on Φz

5 for i← 0 . . . k − 1

6 AT ← AT ∪ {(vi, vi+1)}

7 VT ← VT ∪ {vi+1}

8 for all d ∈ D \ VT

9 if cvivi+1
≥ cvid
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10 AT ← AT ∪ {(vi, d)}

11 VT ← VT ∪ {d}

12 for all d ∈ D \ VT

13 AT ← AT ∪ {(z, d)}

14 VT ← VT ∪ {d}

15 return T

In Step 2, we choose z such that pΦz + pz(D \Dz) is minimized. In Steps 4-7,

the node z is connected to s via the shortest path between s and z. While the

path is constructed, every node on the path adds to its children all destinations

it covers that do not yet have a parent (Steps 8-11). In Steps 12-14, node z

finally becomes the parent of all destinations that do not yet have a parent.

The power assigned to the nodes in S by ST is visualized in Fig. 2. ST first

determines node 7 as center node. The shortest path from node 0 to node

7 is (0–15–14–9–19–7). As the shortest (0,7)-trunk covers destinations 1, 2,

and 4, node 7 only needs to cover destinations 3 and 5. Of those, node 3

is furthest away from 7 and thus determines the power assignment at 7. In

Fig. 2, the nodes 6, 12, and 20 are therefore uncovered. ST reduces the power

consumption of the Star by about one third to pST(S) = 1.61popt(S).

3.3 Time complexity of the Shortest Trunk Algorithm

Theorem 1 The ST algorithm has O(|V ||D| + |A| + |V | log |V |) time com-

plexity.
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Fig. 2. ST(S)

PROOF. See Appendix A.1.

In the remainder of the paper, we refer by ST to a slightly altered version

of the algorithm, which serves as a base for the two subsequently presented

algorithms: In Steps 8 and 12, we substitute D \ VT by V \ VT , such that ST

returns an s-arborescence T with VT = V . We also let ST not only return T ,

but (T, z). This version of ST has O(|V |2) time complexity.

3.4 Previous Work: The COBRA Scheme and COBRA-EWMA

A preliminary approach to solve the Minimum Energy Broadcast Problem

(MEBP) by center-oriented algorithms was made by Kang and Poovendran

(2004). The authors argued that intuitively, the center of a network instance

is the best place to take advantage of MEBP’s node-oriented objective func-

tion, and proposed the following general scheme for center-oriented broadcast

routing algorithms.

COBRA(G = (V,A), s ∈ V, c ∈ RA)

1 choose center node z ∈ V
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2 connect z to s

3 apply a broadcast routing algorithm at z

For Step 1, Kang and Poovendran (2004) suggested to choose for z the node

closest to the geometrical center of the region over which the network is dis-

tributed. For Step 2, they suggested to use the shortest path in G with arc

costs c. However, in Step 3, they disregard that the nodes on the path and

possibly some other nodes are already covered, and let all nodes be covered by

a broadcast routing algorithm started at z. For Step 3, they experimented with

several possibilities, among which the broadcast algorithm EWMA (Cagalj et

al., 2002) performs best. EWMA executes Prim’s MST algorithm followed by

a local search. Kang and Poovendran (2004) named the resulting algorithm

COBRA-EWMA.

We adapt the COBRA scheme to multicast as follows. We split Step 3 into

the two steps that usually are executed by a routing algorithm, namely tree

construction and local search.

COMA(G = (V,A), s ∈ V,D ⊆ V, c ∈ RA)

1 choose z ∈ V

2 connect z to s

3 cover all nodes in D

4 improve the solution by local search
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4 The Shortest Trunk Successive Shrink Algorithm

4.1 Previous Work: The IMBM Algorithm

Li and Nikolaides (2001) presented the algorithm IMBM, which is to the best

of our knowledge the first algorithm based on the idea to first construct a star

arborescence and then improve it by local search. However, IMBM is not a

center-oriented algorithm, as the idea of a center node is not integrated.

In the local search of IMBM, it is checked whether for any critical child γv(T ),

there is a node f satisfying cvf + cfγv(T ) < cvγv(T ). Of all such possible moves

(v, f) that actually lead to power improvement (they might not, as the node-

oriented objective function is not taken into account), one is selected randomly

and executed. If this leads to an increase in pf (T ), it is then checked whether

f covers any other critical children, and if so, they are linked to f .

Li and Nikolaides (2001) suggest to execute this local search until no further

improvement is found, and execute IMBM |V | times (which, because of the

random move selection, leads to different solutions), and then finally select

the best outcome. The time complexity is O(|V |4). Li and Nikolaides (2001)

report that IMBM outperforms BIP for a majority of their test instances.

In the forthcoming algorithms, we consider moves (v, f) satisfying

(1) If (T ) + cfγv(T ) − pf (T ) < cvγv(T ) − pv(Γv(T ) \ {γv(T )}) .

This criterion is more closely related to the objective function than the eval-

uation criterion of Li and Nikolaides (2001). We consider as v only the center

node z, as the highest savings can be obtained at this node. This reduces the
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time complexity by one order of magnitude. Furthermore, in every step we

select the move yielding the highest power saving (steepest descent). We then

need to execute the algorithm only once, which reduces the time complexity by

another order of magnitude. Using a careful implementation, we can evaluate

(1) within O(|V |2) time. In Section 4.2, we give this implementation, which

was presented as part of the SuS heuristic by Yuan et al. (2008). In Section 4.3,

we show how it can be combined with the ST algorithm, yielding the STSuS

algorithm. In the subsequent discussion of the time complexity of STSuS, we

also strengthen the result on the time complexity of the SuS algorithm given

by Yuan et al. (2008).

4.2 The Successive Shrink (SuS) Procedure

SuS(G = (V,A), D ⊂ V, c ∈ RA, T = (VT , AT ), v ∈ VT )

1 T ′ = (VT ′ , AT ′)← T

2 sort Γv(T ) = {g1, . . . , gk} : cvgi
≥ cvgi+1

∀i = 1, . . . , k − 1

3 for i← 1, . . . , k

4 g ← gi

5 F ← V \ {v} \∆g(T )

6 if F 6= ∅

7 find f ∈ argmin{If ′(T ) + cf ′g − pf ′(T ) : f ′ ∈ F}

8 AT ← AT \ {(v, g)} ∪ {(f, g)}

9 if pT < pT ′

10 T ′ ← T

11 return T ′
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Given an s-arborescence T and a node v, the SuS procedure in Step 2 sorts

Γv(T ) with respect to c, resulting in Γv(T ) = {g1, g2, . . . , gk}, where cvgi
≥

cvgi+1
, and k = |Γv(T )|. Then, the SuS procedure considers reducing Γv(T ) by

disconnecting g1 from v and linking it to another node f /∈ ∆g1(T ). In general,

this leads to a power increase at f by cfg1 − pf (T ) and possibly to a power

increase at upstream nodes of f , if they were inactive. However, if there is a

node f for which

(2) If (T ) + cfg1 − pf (T ) < cvg1 − pv(Γv(T ) \ {g1}) ,

then the total power consumption of T can be reduced by substituting the

link (v, g1) ∈ AT by (f, g1). If there are several nodes that fulfill (2), then the

node f minimizing If (T )+cfg1−pf (T ) is chosen as new parent for g1. Finding

a new parent can then be repeated for g2, . . . , gk (Steps 3-8). For every gi, all

nodes except v and descendants of gi are possible parents (Step 5).

The SuS procedure moves all children one by one, even if this does not yield an

immediate power reduction, as power saving might occur in a later step. Dur-

ing execution, the SuS procedure keeps track of the lowest cost arborescence

found so far (Steps 9-10), which is output at the end (Step 11).

Yuan et al. (2008) introduce the SuS heuristic (see below), which executes

the SuS procedure (see above) for every node in V . The SuS heuristic is a

local search heuristic for improving a given multicast s-arborescence. It copies

a given s-arborescence T for every node v ∈ VT , and then executes the SuS

procedure on T and v. The best encountered s-arborescence is output at the

end.

SuS(G = (V,E), s ∈ V,D ⊂ V, c ∈ RE, T = (VT , AT ))
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1 T ∗ ← T

2 for all v ∈ V

3 T ′ ←SuS(G, s,D, c, T, v)

4 if pT ′ < pT ∗

5 T ∗ ← T ′

6 return T ∗

Theorem 2 The SuS heuristic presented by Yuan et al. (2008) has O(|V |2)

time complexity.

PROOF. See Appendix A.2.

Corollary 3 The SuS procedure has O(|V |2) time complexity.

PROOF. See Appendix A.3.

4.3 The Shortest Trunk Successive Shrink Algorithm

The SuS procedure can be applied to the center node of the s-arborescence

constructed by ST. This is done by the STSuS algorithm.

STSuS(G = (V,A), s ∈ V,D ⊂ V, c ∈ RA)

1 (T, z)← ST(G, s,D, c)

2 return SuS(G, s,D, c, T, z)
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The power assigned to the nodes of instance S by STSuS is given in Fig. 3(a).

After arriving at the final state of ST (recall Fig. 2), STSuS first disconnects

node 3 from 7 and links it to node 4. The power assignment at node 7 is

accordingly reduced to c7,5. Then, node 5 is disconnected from 7. It is linked

to node 23, as thus the power assignment at node 7 can be reduced to 0, and

the power assignment at node 19 can be reduced to c19,1. As the center node 7

is an inactive node in STSuS’s solution, it was not the perfect choice as center

node. However, STSuS managed to correct this at least partially by reducing

the power at node 7 to 0.

Figure 3(b) shows the power assigned to the nodes to S by MIP. Comparing

the solutions, we see a distinct example of MIP building an arborescence

into a wrong direction, as it does not take the positions of the destinations

into account. This is one of the main reasons why STSuS on average outputs

better solutions than MIP: The total power consumptions of STSuS and MIP

are pSTSuS(S) = 1.29popt(S) and pMIP(S) = 1.53popt(S).

Corollary 4 The STSuS algorithm has O(|V |2) time complexity.

PROOF. See Appendix A.4.

5 The Shortest Trunk Enhanced Successive Shrink Algorithm

The SuS procedure chooses the new parent h for gi according to the current

power levels of the nodes in T . When at a later point gj (j > i) is linked to

f and pf (T ) increases, this possibly yields If (T ) + cfg1 − pf (T ) < ph(T ) −

ph(Γh(T ) \ {gi}), which means that f has become a better parent for gi than
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Fig. 3. Power assignment determined by STSuS and MIP for S

h. The STSuS algorithm can therefore be improved by checking whether pT

can be reduced by increasing the power assigned to f further.

To implement this idea, we use the enhanced sweep (ES) improvement pro-

cedure for MEMP arborescences, which was presented by Yuan et al. (2008).

Given an s-arborescence T and a node f , ES considers increasing pf (T ) in

order to reduce the power assignment at other nodes and thus the total power

assignment. Steps 5-8 comprise the sweep procedure at node f as introduced

by Wieselthier et al. (2000), that is, node f becomes the parent of all nodes it

covers (except nodes on the path s-f), which might yield power saving at other

nodes. Steps 5-6 together with Steps 9-10 implement the “enhanced sweep”,

which incrementally raises pf (T ) and checks whether doing so saves power at

other nodes. The best encountered arborescence is returned.

ES(G = (V,A), D ⊂ V, c ∈ RA, T = (VT , AT ), f ∈ VT )

1 T ′ = (VT ′ , AT ′)← T
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2 K ← VT ′ \ {f} \ Γf (T
′) \ {w : f ∈ ∆w(T ′)}

3 if K 6= ∅

4 sort K = {g1, . . . , gm} : cfgi
≤ cfgi+1

5 for j ← 1, . . . ,m

6 AT ′ ← AT ′ \ {(πgj
(T ), gj)} ∪ {(f, gj)}

7 if cfgj
≤ pf (T )

8 T ← T ′

9 else if pT ′ < pT

10 T ← T ′

11 return T

We allow f to adopt every node v

• of which f is not a descendant and

• which is not a child of z and

• for which the number of hops between s and v is not smaller than the

number of hops between s and f .

Accordingly, we alter Step 2 of the ES procedure to

K ← V ′T \ {f} \ Γf (T
′) \ {w : f ∈ ∆w(T ′)} \ Γz(T

′) \ {v : hv(T ) < hf (T )} .

We denote the altered ES procedure by ES2. This leads to the STESuS algo-

rithm. STESuS is identical to STSuS except for executing ES2 after Step 8 in

the SuS procedure (see page 14).

STESuS(G = (V,E), s ∈ V,D ⊂ V, c ∈ RE)

1 (T, z) = ((VT , AT ), z)← ST(G, s,D, c)
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2 T ′ ← T

3 sort Γz(T ) = {g1, . . . , gk} : czgi
≥ czgi+1

∀i = 1, . . . , k − 1

4 for i← 1, . . . , k

5 g ← gi

6 F ← VT \ {z} \∆g(T )

7 if F 6= ∅

8 find f ∈ argmin{If ′(T ) + cf ′g − pf ′(T ) : f ′ ∈ F}

9 AT ← AT \ {(z, g)} ∪ {(f, g)}

10 T ← ES2(G,D, T, f)

11 if pT ≤ pT ′

12 T ′ ← T

13 return T ′

The output of STESuS applied to instance S is given in Fig. 4(a). For compar-

ison, Fig. 4(b) shows the optimal solution to I. The total power consumption

of the STESuS solution is pSTESuS(S) = 1.12popt(S).

Remark The local search of EWMA considers only a subset of the moves

considered by ES2.

Theorem 5 The STESuS Algorithm has O(|V |2 log |V |) time complexity.

PROOF. See Appendix A.5.
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Fig. 4. Power assignment determined by STESuS and the optimal solution for S

6 Numerical Experiments

In this section, we study the computational performance of the algorithms

presented in this paper. The performance of MIP and, when available, the

optimal solution are used as reference points. As explained in Section 2.1, we

price a direct transmission from node v to node w at their squared distance,

that is, cvw = d2
vw. Since only the relative costs compared with each other are

relevant for our studies, we omit the squared length units from the tables.

6.1 Comparing the star-based Algorithms

As described in Section 2.1, we generated sets |V |/|D| of network instances

with |V | ∈ {25, 50, 100}, and |D| ∈ {5,
⌈
|V |−1

2

⌉
, |V |−1}. For every instance, we

generated multicast arborescences using MIP, Star, ST, STSuS and STESuS.

In Table 2, the averaged power consumptions are given in columns 4-8, re-
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spectively. For instances with |V | = 25 or |D| = 5, we can obtain the optimal

solution by integer programming as described by Yuan et al. (2008). For those

instance sets, the averaged optimal power consumption is given in column 3,

and columns 9-13 give the averaged performance ratios ρA =
∑100
i=1

pA(Ii)
pMIP(Ii)

for

A ∈ {opt, Star, ST, STSuS, STESuS}.

Table 2

Performance of MIP, Star, ST, STSuS and STESuS

|V | |D| opt MIP Star ST STSuS STESuS ρMIP ρStar ρST ρSTSuS ρSTESuS

25 5 24.24 29.67 63.81 31.53 25.98 25.39 1.22 2.62 1.30 1.07 1.04

12 32.60 39.94 76.36 42.82 35.65 34.31 1.23 2.31 1.32 1.10 1.05

24 39.46 49.44 85.06 49.33 42.63 41.27 1.26 2.12 1.26 1.08 1.05

50 5 19.42 24.19 66.33 29.28 21.97 21.22 1.25 3.38 1.51 1.13 1.09

25 40.69 88.86 46.34 37.30 35.98

49 47.42 94.77 49.95 41.86 40.99

100 5 14.50 20.10 63.62 26.61 17.18 16.66 1.40 4.38 1.83 1.18 1.14

50 40.05 91.04 46.25 37.00 35.68

99 45.84 96.42 49.98 40.29 39.54

Table 2 shows that ST about halves the average power consumption of the

Star algorithm. Compared to ST, STSuS reduces the power consumption by

on average 20%. Finally, STESuS reduces the power consumption by about

3% compared to STSuS. In summary, every improvement of the algorithm

yields a significant reduction in power consumption.

22



6.2 Comparing Star, ST, STSuS, and STESuS to MIP

As optimal solutions are not available for large networks, it is general practice

to report MEMP algorithm performance in comparison to MIP, which we

do in Table 3. Columns 3-7 give the average µA =
∑100
i=1

pA(Ii)
pMIP(Ii)

, where A ∈

{opt, Star, ST, STSuS, STESuS}. Column 8 compares MIP and STSuS by

the number of instances in which one algorithm determined an arborescence

with lower power consumption than the other algorithm, and column 9 shows

the same ratio for MIP and STESuS.

Table 3

Comparing STSuS and STESuS to MIP

|V | |D| µopt µStar µST µSTSuS µSTESuS MIP:STSuS MIP:STESuS

25 5 0.83 2.22 1.07 0.88 0.86 13:83 8:89

12 0.82 1.92 1.09 0.90 0.86 22:78 6:94

24 0.80 1.71 1.01 0.87 0.84 8:92 2:98

50 5 0.82 2.79 1.24 0.92 0.89 27:73 18:82

25 2.19 1.15 0.92 0.89 17:83 8:92

49 2.00 1.06 0.88 0.87 5:95 2:98

100 5 0.74 3.24 1.36 0.87 0.85 17:83 14:86

50 2.28 1.16 0.93 0.89 5:95 2:98

99 2.11 1.09 0.88 0.86 1:99 1:99

For comparing the star-based algorithms to MIP, it is most interesting to
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compare STSuS to MIP, as they have the same time complexity if |A| ∈

Θ(|V |2) in the underlying graph. STSuS beats MIP for 87% of the instances,

and the averaged performance ratio of STSuS is significantly smaller than the

one of MIP. The probability of STSuS and STESuS outperforming MIP seems

to increase with the proportion of destinations among the nodes.

6.3 Effect of the weak points of the star on the star-based Algorithms

The Star algorithm has two weak points. As seen in Section 3, its performance

depends heavily on the relative position of the source. Second, its performance

deteriorates with decreasing width to height ratio of the rectangle in which the

instance is deployed. In the next sets of experiments, we study whether and

to what extent these weak points affect STSuS and STESuS. To this end, we

study networks of 25 nodes with |D| ∈ {5, 12, 24}. In the following tables, the

averaged power consumptions of the optimal solutions, MIP, Star, ST, STSuS

and STESuS are given in columns 3-8, respectively, and columns 9-13 list the

averaged performance ratio of MIP, Star, ST, STSuS and STESuS.

Let % denote the width to height ratio of the rectangle on which the instance

is distributed randomly, and assume % ≤ 1 without loss of generality. We

generate a test set of every combination of |D| and % ∈ {1, 0.5, 0.3, 0.25}. The

results are given in Table 4. As expected, the performance of both Star and ST

significantly deteriorates with decreasing %. Nevertheless, the performance of

STSuS and STESuS is stable, indicating that SuS and ES2 are well suited to

adapt the ST solution to instances with small %. In contrast to the star-based

algorithms, the performance of MIP increases with decreasing %. The reason

for this is that with decreasing %, the optimal solution arborescence becomes
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more pathlike than starlike, and MIP typically outputs arborescences that are

more pathlike than starlike (the worst-case instances by Bauer et al. (2009) and

Wan et al. (2004) illustrate this behavior). MIP is nevertheless outperformed

by both STSuS and STESuS.

Table 4

Performance for different values of %

|D| % opt MIP Star ST STSuS STESuS ρMIP ρStar ρST ρSTSuS ρSTESuS

5 1.00 24.24 29.67 63.81 31.53 25.98 25.39 1.22 2.62 1.30 1.07 1.04

0.50 13.49 15.74 43.12 18.68 14.65 14.21 1.17 3.11 1.38 1.08 1.05

0.30 9.72 11.03 39.74 15.33 10.48 10.25 1.14 3.92 1.57 1.08 1.05

0.25 8.88 9.90 39.24 14.54 9.60 9.49 1.12 4.23 1.63 1.08 1.07

12 1.00 32.60 39.94 76.36 42.82 35.65 34.31 1.23 2.31 1.32 1.10 1.05

0.50 17.41 20.89 51.87 26.56 19.56 18.59 1.21 2.92 1.53 1.13 1.07

0.30 12.26 13.93 48.34 22.54 13.49 12.85 1.14 3.87 1.85 1.10 1.05

0.25 11.03 12.33 47.84 21.66 12.09 11.66 1.12 4.26 1.98 1.10 1.06

24 1.00 39.46 49.44 85.06 49.33 42.63 41.27 1.26 2.12 1.26 1.08 1.05

0.50 20.52 24.93 57.85 30.99 23.33 22.04 1.22 2.79 1.51 1.14 1.07

0.30 14.00 16.09 53.97 26.83 15.75 14.88 1.15 3.84 1.93 1.13 1.06

0.25 12.49 14.13 53.43 25.63 13.89 13.17 1.13 4.26 2.07 1.11 1.05

To examine the effect of the position of the source, we generate two sets of 25
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nodes for every |D| ∈ {5, 12, 24} and % = 1. For the first set, the source is in

the geometric center of the square in which the instance is deployed, and for

the second set, the source is in one of the corners of the square. The results

are given in Table 5 and provide some interesting insights. Examining the per-

formance ratios of the algorithms, we first see that MIP performs significantly

better on instances with the source in a corner than with the source in the

center. This is in accordance with the above discussed characteristic of MIP of

favoring pathlike solution arborescences, and such solutions are more likely to

be good when the position of the source is peripheral rather than central. It is

also illustrated by the stronger performance of the Star for instances with the

source in the center, when compared to the weak performance on the other

instances. As discussed in Section 3, the Star outperforms MIP for instances

with the source in the center and |D| ∈ {12, 24}. This partly explains why

STSuS and STESuS perform better than MIP, as they adapt the Star algo-

rithm to general locations of the source. That this is done in a suitable manner

can be seen from the last two columns, as there is almost no difference in the

performance ratios for instances with the source in the center or in a corner.

7 Applications

A specific application of MEMP is given by the much spoken of “One Laptop

Per Child” (OLPC) project (see the web page http://www.laptop.org/en/

of the project for more information). It seeks to provide children in developing

countries with inexpensive laptops for education. The laptops are specifically

geared towards use in remote areas and for home learning. Every laptop is

equipped with a wireless network antenna, and all laptops within range of
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Table 5

Performance for different positions of the source

|D| source opt MIP Star ST STSuS STESuS ρMIP ρStar ρST ρSTSuS ρSTESuS

5 center 19.81 25.61 29.13 25.50 20.84 20.52 1.28 1.51 1.30 1.06 1.04

corner 33.20 39.00 119.97 39.70 34.84 34.46 1.17 3.65 1.20 1.05 1.04

12 center 27.68 38.55 34.99 33.45 28.84 28.24 1.39 1.28 1.22 1.04 1.02

corner 40.99 48.59 142.62 51.32 43.88 42.70 1.19 3.53 1.26 1.07 1.04

24 center 32.53 48.40 38.61 37.60 33.75 33.08 1.49 1.19 1.16 1.04 1.02

corner 47.43 56.10 157.90 57.44 50.27 49.06 1.18 3.36 1.22 1.06 1.04

each other (the range is about 2 km in flat areas without buildings) form a

wireless ad hoc mesh network. In a teaching situation, various multicasts of

for example a text by the teacher to a group of his students are necessary. This

has to be done in an energy-efficient way, as the only source of power might

be solar power or power the children generate by a dynamo. Although the

children are mobile, they can be assumed to remain at their position during

class or in the evenings. These are exactly the preconditions of MEMP.

Another example is the company TerraNet, which provides mobile telephony

to areas not covered by conventional telecommunication, for example remote

or disaster areas. All TerraNet handhelds within range of each other form a

wireless ad hoc mesh network, and communication between two devices out of

reach of each other is relayed by other devices in the network. When one device

seeks to establish a connection, it needs to broadcast to find the destination
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device and the shortest path to it. To prolong the network’s lifetime, the

broadcast needs to be energy efficient, which gives the preconditions of MEBP.

Parameswaran et al. (2008) outline a business model for distributing multime-

dia content of high quality and thus having high bandwith requirements over

the wired internet. They single out multicasting as delivery solution, and elab-

orate the need of heuristics to compute multicast routings. Using the heuristics

we presented, their model can be directly transferred to distribute pay as you

go content over wireless ad hoc networks. Wireless ad hoc mesh networking

is standardized by IEEE 802.11s. All devices implementing this standard are

able to form a wireless network with each other. Among others, OlPC and

Google sponsor the implementation of IEEE 802.11s for the operating system

Linux in order to promote wireless ad hoc networking for Linux devices. The

standard is implemented in Linux since kernel version 2.6.26, which enables

devices running Linux to wireless ad hoc networking.

In order to apply the algorithms discussed in this paper to a wireless ad hoc

network one needs to know the energy consumption for a direct connection

between two devices. This information can be gathered readily: For example,

a device joining an existing network can gradually increase its transmission

energy asking other devices to acknowledge it as soon as they hear it. The

joining device thus knows by which transmission energy it reaches which de-

vices. As the transmission energy depends only on the distance between the

devices, another approach is to learn the coordinates of every device. In the

OLPC homeschooling case, the coordinates of each child can be identified sim-

ply by using Google maps. For disaster relief situations like after earthquakes

or tsunamis, devices can be equipped with a GPS tracker.
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8 Conclusions

In this paper, we have studied the possibility of solving MEMP by center-

oriented algorithms, and developed the efficient STSuS and STESuS algo-

rithms. We have shown that center-oriented algorithms keep up with greedy

arborescence constructions for developing algorithms for MEMP. The center-

oriented STSuS outperforms the well-known MIP at equal time complexity

and implementation simplicity.

Furthermore, as there are distributed algorithms for the shortest path problem

available (e.g. Chandy and Misra (1982)), our algorithms are a promising

starting point for developing distributed algorithms for MEMP.

Another direction for future research is how the routing arborescences can

be optimally restored in the case of node failure. A simple strategy is to

just redetermine a routing arborescence from scratch, which due to the short

running time is a sensible approach for networks of up to 100 nodes. For larger

methods, a more sophisticated approach is called for, both to minimize the

time needed for network recover, and because the failure of one node within

a large network will in most cases only call for local amendments.
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A Proofs

A.1 Proof of Theorem 1

Step 1 has O(|A| + |V | log |V |) time complexity using Dijkstra’s Algorithm

(Cormen et al., 2001). To identify a node z ∈ argmin{pΦz +pz(D\Dz) : z ∈ V },

Depth First Search (DFS) is applied to Φ. When the DFS reaches node v, the

set Dv is determined by Dv = Dπv(T ) ∪ {d ∈ D : cπv(T )d ≤ cπv(T )v} in O(|D|)

time. As DFS has O(|V |) time complexity (Cormen et al., 2001), Step 2 has

O(|V ||D|) time complexity. As the Steps 6, 7, 9-11, 13 and 14 run in constant

time, Steps 5-14 have O(|V ||D|) time complexity. As Step 15 has O(|V |) time

complexity, the result follows. 2
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A.2 Proof of Theorem 2

Yuan et al. (2008) proved that the SuS heuristic has O(|V |2) time complexity,

provided that for all nodes v ∈ V all nodes w ∈ V \{v} are sorted according to

cvw. However, for performing SuS, it is not necessary to sort V ×V completely.

It is only necessary to sort Γv(T ) for every v ∈ V . As there are |V | − 1

children in a tree, the necessary sorting operations have total time complexity

O(|V | log |V |). 2

A.3 Proof of Corollary 3

Since the SuS procedure is a part of the SuS heuristic, which has O(|V |2) time

complexity, the SuS procedure also has O(|V |2) time complexity. 2

A.4 Proof of Corollary 4

Since both ST and the SuS procedure have O(|V |2) time complexity (Thm. 1

and Cor. 3), STSuS as a combination of ST and the SuS procedure also has

O(|V |2) time complexity. 2

A.5 Proof of Theorem 5

As Step 1 performs ST, and Steps 2-9 together with Steps 11-13 perform the

SuS procedure, these steps have O(|V |2) time complexity. Yuan et al. (2008)

provided an implementation of the ES procedure that has O(|V | log |V |) time

complexity. Altering ES to ES2 does not affect this: Removing Γz(T ) and
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{v : hv(T ) < hf (T )} from K can be done using depth first search, which

has O(|V |) time complexity. As ES2 is part of the for-loop in Step 4, it is

executed at most |V | − 1 times. Thus, the time complexity of STESuS is

O(|V |2 log |V |). 2
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B Key Terms

Table B.1

Definition of Abbreviations and Terms used

Term Definition Comments

arborescence tree with arcs oriented away from the root

BIP Broadcast Incremental Power (Algorithm) MIP in the broadcast case

broadcast one-to-all communication of a given

source

all nodes except source are destina-

tions

destination device which the source wants to commu-

nicate with

MEBP Minimum Energy Broadcast Problem broadcast case of MEMP

MEMP Minimum Energy Multicast Problem Problem of finding an energy effi-

cient routing from a given source to

a given set of destinations

MIP Multicast Incremental Power (Algorithm) best-known algorithm for MEMP by

Wieselthier et al. (2002)

s-arborescence arborescence with root s

source network device with a message for at least

one other device

s, given in the problem instance

continued on next page
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Term Definition Comments

SuS heuristic Successive Shrink heuristic local search heuristic to improve

a multicast arborescence, Yuan et

al. (2008)

SuS procedure Successive Shrink for one node the SuS heuristic consists of the

SuS procedure for every node in

the arborescence

Star arborescence with all nodes connected

directly to the source

the simplest MEMP algorithm

ST Shortest Trunk (Algorithm) MEMP algorithm constructing

an (s, z)-trunk

STESuS Shortest Trunk Enhanced Successive

Shrink (Algorithm)

MEMP algorithm combining ST

and an enhanced version of SuS

STESuS Shortest Trunk Successive Shrink (Al-

gorithm)

MEMP algorithm combining ST

and SuS

(s, z)-trunk s-arborescence where every node is ei-

ther on or directly connected to some

node on the shortest (s, z)-path in the

underlying graph
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C Notation

Table C.1

Notation associated with a node v in an s-arborescence T

∆v(T ) is the set of descendants of node v ∈ VT in T

γv(T ) is the node for which pv(T ) = cvγv(T )

Γv(T ) is the set of children of node v ∈ VT in T

Φ is the shortest-path-arborescence of G with root s

Φv is the shortest s-v-path in G

πv(T ) is the parent of v ∈ VT in T

hv(T ) is the number of hops between s and v ∈ VT in T

Iv(T ) is the sum of the additional power needed at nodes in VT if v becomes active

pv(S) is the power required for v to cover all active nodes in S ⊆ V

pv(T ) = pv(Γv(T )) is the power required at v by T

pT =
∑

v∈VT
pv(T ) is the total power required by a broadcast described by T

popt(I) the power consumption of the optimal solution to I

pA(I) the power consumption of the solution to I determined by algorithm A

|V |/|D| is a set of 100 test instances with |V | nodes and |D| destinations
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