
A Fast Local Search Method for Minimum Energy Broadcast in Wireless
Ad Hoc Networks

Joanna Bauera, Dag Hauglanda,∗, Di Yuanb

aDepartment of Informatics, University of Bergen, PB. 7800, N-5020 Bergen, Norway
bDepartment of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden

Abstract

Local search methods are often used to reduce the power consumption of broadcast routing
in wireless networks. For a classic such method, sweep, the best available time complexity
result is O(|V |4). We present an O(|V |2)-time method, which exhaustively removes unnecessary
transmissions yielding a solution comparable to that of sweep.

Key words: Wireless Ad Hoc Network, Minimum Energy Broadcast, Local Search, Sweep.

1. Introduction

In many applications of wireless systems,
a minimum energy broadcast routing from a
given source unit has to be computed repeat-
edly and quickly. To establish a broadcast
routing, a transmission power must be assigned
to each network unit. The power assignment
corresponds to a transmission range assign-
ment, implying that the power needed to cover
a set of receiving units is not the sum, but the
maximum of the power needed to cover any
of them. Furthermore, the power needed at
one unit to cover some other unit grows at
least quadratically with the distance [8], and
hence, computing a minimum energy routing
is NP-hard [2]. Therefore, the energy efficiency
of broadcast applications depends on efficient
routing heuristics.

∗Corresponding author
Email addresses: Joanna.Bauer@ii.uib.no

(Joanna Bauer), Dag.Haugland@ii.uib.no (Dag
Haugland), diyua@itn.liu.se (Di Yuan)

A common approach (e.g. [5], [8]) is to rep-
resent the network as a graph G = (V,A) and
greedily construct a routing arborescence. The
power of every node is equal to that of the
most power demanding outgoing arc in the ar-
borescence. Due to the greedy construction,
the solutions often contain unnecessary trans-
missions. That is, the power assignment of a
node v is determined by the arc (v, w) in the
routing arborescence, although w is within the
transmission range of some other node f . If
w is not on the path between the source and
f , then node w can be linked to f and the
power assignment at v can be reduced. The
total transmission power can thus be reduced
by removing all such unnecessary transmis-
sions. In [8], the local search heuristic sweep
was introduced. For networks consisting of
20 nodes, applying sweep to an arborescence
constructed by the well-known Broadcast In-
cremental Power (BIP) algorithm [8], for ex-
ample, reduces the total power consumption
from about 1.3 to about 1.17 times the opti-
mal power consumption [9].

1

One important characteristic of local search
heuristics is whether the search is done exhaus-
tively. This means that the search is contin-
ued until it arrives at a local optimum in re-
spect to the search neighborhood. Most other
suggested improvement heuristics (e.g. [4],
[7], and [9]) do not perform exhaustive search.
They rather execute a pre-defined number of
search moves in order to be able to prove a
certain time complexity (in general, O(|V |3)),
or simply adopt a maximum time limit. Also,
they do not only remove unnecessary transmis-
sions, but also allow the routing arborescence
to be altered by increasing the power previ-
ously assigned to a node.

For performing sweep exhaustively, we are
not aware of any stronger time complexity re-
sults than the O(|V |4) bound proved in [9].
This is in contrast to arborescence construc-
tion heuristics with low time complexity like
BIP (O(|A|+ |V | log |V |), [1]).

In this paper, we propose the new local
search algorithm, Bottom-Up Sweep (BUS),
and prove that an exhaustive search by BUS
has O(|V |2) time complexity. None of sweep
(if performed exhaustively) and BUS can im-
prove the output of the other. To the best
of our knowledge, BUS is the lowest-time-
complexity exhaustive local search for the Min-
imum Energy Broadcast Problem. We apply
both this method and sweep to arborescences
constructed by BIP. The experiments show
that the power reductions found by our method
are comparable to those found by sweep.

2. Preliminaries

A problem instance is given by a complete
directed graph G = (V,A), where the nodes
represent the networking units, a source s ∈ V ,
and the power requirements c ∈ R|A|+ . To avoid
the need for tie-breaking rules, we assume that
all cvw are unique, although the results pre-
sented do not depend on this assumption.

A solution to a problem instance can be
given as an s-arborescence T = (V,AT) with
arc set AT ⊆ A. An s-arborescence is
a directed tree where all arcs are oriented
away from s. We let T denote the set
of all possible s-arborescences on V . Let
Γ+
v (G) = {w : (v, w) ∈ A} and Γ−v (G) =
{w : (w, v) ∈ A} denote respectively the sets of
out-neighbors and in-neighbors of node v in
G. For any T ∈ T and any v ∈ V , we let
∆v(T) denote the (possibly empty) set of de-
scendants of v in T , and we define ∆′v(T) =
∆v(T) ∪ {v}. The s-arborescence T defines a
power assignment pv(T) to all nodes v ∈ V . If
Γ+
v (T) = ∅ we have pv(T) = 0, and otherwise
pv(T) = cvγv(T), where γv(T) ∈ Γ+

v (T) is de-
fined by maxw∈Γ+

v (T) cvw = cvγv(T) and referred
to as the critical child of v in T . Thereby, the
cost of T is pT =

∑
v∈V pv(T). We say that

v reaches w if pv(T) ≥ cvw. The minimum
energy broadcast routing problem can then be
formulated as

[MEBP] Find an s-arborescence T such
that pT is minimized.

3. The BUS Local Search Algorithm

Any local search algorithm is characterized
by the search neighborhood, the update strat-
egy, that is the strategy of selecting what
neighbor solution to move to, and by whether
or not the search is done exhaustively.

3.1. The Local Search Neighborhood
Many local search neighborhoods for MEBP

have been proposed. In [4], the authors de-
fine two general neighborhoods, which include
s-arborescences where nodes may be assigned
higher power than they are in the current one.
The neighborhood searched by sweep in [8], on
the contrary, is more restricted: Within one
move, one node adopts all non-ancestor nodes
within its transmission range. Such a move
is accepted by sweep if it reduces the total

2

power consumption. We introduce a neighbor-
hood that is similar to the one of sweep in the
sense that no node can increase its power as-
signment, but differs from the sweep neighbor-
hood in that only one arc can be exchanged
in a single move. For any T ∈ T , we de-
fine the neighborhood as the set N (T) of s-
arborescences T (v, f) that can be obtained by
disconnecting γv(T) from v and linking it to
some f ∈ V , without increasing the power as-
signed to f . That is, pf (T (v, f)) = pf (T) and

N (T) =
{
T (v, f) ∈ T : T (v, f) =(

V,AT \ {(v, γv(T))} ∪ {(f, γv(T))}
)

:

f 6= v ∧ pf (T) ≥ cfγv(T)

}
.

As T (v, f) is an s-arborescence, f cannot be a
descendant of γv(T) in T .

In the update strategy of sweep, no attempt
is made to reduce node power in any particu-
lar order of the nodes. This is unfortunate, as
it is then difficult to prove any time complex-
ity lower than O(|V |4) for exhaustive search.
Wieselthier et al. suggested in [8] to execute
sweep only for a predefined small number of
iterations, which reduces the time complexity
to O(|V |2). Obviously, this does not guarantee
that all superfluous transmissions are removed.

In our method, we process the nodes in such
an order that tight bounds on both the number
of moves and the computational work within
each move are achieved. Consequently, a local
optimal solution can be found within O(|V |2)
time.

In the following, we first present the search
strategy. We then introduce the concept of a
labeled reachability graph on which our algo-
rithm is based. Finally, correctness of the al-
gorithm and the running time are proved.

3.2. The Bottom Up Strategy
Consider an s-arborescence T where the

node w is reached by one of its descendants

f ∈ ∆w(T). Although f is assigned a suf-
ficiently high power level to become the new
parent of w, the move is prohibited due to the
ancestor relation between f and w. But if a
later move assigns a new parent to f , and this
parent does not descend from w, f may become
the parent of w. In order to conclude that w
cannot be assigned a new parent by any later
move, we therefore need to know that neither
can any descendant of w. This calls for an
approach where the nodes are processed in an
upward direction, where the leaves are the first
and the child nodes of s are the last to be as-
signed to new parents.

Definition 1. The rank ρv(T) of node v in
the arborescence T is defined as the height of
the subarborescence of T rooted at v.

For any arborescence T0 ∈ T given as
input to the local search algorithm, define
ρ̄v = ρv(T0) for all v ∈ V , and let the
partition

(
V 0, . . . , V h

)
of V be defined by

V k = {v ∈ V : ρ̄v = k}, k = 0, . . . , h, where
h is the height of T0. Ordering the nodes
by non-decreasing rank in T0, we get V ={
v1, . . . , v|V |

}
, where ρ̄vi ≤ ρ̄vj for 1 ≤ i < j ≤

|V |. This is the order in which the algorithm
below processes the nodes, and hence the order
is fixed before and throughout the processing.

Since processing a node amounts to reduc-
ing its power by transferring child nodes to new
parents, the leaves V 0 of T0 need no processing.
In the first |V 1| iterations of the algorithm, we
process all nodes v whose child nodes all are
leaves. As long as we can find a node f ∈ V
with sufficiently high power to reach the criti-
cal child w of v ∈ V 1, we assign f as the new
parent to w. Hence another node becomes the
critical child of v, and the process continues
until all child nodes have been assigned new
parents, or the critical child is reached only by
v. Note that since any child node w of v is a
leaf, it is not necessary to verify that f does not

3

descend from w. When v has been processed,
we can conclude that further moves can never
reduce the power level at v (as no node will
ever increase its power during the procedure).
Therefore, we can consider this power level as
fixed, and so is the parent assignment to all
child nodes of v that were not moved.

In subsequent iterations, we process the
nodes in V 2, · · · , V h in an analogous manner.
As the child nodes w of v are not necessarily
leaves, current descendants of w must be dis-
regarded even if their power can reach w. This
could be done by e.g. depth first search, which
would result in a running time of O(|V |3). A
faster method is achieved by organizing the
search with the help of a reachability graph.

3.3. Reachability Graphs
In [6], Mavinkurve et al. introduced the

reachability graph associated with T , which
contains the arc (u,w) if and only if the power
assignment to u is sufficient for u to reach
w. The reachability graph is equivalent to the
term topology in [3].

Our definition of a labeled reachability graph,
to be given in precise terms below, resembles
the definition in [6] in that the presence of an
arc (u,w) implies that some node is assigned
sufficient power to become the new parent of
w. Unlike the definition in [6], however, it does
not imply that the node reaching w is u itself.
If u ∈ F , where F ⊆ V is a set of nodes re-
ferred to as fixed, the signification of the arc
is that w is reached by some node `uw in the
subarborescence of T rooted at u. Hence the
arc label `uw is used to identify a new parent
of w.

Definition 2. A labeled reachability graph of
an s-arborescence T = (V,AT), is a quadruple
H = (V,AH , `, F), where AH ⊆ V × V is the
arc set, ` : AH 7→ V defines a node `uw for each
(u,w) ∈ AH , and where F ⊆ V , satisfying the
properties:

(1) (u, u) 6∈ AH ∀u ∈ V ,

(2) AH does not contain any arc (u,w)
where w = γv(T) for some v ∈ F ,

(3) for all arcs (u,w) ∈ AH , `uw ∈ ∆′u(T)
and `uw reaches w,

(4) for all nodes w ∈ V reached by some
f ∈ V \∆w(T) other than its parent, there
exists an arc (u,w) ∈ AH where u ∈ F ∪
{f} and f ∈ ∆′u(T).

The purpose of the set F is to store nodes
where power cannot be reduced. Accordingly,
property (2) in Def. 2 states that AH should
not contain an arc pointing at the critical
child of any such node. In the subsequent
text, whenever we apply graph notation to H
(e.g. Γ−v (H)), we refer to the directed graph
(V,AH).

If the parent of v ∈ F is not fixed, whereas
∆v(T) ⊆ F , we refer to the subarborescence of
T rooted at v as a maximal fixed subarbores-
cence.

By letting F ⊆ V 0, we see that Def. 2 sub-
sumes the reachability graph suggested in [6].

Property (3) in Def. 2 implies that if (u,w) ∈
AH , then there is a node in the subarbores-
cence rooted at u reaching w, and the label
`uw is one such node.

Property (4) ensures that when w is reached
by some non-descendant f , this is reflected by
some arc in AH of which w is the end node.
The start node of this arc is either f itself (f /∈
F) or a fixed node u of which f is a descendant.

An important characteristic of our algorithm
(see Lemma 5), is that all fixed start nodes
of reachability arcs are roots of maximal fixed
subarborescences. This implies that infor-
mation concerning reachability from nodes in
maximal fixed subarborescences is aggregated
at the roots, and thus there is no need to search
the subarborescences for reachability arcs.

4

3.4. The BUS Local Search Algorithm
The Bottom Up Sweep (BUS) algorithm is

given in Tab. 1. We say that BUS is processing
node vi when it is executing any of the Steps
9-19 and |F | + 1 = i. All nodes in V \ V 0 are
processed exactly once, and (see Steps 4 and
20) F contains exactly the nodes in V 0 and
those already processed.

In the following, we prove local optimality
of the solution returned by BUS and the algo-
rithm’s time complexity. To this end, we first
prove five lemmata, three of which are based on
induction over the while-loop spanning Steps
8-20 of the algorithm.

Lemma 3. At the end of every iteration of the
while-loop 8-20 in Tab. 1, we have

ρ̄w < ρ̄v ∀w ∈ ∆v(T), v ∈ V \ F (1)

Proof. Immediately after the initialization of
H in Steps 4-7, inequalities (1) hold by defini-
tion. We prove that if the inequalities hold at
the start of any iteration of the loop 8-20, they
also do at the end of the iteration.

When processing node v ∈ V , BUS updates
T only in Step 13, where a node w ∈ Γ+

v (T)
may be assigned a new parent `uw. Let y be
any node on the path from the root to `uw in
T . We need to show that either y is fixed or all
its new descendants ∆′w(T) have lower initial
rank. If y is already processed, then y ∈ F .
Otherwise, since the nodes are processed in an
order where ρ̄ is non-decreasing, we have ρ̄y ≥
ρ̄v. By the induction hypothesis, we thus get
ρ̄x < ρ̄v ≤ ρ̄y ∀x ∈ ∆′w(T), and Lemma 3
follows. �

Corollary 4. When BUS is processing node
v, we have ∆v(T) ⊆ F .

Proof. It follows from Lemma 3 and the
node processing order (non-decreasing ρ̄v),
that while node v is being processed, all cur-
rent descendants of v are already processed,
and hence ∆v(T) ⊆ F . �

Lemma 5. At the end of every iteration of
the while-loop 8-20 in Tab. 1, we have for all
(u,w) ∈ AH that u is the root of a maximal
fixed subarborescence if u ∈ F , and u = `uw
otherwise.

Proof. Immediately after the initialization of
H, the statement is obviously true since u 6∈ F
and u = `uw ∀(u,w) ∈ AH . We prove that if
the statement is true at the start of an itera-
tion of the while-loop 8-20, it also is after the
updates made to F (Step 20) and AH (Steps
15 and 19).

The statement holds for all u 6∈ F , since
no nodes leave F , and no reachability arcs are
transferred to nodes outside F .

In Step 15, we transfer reachability arcs to
node u ∈ F , which has been identified as the
start node of some arc in AH . Hence the in-
duction hypothesis implies that u is the root of
a maximal fixed subarborescence.

In Step 19, we transfer reachability arcs from
w to v. By Cor. 4, we have that ∆v(T) ⊆ F .
Since v 6∈ F , all w ∈ Γ+

v (T) are roots of max-
imal fixed subarborescences. Thus Step 20
makes v the root of a new maximal fixed subar-
borescence, ensuring that the statement holds
also at the end of the iteration. �

Lemma 6. At the end of every iteration of
the while-loop 8-20 in Tab. 1, T is an s-
arborescence of which H is a labeled reacha-
bility graph.

Proof. Obviously, H is a labeled reachability
graph of T ∈ T immediately after Steps 4-7.
Assume this is true at the start of the iteration
in which BUS processes node v.

We first prove that T remains an s-
arborescence after its update in Step 13. As
|AT | is unchanged, it suffices to show that T
remains acyclic. Assume that in Step 12, BUS
identifies an arc (u,w) ∈ AH producing a cy-
cle in T when arc (`uw, w) is added to AT in

5

Table 1: The Bottom Up Sweep (BUS) Algorithm

BUS(G = (V,A), s ∈ V , c ∈ R|A|+ , T = (V,AT))
1 for all v ∈ V
2 ρ̄v ← the height of the subarborescence rooted at v
3 Sort V into

(
v1, . . . , v|V |

)
such that ρ̄v1 ≤ · · · ≤ ρ̄v|V |

4 F ← {v ∈ V : ρ̄v = 0} // Steps 4-7 initialize H ← (V,AH , `, F)
5 AH ← {(u, v) ∈ A : cuv ≤ pu(T)}
6 for all (u, v) ∈ AH
7 `uv ← u
8 while F 6= V
9 v ← v|F |+1

10 while Γ+
v (T) 6= ∅ ∧ Γ−γv(T)(H) \ {v} 6= ∅

11 w ← γv(T)
12 u← ChooseReachingNode(T,H,w, |F |+ 1) // Find new (preferably fixed) parent
13 AT ← AT \ {(v, w)} ∪ {(`uw, w)}
14 if u ∈ F // The new parent has (an ancestor with) fixed power
15 TransferReachability(AH , u, w)
16 for all w ∈ Γ+

v (H) : cvw ≥ pv(T) // For w = critical child or a node beyond reach
17 AH ← AH \ {(v, w)} // delete reachability arc to w
18 for all w ∈ Γ+

v (T) // Transfer reachability information from children to v
19 TransferReachability(AH , v, w)
20 F ← F ∪ {v}
21 return T

TransferReachability(AH , v, w)
22 for all x ∈ Γ+

w(H) // For all x reached by some node in ∆′w(T)
23 if x 6= v ∧ (v, x) 6∈ AH // x is neither v, nor already reached by some node in ∆′v(T)
24 AH ← AH ∪ {(v, x)} // Add the reachability arc (v, x)
25 `vx ← `wx
26 AH ← AH \ {(w, x)} // Delete the reachability arc (w, x)

ChooseReachingNode(T,H,w, i)
27 if (Γ−w(H) \ Γ−w(T)) ∩ F 6= ∅
28 return some u ∈ (Γ−w(H) \ Γ−w(T)) ∩ F
29 else
30 return vj′ , where j′ = max {j = i+ 1, . . . , |V | : vj ∈ Γ−w(H) \ Γ−w(T)}

6

Step 13. Then the new parent of w, `uw, cur-
rently must be in the subarborescence of T
with node set ∆′w(T). As ∆′w(T) ⊆ ∆v(T), we
have ∆′w(T) ⊆ F by Cor. 4. Because v /∈ F , w
is the root of a maximal fixed subarborescence
containing `uw.

By the induction hypothesis, H is a labeled
reachability graph, and property (3) in Def. 2
implies `uw ∈ ∆′u(T). As `uw ∈ ∆′w(T) ⊆ F ,
we have by Lemma 5 that `uw ∈ ∆u(T) with
u ∈ F being the root of a maximal fixed sub-
arborescence containing `uw.

Thus, both w and u are roots of some maxi-
mal fixed subarborescence containing `uw, and
as this subarborescence is unique, we have
u = w. But since (u,w) ∈ AH , property (1) in
Def. 2 gives a contradiction. Hence T remains
acyclic.

We next prove that H remains a labeled
reachability graph of T , by showing that the
properties in Def. 2 remain satisfied at the end
of the iteration processing node v.

(1): Since new arcs are added to H only in
Step 24, the property follows directly from the
first condition of the if-statement of Step 23.

(2): We have to show that at the end of
the iteration, S =

⋃
u∈V Γ+

u (H) contains no
critical child nodes of fixed nodes. Since an
arc is added to AH (Step 24) only if it replaces
an arc with the same end node (Step 26), S
is never extended. When v is processed, the
critical child nodes of all nodes but v remain
unchanged. By the induction hypothesis, S
hence does not contain γv′(T) for any v′ ∈ F \
{v}.

After the while-loop 10-15, either v has no
critical child (Γ+

v (T) = ∅), or Γ−w(H) ⊆ {v},
where w is the new critical child of v. But
then cvw = pv(T), and if Γ−w(H) = {v} the arc
(v, w) is removed from AH in Step 17.

(3): For all nodes w such that pv(T) < cvw,
i.e., nodes no longer reached by v, we delete
(Step 17) the corresponding arc in AH . For all
new arcs (v, x) added to AH (Step 24), we have

by Step 25 and the induction hypothesis that
`vx ∈ ∆v(T) and that `vx reaches x.

(4): When w is assigned a new parent in
Step 13, an arc (u,w) ∈ AH has been identi-
fied in Step 12. By the induction hypothesis,
either u 6∈ F or u is the root of a maximal fixed
subarborescence. The transfer of reachability
arcs in Step 15 ensures that for all nodes u′

reached by some node in ∆′w(T), u ∈ Γ−u′(H).
By the induction hypothesis and Cor. 4, the
children of v are roots of maximal fixed subar-
borescences. Thus, after the reachability arcs
of the remaining children of v have been trans-
ferred to v (Step 19), and v becomes fixed (Step
20), the property remains satisfied. �

The set of nodes for which power reduction
is possible is

RT =
{
v ∈ V : ∃u ∈ V \∆′γv(T)(T) \ {v}

cuγv(T) ≤ pu(T)
}
.

Hence, T is locally optimal with respect to
N (T) if and only if RT = ∅.

Lemma 7. If (V,AH , `, F) is a labeled reach-
ability graph of T , then RT ⊆ V \ F .

Proof. Since Properties (4) and (2) in Def. 2
state, respectively, that all nodes reached by a
non-descendant (other than their parents) have
an entering reachability arc, and that the crit-
ical children of fixed nodes do not have any
entering reachability arc, the result follows. �

Lemma 8. BUS assigns a new parent to each
node in T at most twice.

Proof. Since the algorithm never processes
fixed nodes, it follows that if w ∈ V is as-
signed a fixed parent `uw in Step 13, then this
is the final parent assignment to w. Assume
that Γ−w(H) = {vi1 , . . . , vim} ⊆ V \ F , where
i1 < · · · < im. Hence vim 6∈ F becomes the new

7

parent of w. If another parent assignment to w
is made, the next occurs while BUS is process-
ing vim . In that case, the new parent must be
one of vi1 , . . . , vim−1 . When processing vim , we
have vi1 , . . . , vim−1 ∈ F , and the result follows.

�

Theorem 9. Given a network instance
(G = (V,A), s, c) and an s-arborescence
T = (V,AT) as input, the BUS algorithm
transforms T to an N (T)-locally optimal
s-arborescence in O

(
|V |2|

)
running time.

Proof. It follows from Lemma 6 that upon
termination of the algorithm, H is a labeled
reachability graph of some s-arborescence T .
Since also F = V , it follows from Lemma 7
that T is locally optimal with respect to N (T).

For the proof of the running time, assume
that T and AH are represented by adjacency
matrices such that node/arc retrieval, insertion
and deletion all run in constant time, whereas
checking existence of arcs entering/leaving a
node (see Step 10) runs in linear time.

All initialization operations in Steps 1-7 run
in O

(
|V |2

)
time. The condition in Step 10

is evaluated
∣∣V \ V 0

∣∣ times to false, and, by
Lemma 8, at most 2|V | times to true. Lemma
8 also implies that Steps 11-15, each of which
runs in O (|V |) time, are executed at most 2|V |
times. Finally, since an arc is never reintro-
duced once it is removed from AH , Steps 23-26
are applied at most once to each (w, x) ∈ A,
and the total running time of Steps 16-20 is
also O

(
|V |2

)
. �

4. Numerical Experiments

In this section, we compare the numeri-
cal performance of the BUS algorithm to the
sweep algorithm. We are interested in how
much the total power consumption can be re-
duced, and how efficiently the algorithms move
through the search neighborhood.

We generated 100 instances of 1000 nodes
and 100 instances of 5000 nodes by distributing
the nodes on a square using the standard C++
pseudo-random number generator rand(). We
let cuv = d2

uv for all (u, v) ∈ A, where duv is
the Euclidean distance between nodes u and v.
For every instance, we let BIP [8] construct a
broadcast arborescence, which is used as the
starting point for both BUS and sweep. We
apply sweep iteratively to its own output until
it reaches a local optimum.

The efficiency of the search is measured by
two indicators. The first is the number of arc
exchanges (Step 13 of BUS) executed before
the algorithm reaches a local optimum. This
number is given in the second row of Tab. 2.
In the table, all numbers are averaged over the
100 instances.

The original sweep [8] lets the new parent
f take over all non-ancestor nodes w within
its reach. If w is not the critical child of
its current parent, the total power consump-
tion is not reduced by making w a child of f .
Thus, sweep may execute unnecessary arc ex-
changes, especially as nodes may repeatedly be
handed around between several potential par-
ents. For the purpose of fair comparison, we
therefore modify sweep to an algorithm called
sweepCritical. Within one move of this al-
gorithm, a node becomes the new parent of ex-
actly one other node, which has to be a critical
child. Consequently, sweepCritical is likely
to perform fewer arc exchanges than sweep,
but also likely to need more iterations before
it reaches a local optimum.

The second indicator, given in the third row
of Tab. 2, shows how many times the algo-
rithms check whether one node can take over
children of other nodes. For BUS, the number
of such node checks equals

∣∣V \ V 0
∣∣ in every

instance. For sweep and sweepCritical, it
equals |V | times the number of iterations nec-
essary to reach a local optimum.

The power consumptions resulting from each

8

of the three algorithms are given in the first
row of Tab. 2, where for every instance the
cost of BIP’s solution is normalized to 100. No
significant difference in the three algorithms’
solutions can be observed.

The number of executed arc exchanges nec-
essary to reach a local optimum is smaller
for BUS than for sweep and sweepCritical,
although the difference between BUS and
sweepCritical is marginal. Hence BUS and
sweepCritical have the desired effect of con-
verging to a local optimum that, in terms of the
number of arc exchanges, is closer to the ini-
tial s-arborescence. The sweep algorithm has
no such built-in mechanism, and the resulting
local optimum is more arbitrary.

The number of node checks is, as ex-
pected, far smaller for BUS than for
sweep and sweepCritical, and higher for
sweepCritical than for sweep.

Our experiments also confirm the statement
in [8] that about three rounds of iterations
of sweep are needed to reach a local opti-
mum. The average values are 2.73 and 3.11
for networks of 1000 and 5000 nodes, respec-
tively. Even for 5000 nodes, no more than
four sweep rounds are needed for any instance.
SweepCritical needs an average of 5.60 and
6.73 rounds for instances of 1000 and 5000
nodes, respectively, and the maximum num-
bers of rounds are 9 and 10, respectively.

5. Acknowledgments

The authors wish to thank the reviewer for
the constructive comments. The work of the
two first authors is supported by The Research
Council of Norway under grant 160233/V30,
and the work of the third author is supported
by the Swedish Research Council under grant
621-2004-3902.

9

Table 2: Comparing BUS and sweep

1000 nodes 5000 nodes

sweep sweepCritical BUS sweep sweepCritical BUS

power 94.574 94.562 94.559 94.652 94.632 94.644
arc exchanges 190.24 133.89 133.17 939.76 658.19 657.39
node checks 2730.00 5600.00 660.86 15550.00 33650.00 3294.49

10

References

[1] J. Bauer, D. Haugland, D. Yuan, New results on the time complexity and approximation
ratio of the broadcast incremental power algorithm, submitted to Information Processing
Letters (Revision submitted in August 2008).

[2] M. Cagalj, J. Hubaux, C. Enz, Energy-efficient broadcasting in all-wireless networks, Wire-
less Networks 11 (2005) 177–188.

[3] I. Kang, R. Poovendran, Maximizing network lifetime of broadcasting over wireless sta-
tionary ad hoc networks, Mobile Networks and Applications 10 (2005) 879–896.

[4] I. Kang, R. Poovendran, Iterated local optimization for minimum energy broadcast, in:
Proceedings of the 3rd IEEE International Symposium on Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2005, pp. 332–341.

[5] R. Klasing, A. Navarra, A. Papadopoulos, S. Pérennes, Adaptive broadcast consumption
(abc), a new heuristic and new bounds for the minimum energy broadcast routing problem,
in: NETWORKING, vol. 3042 of Lecture Notes in Computer Science, Springer, 2004.

[6] P. Mavinkurve, H. Ngo, H. Mehra, MIP3S: Algorithms for power-conserving multicasting
in wireless ad hoc networks, in: Proceedings of the 11th IEEE International Conference on
Networks (ICON), 2003.

[7] G. D. Nguyen, General algorithms for construction of broadcast and multicast trees with
applications to wireless networks, Journal of Communications and Networks 7 (2005) 263–
277.

[8] J. E. Wieselthier, G. D. Nguyen, A. Ephremides, Energy-efficient broadcast and multicast
trees in wireless networks, Mobile Networks and Applications 7 (2002) 481–492.

[9] D. Yuan, J. Bauer, D. Haugland, Minimum-energy broadcast and multicast in wireless
networks: An integer programming approach and improved heuristic algorithms, Ad Hoc
Networks 6 (2008) 696–717.

11

