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Abstract

The Broadcast Incremental Power (BIP) algorithm is the most frequently cited

method for the minimum energy broadcast routing problem. A recent survey con-

cluded that BIP has O(|V |3) time complexity, and that its approximation ratio is at
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1 Introduction

In many applications of wireless ad hoc systems, a minimum energy broadcast

routing has to be computed repeatedly and quickly. To establish a broadcast

routing, a transmission power must be assigned to each network unit. The

power needed to cover a set of receiving units is the maximum of the power

needed to reach any of them, and grows at least quadratically with the distance

to the receiving unit. Consequently, computing a minimum energy routing

is NP-hard [2]. Therefore, the energy efficiency of applications depends on

efficient routing heuristics. The Minimum Energy Broadcast Problem (MEBP)

has attracted intensive research, of which an overview can be found in the

survey of Guo and Yang [4]. The most frequently cited algorithm for MEBP

is the Broadcast Incremental Power (BIP) algorithm by Wieselthier et al. [8].

Previous works on MEBP heuristics emphasize low time complexity and ap-

proximability [2], [6], [7]. In [8], Wieselthier et al. gave an implementation of

BIP with O(|V |3) time complexity when applied to a graph G = (V,A) repre-

senting a wireless network. In this work, we present an implementation having

O(|A|+ |V | log |V |) time complexity by adapting the O(|A|+ |V | log |V |) im-

plementation of Prim’s algorithm using Fibonacci heaps.

Wan et al. [6] together with Klasing et al. [5] showed that, under assumptions

commonly made on wireless signal propagation, the approximation ratio of

BIP is between 4 + 1
3

and 12.15. Due to a lemma in [6] and Ambühl’s work

[1], the currently best upper bound on the approximation ratio of BIP is 6.

Retaining the assumptions in [5] and [6], we strengthen the lower bound by giv-

ing a sequence of MEBP instances for which the optimal power consumption

decreases towards 1, and for which the power consumption of BIP’s solution
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increases beyond 4.598. Worst-case instances do not only provide lower bounds

on the approximation ratio, but also point out an algorithm’s weakness, and

thus suggest directions for future algorithm development.

2 Preliminaries

A problem instance is given by a graph G = (V,A), a source s ∈ V , and power

requirements (costs) c : A 7→ R. The nodes and arcs represent the networking

units and potential wireless links, respectively.

A solution can be given by an s-arborescence T = (VT , AT ) with node set

VT ⊆ V and arc set AT ⊆ A. An s-arborescence is a directed tree where all

arcs are oriented away from s. An s-arborescence T induces for every v a power

assignment pv(T ), which either is 0 or the cost cvw of the most expensive arc

(v, w) leaving v in AT . Thereby, the cost of T is pT =
∑
v∈VT

pv(T ), and the

minimum energy broadcast problem can be formulated as

[MEBP] Find an s-arborescence T such that VT = V and pT is minimized.

BIP constructs an s-arborescence T = (VT , AT ) in a way similar to Prim’s

construction of a minimum spanning tree. Starting from T = ({s}, ∅), BIP

evaluates all arcs (u, v) where u ∈ VT and v 6∈ VT by the incremental power

cuv − pu(T ). An arc (u, v) minimizing this difference is selected, and v and

(u, v) are added to T . This is repeated until T spans V .

3 Improved Time Complexity of BIP
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Table 1. Implementation of BIP

BIP(G = (V,A), s, c)

1 for all v ∈ V \ {s}

2 key [v]← csv

3 π[v]← s

4 priority queue Q← V \ {s}

5 while Q 6= ∅

6 v ← extractMin(Q)

7 for all w ∈ Adj[v] ∩Q

8 if cvw < key [w]

9 key [w]← cvw

10 π[w]← v

11 for all w ∈ Adj[π[v]] ∩Q

12 if (cπ[v]w − cπ[v]v < key[w])

13 key [w]← cπ[v]w − cπ[v]v

14 π[w]← π[v]

15 return T = (V, {(π[v], v) :

v ∈ V \ {s}})

Our implementation (Tab. 1) follows

the implementation of Prim’s algo-

rithm in [3]. It keeps all vertices v ∈

V \VT in a min-priority queue Q based

on a key field containing the minimum

incremental cost of adding v to VT .

The field π[v] contains a node in VT to

which v can be linked at cost key [v].

In Tab. 1, VT and AT are represented

by V \Q and {(π[v], v) : v ∈ VT \ {s}},

respectively. The adjacency list Adj[v]

contains all nodes w for which (v, w) ∈

A.

Theorem 1 The implementation in

Tab. 1 has O(|A| + |V | log |V |) time

complexity.

PROOF. Omitting Steps 11-14 in

Tab. 1 gives an implementation of Prim’s algorithm, that, if Q is implemented

as a Fibonacci heap, has O(|A|+ |V | log |V |) time complexity [3]. Steps 11-14

contain O(|A|) assignments and key-update operations (Step 13). With Q im-

plemented as a Fibonacci heap, these run in constant amortized time. Thus

Steps 11-14 have O(|A|) time complexity, and the theorem follows. 2

For determining a multicast routing that reaches all nodes in a specified des-

tination set, Wieselthier et al. suggested in [7] to apply BIP first, and then

omit (“prune”) all arcs not leading to a destination, resulting in the Multicast
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Incremental Power (MIP) algorithm. Pruning is done by traversing the arbore-

scence upwards from the leaves to the first node that either is the source, or

a destination, or a node with more than one child. Traversed arcs and their

head nodes are deleted. Next, pv(T ) (∀v ∈ VT ) can be computed using breadth

first search (BFS) in T . Since both traversing T and BFS have O(|V |) time

complexity, MIP has O(|A|+ |V | log |V |) time complexity.

4 A New Lower Bound on BIP’s Approximation Ratio

For any u, v, w ∈ R2 and r ∈ R, we denote by

• uv the line segment with end points u and v,

• duv the length of uv, i.e. the Euclidean distance between u and v,

• ∠uvw the angle between the line segments uv and vw with positive (counter-

clockwise) direction from uv to vw, that is, the angle for which

cos ∠uvw =
d2
uv + d2

vw − d2
wu

2duvdvw
, (1)

• C(u, r) = {x ∈ R2 : d2
ux = r2} = the circle with radius r centered at u.

An important evaluation criterion for algorithms is the performance of the

algorithm solution relative to the optimal one. For any instance I of a mini-

mization problem and any algorithm A, the performance ratio ρA(I) is defined

as the cost of the algorithm’s solution divided by the cost of the optimal solu-

tion. The supremum supI ρA(I) over all possible input instances is called the

approximation ratio of A, on which a lower bound is given by ρA(I) for any

instance I.

5



It follows from [1] and [6] that supI ρBIP(I) ∈
[
4 + 1

3
, 6
]
, if the supremum is

taken over instances where G is complete, V is a finite set of points in R2,

and cuv is proportional to d2
uv ∀(u, v) ∈ A. Since the proportional factor is

irrelevant in our analysis we assume cuv = d2
uv ∀(u, v) ∈ A. For this type of

instances, we construct a sequence for which the performance ratio of BIP

increases beyond 4.598.

4.1 The best lower bound known from the literature

In [6], Wan et al. gave an instance for which BIP outputs an s-arborescence

with power consumption arbitrarily close to 4 + 1
3

times the optimal. To the

best of our knowledge, this is the best lower bound on the approximation ratio

of BIP known to date. In Fig. 1, we depict a slightly modified version of the

instance in [6], yielding the same bound. The modification is made in order

to prepare for a stronger bound, which through extensions of the instance in

Fig. 1 will be derived in subsequent sections.

z0
a4

a3a2

a1

a0

b0

b1

b2 b3

s = zm1√
3

1

1

1

1

Fig. 1. Instance where BIP

has performance ratio 4 + 1
3

Our instance contains the nodes a0, . . . , a4, b0, . . . , b3,

and z0, . . . , zm, where m > 1 is an integer,

aj =
(
cos (2+j)π

3
, sin (2+j)π

3

)
(j = 0, . . . , 4),

bj =
(
1 + 2√

3m

)
aj (j = 0, . . . , 3), zm =(

0, 1√
3

)
, and zj = jzm

m
(j = 0, 1, . . . ,m).

Hence, z0 = (0, 0), and z0, . . . , zm are uni-

formly distributed along z0zm, and a0, . . . , a4

(b0, . . . , b3) are positioned on (close to) the

unit circle C(z0, 1). We let the source be

s = zm.
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The idea in [6] is to make BIP prefer chordal arcs (e.g. (a0, a1)) to the corre-

sponding radial arcs (e.g. (z0, a1)), which in [6] is accomplished by perturb-

ing the position of some of the nodes on C(z0, 1) such that daj−1,aj
becomes

marginally smaller than dz0aj
. We apply the same idea, and the desired effect

is obtained by encouraging a marginal power assigned to a0, . . . , a3 in order

to reach b0, . . . , b3 (not present in the instance of [6]), respectively.

It is readily seen that for the instance in Fig. 1 with sufficiently large m, some

optimal arborescence contains arcs (zm, zm−1), . . . , (z1, z0), (zm, a0), (a0, b0), . . . , (a3, b3),

(z0, a1), . . . , (z0, a4), resulting in a power consumption of 1 + O (m−1). The

arborescence T ′ produced by BIP contains the arcs (zm, zm−1), . . . , (z1, z0),

(zm, a0), (a0, b0), . . . , (a3, b3), (a0, a1), . . . , (a3, a4), resulting in pT ′ = 4 + 1
3

+

O (m−1).

The three terms of pT ′ reflect the path (a0, . . . , a4), the arc connecting a0

to the source, and arcs of marginal length, respectively. In the following, a

better lower bound on the approximation ratio of BIP is derived from similar

instances, where:

• the optimal power consumption remains close to 1,

• BIP produces an arborescence containing the path (a0, . . . , a4), and

• BIP connects a0 to the source at a cost higher than 1
3
.

4.2 Increasing the cost of connecting a0 to the source

Let the positions of nodes z0, a0, . . . , a4 be the same as in Sect. 4.1. In order

to increase the cost of connecting a0, we define a new source s1 in a position

further away from a0. In the new instance I1 shown in Fig. 2, we also:
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• Maintain a set Z1 of m + 1 nodes uniformly distributed along some curve

ζ1 with end points s1 and z0, thus keeping the optimal power consumption

arbitrarily close to 1.

• Keep a3 as a closest neighbor to a4, so that BIP links a4 to a3.

• Keep a0 at least as close to s1 as to any other node in Z1, so that BIP links

a0 to s1.

z0
a4

a3

b3

a2

b2

a1b1

a0

b0
C(a4, 1)

s1 = zm

t1

√
3

√
3− 1

σ1

1
1

1

1

1

Fig. 2. Instance I1 with performance ratio ρBIP(I1) > 4 + 1
3

The two last restrictions imply dza0 ≥ ds1a0 and dza4 ≥ 1 for all z ∈ Z1,

meaning that ζ1 cannot intersect the interiors of C(a0, da0s1) and C(a4, 1).

Hence we must choose s1 close enough to a0 to make the circles intersect

at only one point, which is obtained by letting da0s1 = da0a4 − 1 =
√

3 −

1. Among the two intersection points in C(a0,
√

3− 1) ∩ C(z0, 1), we let the

source s1 be the point closer to a4. We let ζ1 be the curve which starts at s1,

follows C(a0,
√

3−1) in negative direction to the unique point of intersection of

C(a0,
√

3−1) and C(a4, 1), and from there follows C(a4, 1) in positive direction

to z0. Let zm = s1, and let the set Z1 consist of m + 1 nodes zm, . . . , z0

distributed along ζ1 such that dzmzm−1 = · · · = dz1z0 = ε1, implying that

ε1 tends to 0 as m grows towards infinity. The node set of instance I1 is

S1 = Z1 ∪ {a0, . . . , a4, b0, . . . , b3, t1}, where bj = (1 + 2ε1)aj, (j = 0, . . . , 3),

and t1 = (1 + 2ε1)s1.
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Note that in order to reach a0, the source must at least be assigned power(√
3− 1

)2
= 4 − 2

√
3. In the next section, we prove that BIP assigns this

power to s1, and that I1 yields an improved lower bound on the approximation

ratio of BIP. However, an even stronger bound is achieved by generalizing the

instance, and we therefore give the proof for a class of instances including I1.

4.3 Instances with performance ratio > 4.598

The construction of I1 indicates that Z1 can be extended by adding nodes in

the region bounded by C(z0, 1), C(a4, 1) and C(a0,
√

3 − 1). Our idea is to

find a sequence of new source locations diverging from a0 and converging to

C(a4, 1), while satisfying the conditions given at the end of Sect. 4.1.

In the following, we construct a sequence {I1, I2, . . .} of MEBP-instances hav-

ing the optimal power consumption converging to 1, and the power consump-

tion of BIP’s solution converging to a number larger than 4.598. Instance Ii

is given by a recursive definition of a source si and a curve ζi with end points

si and z0. The basis of this recursion is s1 and ζ1 introduced in Fig. 2.

For convenient notation, let s0 = a0. Generalizing the determination of s1,

the location of si (i ≥ 1) is the intersection point in C
(
si−1, dsi−1a4 − 1

)
∩

C (z0, 1) closest to a4 (Fig. 3). The curve ζi follows C
(
si−1, dsi−1si

)
from

si until it reaches ζi−1, after which ζi and ζi−1 coincide. We let the set Zi

consist of nodes zm, . . . , z0, where zm = si, distributed along ζi such that

dzmzm−1 = · · · = dz1z0 = εi, where m is sufficiently large to satisfy 2εi <

dsi−1si
. To complete the definition of Ii, let bj = aj(1 + 2εi), (j = 0, . . . , 3),

tj = sj(1 + 2εi), (j = 1, . . . , i), and let the node set of Ii be Si = Zi ∪

{a0, . . . , a4, b0, . . . , b3, s1, . . . , si, t1, . . . , ti}.
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We have s0 = (x0, y0) =
(
−1
2
,
√

3
2

)
, and si = (xi, yi) (i = 1, 2, . . .) is given by:

(xi − xi−1)
2 + (yi − yi−1)

2 =
(√

(xi−1 − 1)2 + y2
i−1 − 1

)2

i = 1, 2, . . . (2)

x2
i + y2

i = 1 i = 1, 2, . . . (3)

z0
a4

a3a2

a1b1

a0 = s0

b0
s1 s2

s3 = zm

t1
t2 t3

σ1

σ2

1
1

1

1

1

Fig. 3. Instance I3 with performance ratio
ρBIP(I3) > 4.598

1 for j ← m. . . 1
2 link zj−1 to zj
3 for j ← i . . . 1
4 link tj to sj
5 link sj−1 to sj
6 for j ← 0 . . . 3
7 link bj to aj
8 link aj+1 to aj

Table 2. How BIP
processes Ii

Theorem 2 The performance ratio ρBIP(Ii) is 4 +
∑i
j=1 csjsj−1

+O (m−1).

PROOF.

The optimal total power is 1 + O (m−1). We prove that BIP processes Ii as

shown in Tab. 2, yielding total power consumption 4 +
∑i
j=1 csjsj−1

+O (m−1).

Since 2εi < dsisi−1
, Steps 2 and 4 are obvious. Step 5 follows from the fact

that adding sj−1 to the tree gives minimum incremental cost, and sj is the

best choice for linking sj−1.

After the execution of Steps 1-5, assume the for-loop 6-8 has been executed

j ∈ {0, . . . , 3} times, which means that a1, . . . , aj+1 and b0, . . . , bj have been

added. It is then obvious that Step 7 follows since (aj, bj) is the only arc
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adding a new node to the tree with O (m−2) incremental cost, for j = 0, . . . , 3.

If j < 3, Step 8 follows since the corresponding incremental cost is 1 − 4ε2
i ,

whereas all other options of tree augmentation cost at least 1−ε2
i . If j = 3, a4

is the only node that is not yet reached. In order to show that it is linked to

a3 rather than any of s1, s2, . . . , si, we prove csja4 − csjsj−1
> 1 ∀j = 1, . . . , i.

By applying (2)-(3) for i = 1 and i = 2, we obtain (x1, y1) ≈ (0.224, 0.975),

(x2, y2) ≈ (0.455, 0.891), cs1a4 − cs1s0 ≈ 1.02 > 1 and cs2a4 − cs2s1 ≈ 1.03 > 1.

To prove csia4 − csisi−1
> 1 for i > 2, let σi = ∠a4z0si (i = 0, 1, . . .), yielding

∠a4si−1si = σi

2
(i > 0). As dsia4 > 1 by construction, we have σi >

π
3
. Thus

cos ∠a4si−1si <
√

3
2

. By (1),

cos ∠a4si−1si =
csi−1a4 + csi−1si

− csia4

2dsi−1a4dsi−1si

. This yields

csia4 − csisi−1
= csi−1a4 − 2 cos ∠a4si−1si · dsi−1a4dsi−1si

>

> csi−1a4 −
√

3 · dsi−1a4dsi−1si
=

= csi−1a4 −
√

3 · dsi−1a4

(
dsi−1a4 − 1

)
=
(
1−
√

3
)
csi−1a4 +

√
3dsi−1a4 .

The polynomial (1 −
√

3)x2 +
√

3x − 1 attains positive values between its

zeroes, which are at x = 1 and x ≈ 1.366. By construction, we have 1 <

csia4 ≤ cs2a4 ≈ 1.09. Hence csia4 − csisi−1
> 1 (i = 3, 4, . . .), and Step 5 follows.

The proof is completed by observing that the output of Table 2 has a total

power of 4 +
∑i
j=1 csjsj−1

+O (m−1). 2

Corollary 3 The approximation ratio of BIP is at least

4 +
∞∑
j=1

csjsj−1
> 4 +

3∑
j=1

csjsj−1
> 4.598.

PROOF. Solving (2)-(3) numerically for i = 1, . . . , 3 gives the result. 2
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A simple analysis shows that to a precision of three decimals, 4.598 is the

best achievable bound by the sequence of instances. It is seen from Fig. 3 that∑∞
j=i+1 csjsj−1

< csis∞ , where s∞ = limi→∞ si =
(

1
2
,
√

3
2

)
. Solving (2)-(3) also

for i = 4 yields 4 +
∑4
j=1 csjsj−1

= 4.5983± 0.5 · 10−5 and cs4s∞ < 0.5 · 10−5.

4.4 Extension to sweep

Wieselthier et al. [7] introduced the local search method sweep for MEBP.

Given a spanning arborescence T , sweep searches for an arc (v, w) ∈ AT and

a node u ∈ V \ {v, w} such that pv(T ) = cvw, pu(T ) ≥ cuw, and u is not a

descendant of w in T . Such a combination implies that (v, w) can be replaced

by (u,w) in AT , thus reducing the power at v (unless cvw = cvw′ for some

other child w′ of v).

If T is the arborescence produced by applying BIP to Ii, it is easily checked

that for all feasible sweep moves, we have (v, w) ∈ {(zm, zm−1), . . . , (z1, z0)}.

Note that (v, w) ∈ {(si, si−1), . . . , (s2, s1)} with u = a0 is infeasible since a0

descends from s1, . . . , si−1. Since pzj
(T ) = O (m−2) (j = 1, . . . ,m − 1), the

power reduction obtainable by sweep is only O (m−1). Thus Corollary 3 also

applies when BIP and sweep are run sequentially.

5 Conclusions

We have proposed an implementation of BIP/MIP with O(|A| + |V | log |V |)

time complexity, and demonstrated that the approximation ratio of BIP is

larger than 4.598. The latter holds also if the local improvement method sweep

is applied to the solution produced by BIP.
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