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Since a battery is the only energy source in many applications of wireless
ad hoc networks, energy efficiency is an important performance measure of
multicasting. In this paper, we present and analyze integer programming
models for the problem of minimizing the total energy required by mul-
ticasting. We start from a straightforward multi-commodity flow model,
which is strengthened by a more efficient representation of transmission
power. Further strengthening is accomplished by lifting the capacity con-
straints of the model. We then present cut-based models for the problem,
and prove, from a bounding standpoint, the equivalence in strength be-
tween these models and their flow-based counterparts. By expanding the
underlying graph, we show that the problem can be transformed into find-
ing a minimum Steiner arborescence. The expanded graph arises also in
the separation procedure for solving one of the cut-based models. In ad-
dition to a theoretical analysis of the relation between various models,
we perform extensive computational experiments to study the numerical
strengths of these models and their efficiency in solving the problem.
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1 INTRODUCTION

Wireless ad hoc networks are distinguished from both wired networks and wireless
cellular systems. A wireless ad hoc network does not use a permanently installed
infrastructure. A communication link is set up between two devices if they lie within
transmission range of each other. The transmission range is determined by the power
of the transmitting device. Typically, a device uses an omni-directional antenna.
Applications of ad hoc networks range from emergency disaster relief to military
command and control systems.

Since in many cases the only energy source of a device is a battery, it is important
to minimize the energy required to accomplish communication tasks. In wireless net-
works, broadcasting is an inherent characteristic in message transmission, because the
signal transmitted from one device reaches all other devices within the transmission
range. Therefore, the power required at a transmitting device is the maximum rather
than the sum of the powers needed to reach all intended recipients. This property is
commonly referred to as the wireless multicast advantage [23,24].

A multicast session requires routing of messages from a source device to a set of desti-
nation devices. In the special case of a broadcast session, all devices except the source
are destinations. To set up a multicast session, devices are assigned transmission pow-
ers such that any destination can receive messages either directly from the source,
or through some intermediate devices. The total power consumption of a multicast
session is the sum of the powers assigned to all devices. The Minimum-Energy Multi-
cast Problem (MEMP) refers to minimizing the total power subject to the constraint
that messages from the source are received by all destinations. Note the resemblance
of this problem to the minimum Steiner tree problem (and the minimum spanning
tree problem in the broadcast case), but also the important distinction implied by
the wireless multicast advantage. The distinction has the consequence that MEMP
is NP -hard [5] even in the broadcast case.

A wireless network can be modeled as a graph. The nodes represent devices, and the
cost of a link represents its power requirement. Commonly, the power requirement
is the same for both directions of a link. A multicast session can be represented by
a tree rooted at the source and spanning all destinations. At each node, the link
connecting this node to its most power-demanding child defines the cost at the node.
The total cost of the tree equals the sum of the node costs.

For the broadcast version of MEMP, an obvious heuristic is to compute the minimum
spanning tree (MST). The MST is feasible, but in general not optimal to MEMP.
Wieselthier et al. [23,24] proposed the Broadcast Incremental Power (BIP) heuristic.
Starting from the source, BIP builds up a tree by adding the node requiring a min-
imum amount of incremental power in every iteration. Numerical experiments show
that this tree-construction heuristic results in a lower total energy consumption than
that of MST. In addition to a heuristic for tree construction, Wieselthier et al. also
proposed a power-saving heuristic, called sweep, to detect and eliminate unnecessary
transmissions.

BIP (and MST) may fail to reach optimality for a network containing as few as
four nodes. An example is shown in Figure 1. Four nodes are located at (0, 0), (6, 0)
(7, 6), and (4, 8), respectively. Node 1 is the source. In the example, the transmission
power required at a node to reach another equals the square of the Euclidean distance
between them, which is a common assumption for wireless networks [23]. The power
requirements are shown beside the links. BIP starts from the source and adds node
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2. Then, node 3 is selected and added to the tree via link (2, 3). To add node 4, the
minimum incremental power is given by link (3, 4). The sweep procedure in [23,24]
does not give any improvement in power. Thus BIP outputs a tree having a total
power of 86, and in this example, the BIP tree coincides with the MST. The optimal
solution of MEMP is however to let the source transmit directly to all nodes, resulting
in a total power of 85.
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FIG. 1. A small network example.

Under the assumption that all nodes are points in the plane, and the power require-
ments are proportional to the square of the distances between the points, theoretical
analysis of BIP has been conducted in a number of references. Wan et al. [21] showed
that BIP has constant approximation ratio at least as large as 13/3. Recently, we have
strengthened this lower bound from 13/3 to 4.6 [4]. Based on the work in [21], Klas-
ing et al. [15] showed that the approximation ratio is no larger than 12.15. Ambühl
[2] proved that this bound can be reduced to 6. Note that the bounds in [2,15] are
derived for the MST heuristic, but these results also apply to BIP due to a lemma in
[21].

For multicast, Wieselthier et al. [23,24] introduced the Multicast Incremental Power
(MIP) heuristic, which is BIP followed by a procedure called pruning. This procedure
detects nodes that are not involved in relaying messages to the destinations, removes
them from the tree, and sets their power values to zero. Node removal also enables
power reduction at nodes remaining in the tree. In [22], Wan et al. showed that MIP
does not have a constant approximation ratio. They also showed that algorithms
with this property can be designed by adapting any approximation algorithm for
the minimum Steiner tree problem, provided that the latter algorithm has constant
approximation ratio. Examples of such approximation algorithms are given e.g. by
Hwang et al. [13].

In addition to the algorithms discussed so far, heuristics for MEMP have been pro-
posed in [6,7,9–11,16–19]. Most of these heuristics apply to the broadcast version of
MEMP. In these references, the BIP and sometimes the MIP heuristic have been used
to provide benchmark results.

In contrast to the rich literature on solving MEMP by approximation algorithms and
heuristics, approaches based on mathematical programming have been explored to
a lesser extent. Das et al. [8] presented three linear integer programming models for
MEMP. Among them, a model based on single-commodity flows has been cited in
several other papers (e.g., [15]). Yuan [26] presented a model using multi-commodity
flow and a Lagrangean relaxation scheme to numerically evaluate the performance
of the BIP heuristic in large networks. For the broadcast version of MEMP, Altinke-
mer et al. [1] formulated a set-covering model and presented numerical results of a
Lagrangean heuristic.
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Integer programming formulations can be useful for obtaining exact or approximate
solutions to MEMP. They also provide insight into the relation between MEMP and
classical network design problems. In either case, it is relevant to study the strength of
an integer programming model, i.e., the tightness of the bound obtained from solving
its continuous relaxation. There are a couple of advantages to considering strong
models. First, a stronger model often leads to shorter solution time in obtaining an
integer optimum. Second, for large instances in which an integer optimum is out
of reach, performance evaluation of heuristics can instead be carried out using the
continuous relaxation of a strong model.

Solving an integer model typically requires centralized computation. For this reason,
integer programming models are not intended for on-line use in ad hoc networks.
For on-line computation, simple and often distributed heuristics are necessary. Inte-
ger programming models are of great value for evaluating those heuristics. Without
access to the optimal solution, or a strong lower bound, it is difficult to judge the per-
formance of a heuristic. A second, theoretical motivation originates from the apparent
similarity between MEMP and the Steiner tree problem.

In this paper, we study a number of linear integer programming models that either
use flows or cuts to characterize feasible solutions of MEMP. The contributions of this
paper consist of the following. Starting from a straightforward multi-commodity flow
model, we present two new, stronger flow-based models. The first model adopts a more
efficient representation of transmission power, and the second model involves a further
strengthening accomplished by lifting the capacity constraints. We also present two
cut-based models of MEMP. We conduct a thorough analysis of the strengths of
all models. In particular, we prove the equivalence in strength between the cut-based
models and their flow-based counterparts. A result of our study is the strongest known
model for MEMP. Moreover, we provide the insight that MEMP can be treated as
the classical problem of determining a minimum Steiner arborescence in an expanded
directed graph. We show that this graph also arises in the separation procedure for
solving one of the cut-based models. In addition to a theoretical analysis, we perform
extensive computational experiments to numerically examine the strengths of the
models, and to identify models that are efficient in finding optimal or near-optimal
solutions.

The remainder of the paper is organized as follows. In the next section we introduce
some notation and formalize MEMP. Sections 3 and 4 treat the flow- and cut-based
models, respectively. These sections contain our theoretical analyses of the strengths
of these models. Section 5 is mainly devoted to the Steiner arborescence reformulation
of MEMP. In Section 6, we report the results of our computational experiments.
Conclusions are drawn in Section 7.

2 PRELIMINARIES

To discuss integer programming models of MEMP, some notation defined for an
arbitrary directed graph G is useful. The sets of nodes and arcs of G are denoted by
VG and AG, respectively. If S ⊆ VG, then S̄ denotes the complementary set of nodes,
i.e., S̄ = VG \ S. For a vector u ∈ <|AG|, we use either ua or uij, whichever is more
convenient, to denote the component of u corresponding to arc a = (i, j). For a vector
b ∈ <|VG|, we use bi to denote the component of b corresponding to node i ∈ VG. We
use A+

G(i) ⊆ AG and A−
G(i) ⊆ AG to denote the sets of arcs of which i is the tail and

head node, respectively.
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Let n be the number of nodes not counting the source i0, and denote the node set
VG = {i0, i1, . . . , in}. The set of destinations is denoted by D ⊆ VG \ {i0}. We let

c ∈ <|AG|
+ denote the power parameters, and consequently cij is the power required

at node i to reach node j.

We use the term multi-commodity flow to refer to a set of distinguished flows. A com-
modity in MEMP corresponds to a destination node d ∈ D. We define a demand vec-
tor bd ∈ <|VG| for each d ∈ D, where bd

i0
= −1, bd

d = 1, and bd
i = 0 for i ∈ VG\{i0, d}. A

flow vector of the commodity corresponding to destination d is denoted by fd ∈ <|AG|
+ .

For d ∈ D, we let F(G, bd) denote the set of flow vectors fd ∈ <|AG|
+ satisfying the flow

conservation equations
∑

a∈A+
G(i) fd

a −
∑

a∈A−
G(i) fd

a = −bd
i ∀i ∈ VG. Furthermore, we

define the flow polytope F
(
G, bd, ud

)
=

{
fd ∈ F(G, bd) : fd

a ≤ ud
a ∀a ∈ AG

}
, where

ud ∈ <|AG|
+ is a vector of upper bounds on arc flows of the given commodity.

Assume that G = (VG, AG) is complete, and let it represent a wireless ad hoc network.
Problem MEMP is defined as follows:

[MEMP] Find a power assignment p ∈ <|VG|
+ minimizing

∑
i∈VG

pi, such that for all
destinations d ∈ D there exists at least one path from i0 to d with pi ≥ cij for all
arcs (i, j) in the path.

In most of our models, it is necessary to process the power levels at a node in non-
decreasing order. Let N = {1, . . . , n}. For all i ∈ VG, let πi : N 7→ VG \ {i} be

a bijection such that
(
ci,πi(1), . . . , ci,πi(n)

)
is monotonously non-decreasing. Following

the definition of πi, πi(k) is the kth closest node to i, where distance is measured
by power. For any u ∈ <|AG| and k ∈ N , u(ik) is, whenever convenient, used as
a short-hand notation for ui,πi(k). We use π′

i to denote the inverse of πi. In other
words, when the nodes are sorted in ascending order with respect to their distances
to i, π′

i(j) denotes the position of j ∈ VG in the sorted sequence. We also define
π′

i(S) = min{π′
i(j) : j ∈ S} for any S ⊆ VG \ {i}.

IfM is a (mixed) integer programming model for MEMP, and I is a MEMP instance,
thenMLP denotes the continuous relaxation ofM, while ζ (M, I) and ζ∗ (I) denote
the optimal objective function values ofMLP andM, respectively, instantiated with
I.

3 FORMULATIONS USING MULTI-COMMODITY FLOW

Feasible solutions to MEMP can be characterized by network flows. A single-commodity
flow model, like the one proposed by Das et al. in [8], is a straightforward way of
using flow to formulate MEMP. For most network design problems (e.g., [3]), a single-
commodity flow model can be strengthened by adopting multi-commodity flow. We
therefore start our discussion with a multi-commodity flow model, denoted by F0,
which is a natural strengthening of the model in [8]. Formulation F0 uses three sets of
variables, flow variables {fd

ij : (i, j) ∈ AG, d ∈ D}, design variables {zij : (i, j) ∈ AG},
and power variables {pi : i ∈ VG}:
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[F0] min
∑
i∈VG

pi

s.t. cijzij ≤ pi ∀(i, j) ∈ AG, (1)

fd ∈ F(G, bd, z) ∀d ∈ D, (2)

z ∈ {0, 1}|AG|.

Due to (2), all destinations d ∈ D receive one unit of flow from the source, and the
arc (i, j) can carry flow only if zij = 1. The design variables are linked to the node
power by (1).

We can improve the strength of the formulation F0 by representing the power assign-
ment in a more efficient way. Note that in any optimal solution, the power of node i
is either zero, or equals one of the values in the discrete set {c(i1), c(i2), . . . , c(in)}. We
can therefore associate a set of binary variables to the power values, and represent
the power of a node as a scalar product. Doing so results in a stronger formulation
F1. Let

y(ik) =

 1, if node i is assigned the power c(ik),

0, otherwise.

[F1] min
∑
i∈VG

n∑
k=1

c(ik)y(ik)

s.t. fd
(ik) ≤

n∑
`=k

y(i`) ∀i ∈ VG, k ∈ N, d ∈ D, (3)

fd ∈ F(G, bd) ∀d ∈ D, (4)

y ∈ {0, 1}|AG|.

The constraints (3) restrict the assignment of flow to those arcs (i, πi(k)) where i has
a power assignment of at least c(ik). In F1, we no longer need the continuous variables
p to express node power.

We can strengthen F1 further. Since at most one unit of flow to destination d leaves
node i, we can include all the flow variables for which the corresponding transmission
powers are greater than or equal to c(ik) in the left-hand sides of (3). This yields a
stronger flow formulation:

[F2] min
∑
i∈VG

n∑
k=1

c(ik)y(ik)

s.t.
n∑

`=k

fd
(i`) ≤

n∑
`=k

y(i`) ∀i ∈ VG, k ∈ N, d ∈ D, (5)

fd ∈ F(G, bd) ∀d ∈ D, (6)
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y ∈ {0, 1}|AG|.

Clearly, the inequalities ζ (F0, I) ≤ ζ (F1, I) ≤ ζ (F2, I) hold for any instance I.
Our computational experiments show that both inequalities can be strict, and that
the gaps can be significant.

The following inequalities are valid in F1 and F2:

n∑
k=1

y(ik) ≤ 1 ∀i ∈ VG. (7)

Although adding (7) to F1 and F2 reduces the sets of feasible solutions, these in-
equalities do not alter the set of optimal integer solutions. Moreover, as will be proved
below, they do not make the continuous relaxation of F1 or F2 any stronger. How-
ever, inequalities (7) may be useful for strengthening the subproblem when applying
a Lagrangean relaxation technique [26].

Proposition 1 F1LP and F2LP have an optimal solution (f, y) satisfying (7).

Proof. It is obvious that F1LP (F2LP) has at least one optimal solution. Let (f̄ , ȳ)
be one such solution, and let AC be the set of arcs of the directed cycle C in G.
Then, let f be a reduction of f̄ such that for all d ∈ D and all directed cycles C in
G, fd

a equals 0 for at least one a ∈ AC . For all i ∈ VG, let y(i`) = ȳ(i`) ∀` = 1, . . . , n

if
∑n

`=1 ȳ(i`) ≤ 1. Otherwise, let k′ = max
{
k ∈ N :

∑n
`=k ȳ(i`) > 1

}
, let y(i`) = ȳ(i`)

∀` = n, n− 1, . . . , k′ + 1, y(ik′) = 1−∑n
`=k′+1 ȳ(i`), and y(i,k′−1) = · · · = y(i1) = 0.

By construction, fd
a ≤ f̄d

a (a ∈ AG, d ∈ D). Consider F2LP. Since the solution (f̄ , ȳ)
satisfies (5), we have

∑n
`=k fd

(i`) ≤
∑n

`=k ȳ(i`) (i ∈ VG, k ∈ N, d ∈ D). Replacing ȳ by y

either leaves the right-hand side of (5) unchanged, or reduces it to one. Since f does
not contain cyclic flow, the left-hand side of (5) does not exceed one, and therefore∑n

`=k fd
(i`) ≤

∑n
`=k y(i`), i.e., the solution (f, y) is feasible in F2LP. A similar argument

applies to F1LP. In addition, it is clear that
∑n

k=1 y(ik) ≤ 1 and
∑n

k=1 c(ik)y(ik) ≤∑n
k=1 c(ik)ȳ(ik) for all i ∈ VG. 2

4 CUT-BASED FORMULATIONS

Dualism between flow and cut is an important concept in dealing with network opti-
mization problems. Instead of flow conservation constraints, conditions on cuts sep-
arating the source from the destinations can be imposed to enforce the connectivity
between i0 and D. We present two cut-based formulations for MEMP, and discuss
the strengths of the two formulations in relation to their flow-based counterparts.

Any binary vector y satisfying (7) defines a feasible solution to a MEMP instance, if
and only if G contains a path from i0 to d for all d ∈ D, such that

∑n
k=π′i(j)

y(ik) ≥ 1

for each arc (i, j) on the path. In F1 and F2, this is ensured by (3)-(4) and (5)-(6),
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respectively. In a cut-based formulation, the feasibility of y can be stated by the
condition that any set S ⊂ VG for which i0 ∈ S and S̄ ∩ D 6= ∅, contains a node
with sufficient power to reach some node in S̄. This condition is both sufficient and
necessary to characterize all feasible solutions to MEMP.

Proposition 2 A binary design vector y is feasible in MEMP if and only if for
any S ⊂ VG such that i0 ∈ S and S̄ ∩ D 6= ∅, the arc set {(i, j) : i ∈ S, j ∈
S̄,

∑n
k=π′i(j)

y(ik) ≥ 1} is non-empty.

The proof of the proposition is straightforward and is therefore omitted. Note that
the condition in Proposition 2 is that at least one arc in the cut defined by S and
S̄ is assigned capacity one. Formulating the condition by stating that the sum of∑n

k=π′i(j)
y(ik) over the arcs (i, j) in the cut is at least one, yields our first cut-based

formulation for MEMP:

[C1] min
∑
i∈VG

n∑
k=1

c(ik)y(ik)

s.t.
∑
i∈S

∑
j∈S̄

n∑
k=π′i(j)

y(ik) ≥ 1 ∀S ⊂ VG : i0 ∈ S, S̄ ∩D 6= ∅, (8)

y ∈ {0, 1}|AG|.

In C1, a variable may appear more than once (i.e., it has a coefficient greater than
one) in a constraint (8). Removing multiple occurrences of a variable in the same
constraint leads to a stronger cut-based formulation, C2. Recall that in the sorted
power vector of node i, π′

i(S̄) is the position corresponding to the minimum power
required at i to reach some node in S̄.

[C2] min
∑
i∈VG

n∑
k=1

c(ik)y(ik)

s.t.
∑
i∈S

n∑
k=π′i(S̄)

y(ik) ≥ 1 ∀S ⊂ VG : i0 ∈ S, S̄ ∩D 6= ∅, (9)

y ∈ {0, 1}|AG|.

Clearly, ζ (C1, I) ≤ ζ (C2, I) holds for any instance I. Note that the inequalities (7)
are valid in both C1 and C2. Similar to their role in the flow-based formulations,
inequalities (7) neither are necessary for defining the integer optimum, nor do they
improve the continuous relaxations of C1 or C2. We omit the proof of this result,
because it is similar to that of Proposition 1.

The two cut-based formulations, C1 and C2, are tightly connected to the two flow-
based formulations F1 and F2. We end this section by proving that C1 and F1 are
equally strong.

Proposition 3 ζ (F1, I) = ζ (C1, I) for any instance I of MEMP.
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Proof. Consider any y ∈ [0, 1]|AG|, and assign capacity
∑n

k=π′i(j)
y(ik) to the arc (i, j) ∈

AG. Clearly, y is feasible in C1LP (i.e., y satisfies (8)) if and only if all cuts separating
i0 from some destination have at least unit capacity, which in turn is true if and only
if the maximum flow from i0 to all d ∈ D is at least one. If the maximum flow arriving
at d ∈ D is greater than or equal to one, then this flow (scaled down to unit flow,
if necessary) together with y constitute a feasible solution to F1LP. Conversely, a
feasible solution (f, y) to F1LP corresponds to a flow of one unit for every d ∈ D,
and therefore y is feasible in C1LP. The proposition then follows from the fact that
F1 and C1 have identical objective functions. 2

For F2 and C2, it is less straightforward to show their relation in strength. In the
next section we discuss a Steiner arborescence model for MEMP. This model serves
as the link we need for proving that ζ (F2, I) = ζ (C2, I).

5 ALTERNATIVE MODELS FOR MEMP

5.1 A Steiner Arborescence Model

Given a source node and a set of terminal nodes in a directed graph with arc weights,
the Steiner arborescence problem [25] amounts to finding an arborescence that is
rooted at the source and spans the set of terminal nodes, such that the total weight
of the arcs in the arborescence is minimized. We show that MEMP can be formulated
as a Steiner arborescence problem in a directed graph H, where H is an expansion
of G.

πi(1) πi(2) πi(n)

i

vi1 vi2 vin

· · ·

· · ·

a1
i1 a1

i2 a1
in

a2
i2 a2

i3 a2
in

a3
i1 a3

i2
a3

in

FIG. 2. An illustration of the graph expansion.

The node and arc sets of H are denoted VH = V ′
H ∪VG and AH = A1

H ∪A2
H ∪A3

H , re-
spectively. For an arbitrary node i ∈ VG, the graph expansion is illustrated in Figure
2. The additional node set V ′

H is the union of the “square” nodes for all i ∈ VG, that
is, V ′

H = {vik : i ∈ VG, k ∈ N}. The three parts of the arc set AH are defined as follows:
A1

H = {a1
ik = (vik, πi(k)) : i ∈ VG, k ∈ N}, A2

H = {a2
ik = (vik, vi,k−1) : i ∈ VG, k = 2, . . . , n},

and A3
H = {a3

ik = (i, vik) : i ∈ VG, k ∈ N}. In Figure 2, these sets correspond to the
vertical, horizontal, and diagonal arcs, respectively.

MEMP is equivalent to a minimum Steiner arborescence problem in H, where i0 is
the source and D is the set of terminal nodes. The arcs in A1

H and A2
H have zero

weights, whereas the weight of arc a3
ik ∈ A3

H equals c(ik), i ∈ VG, k ∈ N . The problem
can be formulated as follows:
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[S] min
∑
i∈VG

n∑
k=1

c(ik)Ya3
ik

s.t. hd ∈ F(H, Bd, Y ) ∀d ∈ D, (10)

Y ∈ {0, 1}|AH |. (11)

The variables of S are the flow vectors hd ∈ <|AH |
+ , d ∈ D, and the binary vector

Y ∈ {0, 1}|AH |. The demand vector Bd ∈ <|VH | is an extension of bd such that Bd
v = 0

for all v ∈ V ′
H .

Because the size of S is much larger than that of F2, the former is likely to be less
efficient in terms of solving MEMP by an integer programming solver. There are
however several reasons for considering S. First, theory and methodolgy available in
the literature on the Steiner arborescence problem, and the more general problem
class of uncapacitated network design [3] can be applied to MEMP. Second, we use
S to prove the equivalence in strength between F2 and C2. Third, the proof shows
that the expanded graph H is needed to implement a constraint-generation scheme
for solving C2.

In the remainder of this section, we use S as the link between F2 and C2. The
following lemma is useful to prove that S is exactly as strong as F2.

Lemma 4 Consider any d ∈ D, fd ∈ F(G, bd), and Y ∈ [0, 1]|AH |. If Ya = 1 ∀a ∈
A1

H ∪ A2
H and

∑n
`=k fd

(i`) ≤
∑n

`=k Ya3
i`
≤ 1 ∀(i, k) ∈ VG × N , then there exists some

hd ∈ F(H, Bd, Y ) such that hd
a1

ik
= fd

(ik) ∀(i, k) ∈ VG ×N .

Proof. For convenience, we omit the superscript d on f , h and B. Consider any
i ∈ VG. We use f and Y to define the flow h by maximizing the flow on arcs a3

in, . . . , a
3
i1,

in the given order, while respecting the following conditions:

ha1
ik

= f(ik) ∀i ∈ VG, k = 1, . . . , n

ha3
in

= min

{
Ya3

in
,

n∑
`=1

ha1
i`

}
(12)

ha3
ik

= min

Ya3
ik
,

n∑
`=1

ha1
i`
−

n∑
`=k+1

ha3
i`

 ∀i ∈ VG, k = n− 1, . . . , 1 (13)

ha2
ik

=
n∑

`=k

ha3
i`
−

n∑
`=k

ha1
i`

∀i ∈ VG, k = 2, . . . , n (14)

We first show that h is non-negative, and does not exceed Y . Clearly, ha ∈ [0, Ya]
∀a ∈ A1

H . The constructions in (12) and (13) imply that
∑n

`=1 ha1
i`
≥ ∑n

`=k ha3
i`

∀k ∈ N . Consequently, ha3
ik
≥ 0 ∀k ∈ N , since it is the minimum of two non-

negative numbers. Hence ha ∈ [0, Ya] ∀a ∈ A3
H . Furthermore,

∑n
`=k ha3

i`
=

∑n
`=1 ha1

i`

if the minimum in (13) equals
∑n

`=1 ha1
i`
− ∑n

`=k′+1 ha3
i`

for some k′ ≥ k, otherwise

10



∑n
`=k ha3

i`
=

∑n
`=k Ya3

i`
. Therefore, either ha2

ik
=

∑n
`=1 ha1

i`
−∑n

`=k ha1
i`

=
∑k−1

`=1 f(i`), or

ha2
ik

=
∑n

`=k Ya3
i`
−∑n

`=k ha1
i`

=
∑n

`=k Ya3
i`
−∑n

`=k f(i`). As a result, ha ∈ [0, Ya] ∀a ∈ A2
H .

Next, we prove flow conservation. Consider first the total flow emanating from node

i. Because
∑n

`=1 ha3
i`
∈

{∑n
`=1 ha1

i`
,
∑n

`=1 Ya3
i`

}
and

∑n
`=1 ha1

i`
=

∑n
`=1 f(i`) ≤

∑n
`=1 Ya3

i`
,

it follows from the minimization in (13) that
∑n

`=1 ha3
i`

=
∑n

`=1 f(i`). The total flow
entering node i is

∑
a∈A−

H(i) ha =
∑

j∈VG\{i} f(j,π′j(i))
. Thus h satisfies flow conservation

at all i ∈ VG because f does. Moreover, for any vik ∈ V ′
H , flow conservation follows

directly from Figure 2 and (14). Hence h ∈ F (H, B, Y ). 2

The proposition below establishes the strong connection between feasible flow vectors
in F2 and those in S. Specifically, if Ya3

ik
= y(ik) ∀(i, k) ∈ VG × N , then projecting

flow vectors satisfying (10) onto the arc set A1
H gives the feasible set of flow vectors

in F2.

Proposition 5 Consider any d ∈ D, and assume that y ∈ [0, 1]|AG| and Y ∈ [0, 1]|AH |

satisfy
∑n

k=1 y(ik) ≤ 1 ∀i ∈ VG, Ya = 1 ∀a ∈ A1
H∪A2

H , and Ya3
ik

= y(ik) ∀(i, k) ∈ VG×N .

Then the projection of F(H, Bd, Y ) onto A1
H is exactly the set of flow vectors in

F(G, bd) satisfying
∑n

`=k fd
(i`) ≤

∑n
`=k y(i`) ∀i ∈ VG, k ∈ N .

Proof. We omit the superscript d on f , h, b and B. Consider any h ∈ F(H, B, Y ),
and set f(ik) = ha1

ik
∀i ∈ VG, k ∈ N . We show that f ∈ F(G, b) and

∑n
`=k f(i`) ≤∑n

`=k y(i`) ∀i ∈ VG, k ∈ N .

First, note that the total flow entering the node set {vik : k ∈ N} equals the to-
tal flow emanating from this set, i.e.,

∑
k∈N ha3

ik
=

∑
k∈N ha1

ik
, because the set con-

tains neither the source nor any destination. As h satisfies conservation of flow
at i, we have

∑
a∈A−

G(i) fa =
∑

a∈A−
H(i) ha =

∑
k∈N ha3

ik
+ bi =

∑
k∈N ha1

ik
+ bi =∑

k∈N f(ik) + bi =
∑

a∈A+
G(i) fa + bi. Therefore, f ∈ F(G, b). Moreover, conservation of

flow at {vik : k ∈ N} implies
∑n

`=k f(i`) =
∑n

`=k ha1
i`

=
∑n

`=k ha3
i`
− ha2

ik
≤ ∑n

`=k ha3
i`
≤∑n

`=k Ya3
i`

=
∑n

`=k y(i`).

Next, assume that f ∈ F(G, b) and
∑n

`=k f(i`) ≤
∑n

`=k y(i`) ∀k ∈ N . By Lemma 4, f
is the projection of some h ∈ F(H, B, Y ) onto A1

H . 2

The following proposition states that S and C2 are equally strong. The key to estab-
lish the proof is to observe that the left-hand side of (9) in C2 does not correspond
to a cut in the graph G, but in the expanded graph H.

Proposition 6 ζ (S, I) = ζ (C2, I) for any instance I of MEMP.

Proof. Consider any Y ∈ [0, 1]|AH | for which there exists a flow h satisfying (10).
We first show that setting y(ik) = Ya3

ik
∀(i, k) ∈ VG × N yields a feasible solution to

C2LP. Consider any S ⊂ VG such that i0 ∈ S and S̄ ∩ D 6= ∅, and the cut in H
defined by Z = S ∪ {vik : i ∈ S, k < π′

i(S̄)}. Clearly, i0 ∈ Z and S̄ ∩ D ⊆ Z̄. By

11



construction, both vik and πi(k) are in Z̄ for all i ∈ S, k ≥ π′
i(S̄). Also, for all k ∈ N ,

(i, πi(k)) 6∈ AH . From these observations and Figure 2, it follows that the arcs in AH

going from Z to Z̄ are {(i, vik) : i ∈ S, k ≥ π′
i(S̄)}. The total capacity of this cut in

H equals
∑

i∈S

∑n
k=π′i(S̄) Ya3

ik
=

∑
i∈S

∑n
k=π′i(S̄) y(ik) ≥ 1, because Y admits a flow of one

unit over the cut. Hence (9) is satisfied, and y is feasible in C2LP.

To complete the proof, we define the vector Y as Ya = 1 ∀a ∈ A1
H∪A2

H and Ya3
ik

= y(ik)

∀(i, k) ∈ VG × N , for any y ∈ [0, 1]|AG| satisfying (9), and show that Y admits a
flow satisfying (10). Suppose this is not the case. Then, there exists a set Z ⊂ VH ,
such that i0 ∈ Z, Z̄ ∩ D 6= ∅, and the total capacity of the cut defined by Z is
strictly less than one. Obviously, the cut does not contain any arc in A1

H ∪ A2
H , as

otherwise the capacity is at least one. We construct a cut in G by setting S = Z∩VG,
which implies S̄ = Z̄ ∩ VG. Observe that if i ∈ S, then vik ∈ Z̄ ∀k ≥ k′ = π′

i(S̄),
because otherwise the cut in H would contain some arc in A1

H or A2
H on the path

(vik, vi,k−1, . . . , vik′ , πi(k
′)). Therefore, the total capacity of the cut in H is no less

than
∑

i∈S

∑n
k=k′ Ya3

ik
=

∑
i∈S

∑n
k=k′ y(ik) ≥ 1, which gives a contradiction. 2

From Propositions 5 and 6, we conclude that F2, S, and C2 are equallly strong.

Corollary 7 ζ (F2, I) = ζ (S, I) = ζ (C2, I) for any instance I of MEMP.

The proof of Proposition 6 has a computational dimension. We can check whether a
vector y satisfies (9), without explicitly generating all these constraints, by solving
one maximum flow problem in H for every d ∈ D. The arc capacities are Ya = 1
∀a ∈ A1

H ∪ A2
H , and Ya3

ik
= y(ik) ∀(i, k) ∈ VG ×N . If the maximum flow is (at least)

one for all d, then y is feasible in C2. Otherwise, it follows from the proof that at least
one cut corresponding to a violated constraint of (9) is identified. This observation
is useful for solving C2 and C2LP by constraint generation.

5.2 Formulations Based on Incremental Power

We can obtain alternative formulations for MEMP by considering the node powers
in an incremental fashion. Consider the following set of binary variables:

x(ik) =

 1, if the power of node i is at least c(ik),

0, otherwise.

A solution in these variables is feasible only if x(i,k−1) ≥ x(ik) ∀i ∈ VG, k = 2, . . . , n.
Assuming c(i0) = 0 ∀i ∈ VG, the total power is given by

∑
i∈VG

∑n
k=1(c(ik)−c(i,k−1))x(ik).

Reformulating F1, F2, C1, and C2 using incremental node power is straightforward.
The relationship between x and y is given by x(ik) =

∑n
`=k y(i`) i ∈ VG, k ∈ N . Note

that the mapping between x and y is unique in both directions.

A transformation based on incremental power can be applied to S as well, leading to
a second Steiner arborescence model. The graph of this model has the same set of
nodes as H, but differs from H in the definition of the arc set.
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Reformulations using incremental power neither affect the strength of F1, F2, C1,
C2, or S, nor have a more favorable computational behavior in comparison to the
models in the previous sections. We therefore do not discuss them in any detail.

6 NUMERICAL EXPERIMENTS

In order to examine their computational performance, we apply the flow- and cut-
based formulations discussed in Sections 3 and 4 to randomly generated instances.
Since S has more variables and constraints than F2, but the same strength, we
exclude S from the experimental study.

We consider network instances of 10, 20, 50 and 100 nodes, and let D range from
a small multicast group to VG \ {i0} (broadcast). We apply the instance generation
procedure by Wieselthier et al. [23,24] to generate 100 network instances for vari-
ous combinations of |VG| and |D|. In the remainder of this section, we let |VG|/|D|
denote the set of instances having |VG| nodes and |D| destinations. Any reported
average value referring to any of these sets is based on all 100 instances. Table entries
that cannot be computed because the underlying values are not available for all 100
instances, appear as “–”.

A commonly used formula (e.g., [23,24]) for calculating the power requirement cij is
cij = κrα

ij, where κ is a constant and rij is the Euclidean distance between nodes i
and j. The parameter α is environment-dependent, and its value typically is between
2 and 4. We set α = 2 in all our experiments. This leads to instances harder than
those obtained with a larger value of α.

We apply CPLEX 10.1 [14] to the formulations and to their continuous relaxations.
We use the dual simplex method as the root algorithm, and let all CPLEX-parameters
concerning cut generation be set to their default values. This means that we let
CPLEX determine to what extent valid inequalities should be generated in the course
of the search. Cut generation may speed up the solution procedure, especially for the
weaker formulations. All experiments have been conducted on a 2.4 GHz processor
with 2 GB RAM.

The computational experiments are organized into four parts with different objectives
as follows:

(1) As mentioned in Section 1, the strength of a model is relevant from a computa-
tional standpoint. In the first part of the experiments, we numerically compare
the strengths of the flow-based models, that is the one by Das et al. in [8] (hence-
forth denoted by DAS), F0, F1, and F2. By Proposition 3 and Corollary 7,
the latter two also indicate the strengths of the cut-based models C1 and C2.
Networks of 10 and 20 nodes are studied.

(2) We then compare the formulations in terms of solving MEMP to optimality.
Based on the results from the first part, we have chosen to analyze DAS, F1,
F2, C1, and C2. The networks studied consist of 20 and 50 nodes.

(3) The third part of experiments has been conducted for the largest network size
(100 nodes) that we have generated. The models compared are F2 and C1,
which in part two of the experiments turn out to be more efficient than the
other models.

(4) Assessing numerically the performance of heuristics for MEMP requires either
optimal solutions or strong lower bounds. As our integer programming models
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are useful for this purpose, we apply them in the last part of experiments for
performance evaluation of the well-known MIP/BIP heuristic, and compare its
numerical performance to its theoretical approximation ratio.

6.1 Strengths of the Models

In Section 3, we gave a sequence of flow-based models, DAS, F0, F1, F2, with
increasing strength. We apply these formulations to instance sets 10/2, 10/5, 10/9,
20/5, 20/10, and 20/19. The results are presented in Tables 1 and 2, reporting the
strength and the computational burden, respectively, of the formulations. Results for
|VG| = 10 are not reported in Table 2, since the instances are solved very quickly. In
all instance sets, the average CPU time is less than 5 seconds for F0, and less than
1 second for the other formulations. The meaning of the columns in the tables is as
follows:

• Column “ζ = ζ∗” in Table 1 shows the number of instances (among a total of 100
instances) for which the optimal solution to the continuous relaxation is integral.

• Column “gap” in Table 1 shows the integrality gap, defined as ζ∗(I)−ζ(M,I)
ζ∗(I)

(recall

that ζ∗ (I) denotes the optimal total power of instance I).
• Column “LP” in Table 2 is the time (in CPU seconds) spent on solving the LP-

relaxation.
• Column “opt” in Table 2 is the time (in CPU seconds) needed to reach and prove

optimality.
• Column “b&b” in Table 2 is the number of nodes in the branch and bound tree.

Throughout the section we use [s] to denote that the unit of the column entries is
CPU seconds, and [#] to denote that the entries result from counting.

Note that the results in the columns of F1 (F2) in Table 1 also apply to C1 (C2).

TABLE 1
Comparing the strengths of the flow-based formulations.

DAS F0 F1 F2

ζ=ζ∗[#] gap ζ=ζ∗[#] gap ζ=ζ∗[#] gap ζ=ζ∗[#] gap

10/2 0 0.70 2 0.46 11 0.24 98 0.00

10/5 0 0.84 0 0.46 8 0.18 95 0.00

10/9 0 0.89 0 0.47 9 0.15 89 0.00

20/5 0 0.89 0 0.63 0 0.33 87 0.00

20/10 0 0.93 0 0.61 0 0.27 75 0.01

20/19 0 0.95 0 0.59 2 0.22 51 0.02
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In Table 1, the integrality gap decreases from left to right, and the number of instances
solved to optimality increases accordingly. For DAS, the gap is above 70% and grows
by instance size. The gap of F0 remains large, although it is considerably lower
than that of DAS. The results from F1 and F2 are better. For F2, the gap is
close to zero, and there are a large number of instances where the optimum of the
continuous relaxation coincides with the integer optimum. To conclude, each step of
strengthening in Section 3 gives a significantly stronger relaxation.

Strong formulations are expected to perform well in terms of finding and verifying
integer optima. In Table 2, this is indeed observed for the strongest formulation F2.
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However, both F0 and F1 require more computations than the weakest model DAS.
Unless the bound is sufficiently tight, the increased computational effort of solving
the continuous relaxation may slow down the overall solution process.

Table 2 shows that F1 results in more branch and bound nodes than F0, and when
|D| = 5, also more than DAS. This is explained by the valid inequalities for DAS
and F0 generated by CPLEX, which improve the lower bound. The inequalities that
CPLEX adds to F1 have less effect on bounding. Despite its smaller search tree,
F0 is more time consuming than DAS and F1. This indicates that the explicit
representation of node power in combination with multicommodity flow variables
makes F0LP hard to solve. We also observe that F2 produces a smaller search tree
than F1 does, which is in accordance with our theoretical results.

6.2 Performance in Approaching Optimality

The flow-based formulations DAS, F1 and F2, and the cut-based formulations C1
and C2, are further examined with respect to their ability to solve MEMP to opti-
mality. We exclude F0 due to its poor performance.

Both C1 and C2 contain exponentially many constraints. Generating all constraints
and solving the resulting models is not a practical approach. Consequently, we have
implemented a constraint generation scheme, to be explained below, which gradually
extends a set K of subsets of nodes. Each S ∈ K satisfies the condition in (8) and
(9). Constraint generation is first applied to the continuous relaxation of either of
the cut-based models. When the relaxation is solved, we reintroduce the integrality
requirement, and use constraint generation to solve the resulting cut-based model.

Initially, we let K contain the sets {i0} and VG \ {d} for all d ∈ D, and the resulting
model is solved to optimality. The constraint generation scheme examines whether
the current solution violates (8) or (9) for some S ⊂ VG where i0 ∈ S and S̄ ∩D 6= ∅.
Such sets are found by solving one maximum flow problem for each d ∈ D. If the
maximum flow from i0 to d is smaller than one, then d is not yet connected to
i0, and the values of the dual variables of the flow balance equations are used to
detect a violated constraint. The constraint generation scheme thus adds at most |D|
constraints per iteration.

The graph in which the maximum flow problems of C2 are defined differs from
that of C1. For C1, the maximum flow problems are defined on the MEMP graph
G = (VG, AG). From constraint (8) in C1, it can be derived that the capacity of arc
(i, j) ∈ AG equals

∑n
k=π′i(j)

y(ik). For C2, on the other hand, the capacity of a cut in

G cannot be linked to the arc capacity using constraint (9). Instead, as a result of
Proposition 6, the maximum flow problems are defined in the expanded graph H.
The values of the y-variables define the capacities of the arcs in A3

H , and all arcs in
A1

H and A2
H have unit capacity. Figure 3 outlines the constraint generation scheme

for solving C1. To solve C2, we replace the constraint on line (7) in Figure 3 with∑
i∈S

∑n
k=π′i(S̄) y(ik) ≥ 1 ∀S ∈ K, and substitute the model given by (11)–(14) in

Figure 3 with the model shown in Figure 4.

We apply DAS, F1, F2, C1, and C2 to instance sets 20/5, 20/10, 20/19, 50/5, 50/10,
50/25 and 50/49. For each of the models, we limit the time available for solving the
continuous relaxation of an instance to one hour. If the relaxation is solved within
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(1) S ← {i0}; K← {S}
(2) for all d ∈ D
(3) S ← VG \ {d}; K← K ∪ {S};
(4) repeat
(5) ȳ ← solution to the cut-based model:
(6) min

∑
i∈VG

∑n
k=1 c(ik)y(ik)

(7) s.t.
∑

i∈S

∑
j∈S̄

∑n
k=π′i(j)

y(ik) ≥ 1 ∀S ∈ K

(8) y ∈ [0, 1]|AG|

(9) totalFlow ← 0
(10) for all d ∈ D
(11) flow ← max bd

(12) s.t. bi = 0 ∀i ∈ VG \ {i0, d}
(13) b ∈ <|VG|

+ , f ∈ F(G, b)
(14) fij ≤

∑n
k=π′i(j)

ȳ(ik) ∀(i, j) ∈ AG

(15) if (flow < 1)
(16) S ← {i0};
(17) for all i ∈ VG

(18) if (dual variable of flow balance at i = dual variable of flow balance at i0)
(19) S ← S ∪ {i};
(20) K← K ∪ {S};
(21) totalFlow ← totalFlow + flow
(22) until (totalFlow = |D|)
(23) if (ȳ not integral)
(24) redo (4)–(22), where y ∈ [0, 1]|AG| in line (8) is replaced by y ∈ {0, 1}|AG|

FIG. 3. Solving C1 by constraint generation.

flow ← max Bd

s.t. Bi = 0 ∀i ∈ VH \ {i0, d}
B ∈ <|VH |

+ , h ∈ F(H,B)
ha ≤ 1 ∀a ∈ A1

H ∪A2
H

ha3
ik
≤ ȳ(ik) ∀(i, k) ∈ VG ×N

FIG. 4. The maximum flow problem in constraint generation for C2.

the time limit, a maximum of one (additional) hour is allowed for solving the instance
to integer optimality. We summarize the following results in Table 3:

• Column “ζ” shows the number of instances in which the continuous relaxation is
solved to optimality within the time limit.
• Column “ζ∗” shows the number of instances in which integer optimality is obtained

within the time limit.
• Column “rgap” shows the remaining gap after completion/interruption of the so-

lution procedure, averaged over all instances I. This is defined as U(M,I)−L(M,I)
U(M,I)

,

where L (M, I) and U (M, I) are the best lower and upper bounds on ζ∗ (I) ob-
tained by use of formulationM.

When the time limits do not apply, the gap is zero. Otherwise, forM∈ {DAS,F1,F2},
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we get L (M, I) and U (M, I) directly from the branch and bound algorithm in
CPLEX. If no feasible solution is found, we apply the default upper bound U (M, I) =
c(i0,n), and if the LP-relaxation is unsolved, we let L (M, I) = 0 (resulting in an entry
in the “rgap” column equal to 1).
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For M ∈ {C1,C2}, we set L (M, I) to the optimal objective function value of
the last linear (integer) program (6)-(8) in Fig. 3 (y ∈ [0, 1]|AG| possibly replaced
by y ∈ {0, 1}|AG|) that was solved before interruption. However, no upper bound is
available in the case of interruption, and therefore the default upper bound is applied
in this case.

Consider the results from networks of 20 nodes. By use of DAS, F2, or C2, an integer
optimum is obtained in all instances. This holds also for F1 with one exception. The
weaker performance of C1 compared to C2 is due to its need for a larger number of
iterations and constraints in order to reach optimality.

Solving DASLP and F1LP remains easy in cases where the network has 50 nodes, but
from the “rgap” columns it follows that the bounds on ζ∗ (I) are weak. Not many
instances can be solved to integer optimality by using DAS or F1. However, F2
performs better in this respect. The superiority in strength of F2 over F1 is illustrated
by the instance set 50/10. When applied to any instance in this set, both F1LP and
F2LP are solved to optimality. However, whereas F2 admits integer optimum in 99
instances, the corresponding number of F1 is zero. The limitation of F2 is its size.
For a large multicast group, in particular broadcast, size prohibits not only F2 but
also F2LP to be solved.

The performance picture of the two cut-based models applied to networks of 50 nodes
differs from that of smaller networks. Solving C2LP becomes too time-consuming
when |VG| = 50. As a result, the exact solution can be computed in only a few
instances. Since C2 is a strong model, however, it admits integer optimum within
the time limit in every instance where the relaxation is solved. Compared to C2, C1
performs well when applied to networks of 50 nodes. In all sets of instances of this
size, the formulation leads to integer optimum in more instances than does C2. It also
outperforms its flow-based counterpart F1 in this respect, although the theoretical
analysis proved that these two formulations are equally strong.

6.3 Experiments with Large Networks

From the results presented in Section 6.2, we conclude that F2 performs well for small
|D|, and that C1 is a potential formulation for large |D|. We apply these formulations
to networks of 100 nodes. The results are presented in Table 4.

The results confirm that F2 is efficient for the purpose of solving instances with
small multicast groups, and that C1 is better suited for providing a lower bound
when |D| ≥ 50. Although F2 fails to lead to the integer optimum in one third of
the instances in 100/10, the average remaining gap is small (i.e., near-optimal integer
solutions have been found). When |D| ≥ 50, F2LP is not solved since the solver runs
out of memory. A lower bound is available by application of C1, but the absence of
an upper bound other than the default bound leaves us with a large remaining gap.

6.4 Performance Evaluation of MIP

An important performance metric of a heuristic is its approximation ratio. For many
heuristics, this theoretical value is difficult or impossible to obtain. For others, the

21



TABLE 4
Results for networks of 100 nodes.

F2 C1

ζ[#] ζ∗[#] rgap ζ[#] ζ∗[#] rgap

100/5 100 100 0.00 26 14 0.84

100/10 100 66 0.03 33 8 0.86

100/50 0 0 1.00 53 0 0.82

100/99 0 0 1.00 52 0 0.80

approximation ratio can be derived, but it is usually attained by an instance specif-
ically designed to lure the heuristic. Thus the ratio may give a contorted picture of
the performance on realistic instances. A complementary approach for performance
evaluation is the performance ratio. This approach requires the computation of the
optimal solution or a lower bound on the optimum (if the problem involves mini-
mization). For MEMP, our integer programming models can be used for studying the
numerical performance of heuristics. As we have observed in the previous section, the
models are not applicable in computing integer optimum for large networks. Never-
theless, for these networks the models lead to lower bounds on the optimum, and
hence remain useful from a performance evaluation standpoint.

We have chosen to examine the numerical performance of the MIP heuristic, not
only because this is the best known heuristic for MEMP, but also because it has been
used to benchmark many other heuristics (e.g., [7,9–11,15,19]). Assessing the MIP
performance thus gives an indirect evaluation of many heuristics for MEMP.

TABLE 5
Performance evaluation of MIP.

MIP
ζmax

MIP
ζmax

10/2 1.0784 20/5 1.1682

10/5 1.1068 20/10 1.2279

10/9 1.1387 20/19 1.2393

50/5 1.2871 100/5 1.3583

50/10 1.2800 100/10 1.3585

50/25 1.2505 100/50 1.6474

50/49 1.3080 100/99 1.5503

22



For every instance I, we compute the best bound ζmax (I) obtained from F1, F2, C1
and C2. For instances where ζ∗ (I) is computed, we get ζmax (I) = ζ∗ (I), whereas
for the other instances we set
ζmax (I) = max {ζmax (F1, I) , ζmax (F2, I) , ζmax (C1, I) , ζmax (C2, I)}, where

• ζmax (M, I) is the best lower bound produced by the branch and bound procedure
ifMLP is solved,M∈ {F1,F2,C1,C2},
• ζmax (M, I) is the lower bound produced by the dual simplex algorithm ifMLP is

not solved,M∈ {F1,F2},
• ζmax (M, I) is the optimal LP-value obtained in the last completed iteration of the

constraint generation procedure ifMLP is not solved,M∈ {C1,C2}.

The results of the performance evaluation are presented in Table 5, which gives the
performance ratio of MIP with respect to ζmax (I) averaged over all instances. The
results show that, for broadcast, MIP’s average numerical performance on randomly
generated instances is much better than 4.6, a recently proved lower bound on its
approximation ratio [4]. For multicast, the performance ratio of MIP is significantly
below the theoretical value, which is proportional to n + 1 [22].

7 CONCLUSIONS

In this paper, we have studied how mathematical programming can be applied to
the minimum-energy multicast problem (MEMP). We have proposed and compared
several flow- and cut-based formulations. Starting from a network flow formulation
proposed in [8], we have shown how this model can be strengthened successively,
resulting in the flow-based formulations F1 and F2. We have also developed the
cut-based formulations, C1 and C2, which are exactly as strong as F1 and F2, re-
spectively. The cut-based formulations need fewer variables than the flow-based ones,
but contain exponentially many constraints. On the other hand, applying constraint
generation to a cut-based formulation turns out to be useful when the size of the
strong flow-based model cannot be handled efficiently by a solver.

We have also shown that MEMP can be formulated as a Steiner arborescence prob-
lem in an expanded graph. This insight has significance for several reasons. First,
it provides us with a link between the strong flow- and cut-based models F2 and
C2. Second, previous and future results on the Steiner arborescence problem may
be useful in developing solution methods for MEMP. Third, the expanded graph is
useful when solving C2 by constraint generation.

Our numerical experiments illustrate the relation between the strengths of the models
and their computational capabilities. Our models can be used to solve small and some
medium-sized instances of MEMP to optimality. Heuristics are necessary in order to
quickly obtain solutions to large instances. Integer programming formulations remain
useful because they provide bounds that are necessary for studying the numerical
performance of heuristics. Conclusively, mathematical programming formulations are
valuable tools for analyzing and solving MEMP.

There are several interesting directions for further research. One topic is to develop
more tailored solution methods that can deliver optimal or near-optimal solutions
of MEMP in large networks. As a first step, it is worth studying whether relaxation
followed by constraint reinforcement can speed up the solution process of F2. A
second topic is to utilize mathematical programming models in the study of strong
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heuristics and approximation algorithms for MEMP. Moreover, based on the current
work, we intend to study energy-optimization problems related to MEMP, for example
source-independent minimum-energy broadcast [20]. Other related, and even harder
problems, are found in the domain of medium access control. Cross-layer optimization
of medium access and broadcast routing lead to topics of forthcoming research.
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