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Abstract. Ability to find a low-energy broadcast routing quickly is vi-
tal to a wireless system’s energy efficiency. Directional antennae save
power by concentrating the transmission towards the intended destina-
tions. A routing is given by assigning a transmission power, angle, and
direction to every networking unit, and the problem of finding such a
power saving routing is called the Directional Minimum Energy Broad-
cast Problem (D-MEBP). In the well known Minimum Energy Broadcast
Problem (MEBP), the transmission angle is fixed to 2π. Previous works
suggested to adapt MEBP algorithms to D-MEBP by two procedures,
Reduced Beam (RB) and Directional (D). As the running time of the
routing algorithms is a critical factor, we reduce the time complexity of
both by one order of magnitude.

1 Introduction

In wireless ad-hoc networks, a broadcast session is established without use of
any central backbone system, and is based entirely on message passing between
network units. To accomplish this, each unit is equipped with an energy resource
in terms of a battery. Since this resource is limited it becomes crucial to route
the broadcast messages in such a way that power consumption is minimized.
At each network unit transmitting a message, the power consumption typically
depends on the transmission coverage, which in its turn is determined by the set
of intended recipients.

What parameters that can be set in order to achieve a minimum energy
broadcast routing depends on the technology of the transmission antennae in the
network. In the case of directional antennae, the transmission beam is concen-
trated towards the intended destination units, and the coverage hence has both
a radial and an angular dimension. The former is simply the power required to
reach the most remotely located recipient, and the latter is the minimum angle
of a sector containing all. For networks based on omnidirectional antennae, the
transmission angle is fixed to 2π.
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The Minimum Energy Broadcast Problem (MEBP) has in the case of om-
nidirectional antennae attracted intensive research. As the problem is NP-hard
[1], the energy efficiency of applications depends on efficient routing heuristics.
An overview of various suggestions to such methods can be found in the survey
of Guo and Yang [2].

A common approach is to represent the network as a graph and determine a
routing arborescence spanning the nodes in the graph. The arborescence defines
an assignment of power to the nodes, given as the cost of the most expensive
outgoing arc. A straightforward choice of routing arborescence is the Minimum
Spanning Tree (MST), computed for instance by Prim’s algorithm, which has
been studied thoroughly. In [3], Guo and Yang proved that MST provides the
optimal solution to a variant of MEBP, the static Maximum Lifetime Multicast
Problem (MLMP).

Arborescences yielding a smaller total power assignment are found by taking
into account the node-oriented objective function. In construction algorithms,
where new nodes are added iteratively to an arborescence consisting initially
of only the source node, this can be reflected by selecting nodes such that the
incremental power is minimized. The most frequently cited such algorithm is the
Broadcast Incremental Power (BIP) algorithm by Wieselthier et al. [4].

Assuming that the antennae are directional, we arrive at an extension of
MEBP referred to as the Directional MEBP (D-MEBP). This problem has been
studied to a far lesser extent than MEBP. Wieselthier et al. suggested in [5] the
principles Reduced Beam (RB) and Directional (D) to adapt BIP to D-MEBP,
resulting in the heuristics RB-BIP and D-BIP, respectively. RB-BIP first calls
BIP to construct a broadcast routing arborescence, and then simply reduces the
transmission angle of every unit to the minimum angle necessary to cover all
the unit’s children. D-BIP, on the other hand, takes antenna angles into account
already in the construction phase. In each iteration of this procedure, the increase
in both power requirement and angle are considered when deciding which unit
to add to the current arborescence. In general, RB can be considered as a local
improvement procedure to be called after construction, whereas D is interleaved
with the construction algorithm.

In [6], Guo and Yang presented a mixed integer programming model, and
used RB and D to adapt their local search heuristic [7] to D-MEBP. In [3], they
applied both principles to adapt the MST algorithm to a directional version of
MLMP.

As demonstrated in the above articles, RB and D are useful for adapting
MEBP algorithms to D-MEBP in general. Wieselthier et al. showed in [8] that
the time complexities of RB-BIP and D-BIP are O(|V |3) and O(|V |3 log |V |),
respectively, where V denotes the node set of the graph. The result for RB-BIP
is derived from an implementation of BIP with O(|V |3) time complexity. The
additional time complexity of the RB procedure is in [8] proved to be bounded
by O(|V |2 log |V |).

In this paper, we first improve the time complexity of RB to O(|V | log |V |) by
better analysis. Together with an implementation of BIP with O(|A|+|V | log |V |)
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time complexity, suggested by Bauer et al. [9], this results in an implementation
of RB-BIP with as low time complexity as O(|A|+ |V | log |V |). Here A denotes
the set of arcs in the graph.

Second, we suggest a novel implementation of D-BIP building on the BIP
implementation in [9], and prove that its running time is O(|V |2).

2 Preliminaries

An instance of D-MEBP is given by a directed graph G = (V,A), where the nodes
represent the networking units, a source s ∈ V , power requirements c ∈ IRA, and
the minimum transmission angle θmin. The nodes are associated with points in
the plane, and the power requirement cvu is typically proportional to dα

vu, where
dvu is the Euclidean distance between nodes v and u, and α ∈ [2, 4] is a constant
[2].

A solution to any instance can be given by an s-arborescence T = (V,AT )
with arc set AT ⊆ A. An s-arborescence is a directed tree where all arcs are
oriented away from s. In T , every node v has a (possibly empty) set Γv(T ) of
children. The transmission power induced by T at v ∈ V is given by

pv(T ) =

{
0 if Γv(T ) = ∅
maxw∈Γv(T ){cvw} otherwise .

In the idealized model assumed in the literature, the energy emitted by node v
is concentrated uniformly in a beam of width θv(T ) [5]. To simplify the definition
of θv(T ), nodes are identified with points in IR2. For any two nodes u and v,
we let uv denote the straight line segment in IR2 with end points u and v, and
for any three nodes u, v and w, we let 6 uvw denote the angle between the line
segments uv and vw with positive (counter-clockwise) direction from uv to vw.
This implies 6 uvw = 2π − 6 wvu. For the purpose of simplified presentation, we
assume that no three nodes are collinear, and we define 6 uvu = 2π. Let the
sector Suvw be defined as the node set Suvw = {x ∈ V : 6 uvx ≤ 6 uvw}. For any
node set V ′ ⊂ V , we define (see Fig. 1)

θv(V ′) =

{
θmin if |V ′| < 2
max {θmin,minu,w∈V ′{ 6 uvw : V ′ ⊆ Suvw}} otherwise .

(1)

The beam width θv(T ) is hence given as θv(Γv(T )). In Fig. 1, tv(T ) ∈ Γv(T )
and t′v(T ) ∈ Γv(T ) are the nodes for which the minimum in (1) is attained in
the case V ′ = Γv(T ) and |V ′| ≥ 2.

The directional minimum energy broadcast problem can then be formulated
as
[D-MEBP] Find an s-arborescence T such that pT =

∑
v∈V pv(T )θv(T ) is min-

imized.



4 Joanna Bauer and Dag Haugland

v
θmin

v

tv(T )t′v(T )
θv

v tv(T )

t′v(T )

θv

Fig. 1. Examples of beam width θv(T )

3 The Reduced Beam procedure

By (1) and the RB principle, any s-arborescence constructing heuristic H for
MEBP can be extended to a D-MEBP heuristic RB-H. This derived heuristic
consists of the two steps H and the RB procedure. The latter simply amounts to
computing θv(T ) for all v ∈ V , which is accomplished by sorting the children of
v according to the angular dimension of their polar coordinates with v as center.

By exploiting the fact that every node has at most |V | children, Wieselthier
et al. [5] found that the time complexity of sorting all children of all nodes is
bounded by O(|V |2 log |V |). However, since there are only a total of |V | − 1
children in the arborescence, the time complexity of sorting the children of all
nodes is bounded by O(|V | log |V |). Thus we have the following result.

Theorem 1. RB has O(|V | log |V |) time complexity.

4 Directional BIP

The BIP-algorithm [4] for the omnidirectional version of the problem resembles
Prim’s algorithm for MST. In each iteration, the best arc from some connected
node v to some disconnected node is selected. The algorithms are distinguished
in that the selection criterion in BIP is not to minimize arc cost but rather
incremental arc cost, that is, arc cost minus the cost of the most expensive arc
leaving v selected so far.

In [5], the authors adapt BIP to the directional problem. The resulting al-
gorithm is referred to as the Directional BIP (D-BIP) heuristic, which differs
from BIP by taking antenna directions and beam widths into account when se-
lecting the next node to be added to the arborescence. In the implementation
of D-BIP suggested in [8], the children of every node are maintained as sorted
lists. The authors prove that the time complexity of such an implementation
is bounded above by O(|V |3 log |V |). Through computational experiments, it is
also demonstrated that D-BIP outperforms RB-BIP for a large number of test
instances.
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In the following, we present an implementation of D-BIP that has O(|V |2)
time complexity. It is presented as an extension of BIP, which in its turn can
be seen as an extension of Prim’s algorithm for MST. Then we demonstrate
that these extensions are accomplished without distortion of the quadratic time
complexity known to hold for Prim’s algorithm.

4.1 An implementation of BIP with quadratic running time

Consider the O(|A|+ |V | log |V |) implementation of Prim’s algorithm shown in
Table 1, based on the implementation given in [10]. The excluded nodes V \ VT

are stored in a priority queue Q. We denote the key value of node v in Q by
keyQ[v]. The operation Q.extractMin() and Q.extractMax() remove a node
with smallest and largest key value, respectively, and return the removed node
to the invoking algorithm. An array parent is maintained such that for all
v ∈ V \ VT , parent[v] is the best parent node of v in VT .

In all algorithms to follow, we assume that the graph G is represented by a
set of adjacency lists {Adj[v] : v ∈ V }, where Adj[v] = {u : (v, u) ∈ A}.

Table 1. Prim’s Algorithm

Prim(G = (V, A), s, c)
1 T = (VT , AT )← ({s}, ∅)
2 priority queue Q← V \ {s}
3 for all v ∈ Q
4 parent[v]← s
5 keyQ[v]← csv

6 while Q 6= ∅
7 w ← Q.extractMin()
8 v ← parent[w]
9 VT ← VT ∪ {w}
10 AT ← AT ∪ {(v, w)}
11 for all u ∈ Adj[w]
12 if u ∈ Q ∧ cwu < keyQ[u]

13 keyQ[u]← cwu

14 parent[u]← w
15 return T

Assume the steps in Table 2 are inserted after the for-loop occupying Steps 11-
14 in Table 1. In [9], it is proved that this extension results in an implementation
of BIP with running time O(|A|+ |V | log |V |).
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Table 2. Additional steps needed to extend Prim’s algorithm to BIP

1 for all u ∈ Adj[v]

2 if u ∈ Q ∧ cvu − cvw < keyQ[u]

3 keyQ[u]← cvu − cvw

4 parent[u]← v

4.2 Directional BIP as an extension of Prim’s Algorithm

Consider a tree T = (VT , AT ) where VT ⊂ V , and a node v ∈ VT for which
Γv(T ) 6= ∅. Since no three nodes in Γv(T ) are collinear, there exists for each
node u ∈ Γv(T ) a unique u′ ∈ Γv(T ) such that Suvu′ ∩ Γv(T ) = {u, u′}. With
reference to a polar coordinate system centered at v, u′ is the successor of u when
sorting Γv(T ) by increasing value of the angular dimension (defined cyclically
such that u′ is the first node if u is the last). If |Γv(T )| = 1, then u′ = u.

v w

x

y

z

θv(T )

Fig. 2. Sectors induced by v and
Γv(T )

Define the family of sectors hence
induced by node v as Sv(T ) = {Suvu′ : u ∈ Γv(T )}.
In the example shown in Fig. 2, the sectors
induced by v are Swvx, Sxvy, Syvz and Szvw.

The figure also illustrates the gen-
eral fact that θv(T ) = max

{
θmin, 2π −

max {6 uvu′ : u ∈ Γv(T )}
}
, which means

that if θv(T ) > θmin, then the complemen-
tary angle of θv(T ) is the angle of a widest
sector in Sv(T ). This observation is used
to maintain information on the incremental
cost of adding a new arc to T .

For all u ∈ V \ VT such that (v, u) ∈ A, we need to know the new value of
θv(T ) given that (v, u) is added to AT . Consider the case where |Γv(T )| > 1, and
let Szvz′ and Syvy′ be the two widest sectors in Sv(T ) (ties broken arbitrarily),
where 6 zvz′ ≥ 6 yvy′ . When evaluating the inclusion of u in VT , we have to take
into account how u relates to Szvz′ and Syvy′ :

– If u 6∈ Szvz′ , then Szvz′ will remain the widest sector in Sv(T ) if (v, u) is
added to AT , and thus θv(T ) is unchanged.

– If u ∈ Szvz′ , then adding (v, u) to AT implies that Szvz′ leaves Sv(T ), whereas
Szvu and Suvz′ enter. Consequently, the widest sector in the updated fam-
ily Sv(T ) is Szvu, Suvz′ or Syvy′ . The new value of θv(T ) thus becomes
max

{
θmin, 2π −max {6 zvu, 6 uvz′ , 6 yvy′}

}
.

It follows that access to the two widest sectors in Sv(T ) is crucial for rapid com-
putation of the incremental cost of adding a potential new arc to AT . In our
implementation of D-BIP, we therefore represent Sv(T ) by a priority queue Sv
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Table 3. Additional steps needed to extend Prim’s algorithm to D-BIP

1 for all u ∈ Adj[v] ∩Q
2 if cwuθmin < keyQ[u]

3 keyQ[u]← cwuθmin

4 parent[u]← w
5 if Γv(T ) = {w}
6 priority queue Sv ←

˘
(w, w)

¯
7 keySv

[(w, w)]← 6 wvw

8 for all u ∈ Q ∩ Adj[v]
9 θvu ← max {θmin, min {6 uvw, 6 wvu}}
10 else
11 find (x, x′) ∈ Sv : w ∈ Sxvx′

12 Sv.delete
`
(x, x′)

´
13 keySv

[(x, w)]← 6 xvw, Sv.insert
`
(x, w)

´
14 keySv

[(w, x′)]← 6 wvx′ , Sv.insert
`
(w, x′)

´
15 (z, z′)← Sv.extractMax(), (y, y′)← Sv.extractMax()
16 Sv.insert

`
(y, y′)

´
, Sv.insert

`
z, z′)

´
17 for all u ∈ Q ∩ Adj[v]
18 if u ∈ Szvz′

19 θvu ← max


θmin, 2π −max

n
6 zvu, 6 uvz′ , 6 yvy′

off
20 else
21 θvu ← max

˘
θmin, 6 zvz′

¯
22 for all u ∈ Adj[v] ∩Q
23 incCost ← max{pv(T ), cvu}θvu − pv(T )θv(T )
24 if incCost < keyQ[u]

25 keyQ[u]← incCost

26 parent[u]← v
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where Suvu′ has key value keySv
[(u, u′)] = 6 uvu′ . The methods Sv.insert

(
(u, u′)

)
and Sv.delete

(
(u, u′)

)
are used to add/remove sector Suvu′ to/from the queue.

Table 3 shows the steps that replace Steps 11-14 in Table 1 when extending
Prim’s algorithm to D-BIP. We make use of a matrix θ ∈ IRA, where θvu is the
value of θv(T ) resulting from the possible inclusion of arc (v, u) in AT .

To complete the extension of Prim’s algorithm to D-BIP, Step 5 in Table 1
has to be changed to

5 keyQ[v]← csvθmin ,

in order to reflect that the cost of adding arc (s, v) is csvθmin rather than csv.
Accordingly, Steps 1-4 in Table 3 are updates of Steps 11-14 in Table 1, taking
the minimum beam width into account.

Steps 5-21 concern the updates of Sv and θvu after insertion of (v, u) in AT .
Steps 22-26 correspond to the extension made for BIP (Table 2), except that
power has been replaced by power times beam width.

Theorem 2. D-BIP has O(|V |2) time complexity.

Proof. All the steps in Table 3 are included in the while-loop in Table 1, which
generates |V | iterations. We therefore need to show that each of these steps has
at most O(|V |) time complexity.

For the for-loop 1-4, this follows from the analysis of Prim’s algorithm.
Given that the priority queues are implemented as Fibonacci heaps, the in-

sertion and key update operations run in constant amortized time, and the op-
erations delete and extractMax run in O(log n) amortized time, where n is
the maximum number of elements in the queue. Furthermore, any angle 6 uvw

is computed in constant time, and checking whether u ∈ Szvz′ is also done in
constant time. Thus, each step within the for-loops 8-9, 17-21 and 22-26 runs in
constant (amortized) time, and the loops generate at most |V | iterations each.
Furthermore, Steps 6-7 and 12-16 have constant and O(log |V |) time complexity,
respectively.

The proof is complete by observing that Step 11 has time complexity O(|V |)
since |Sv| ≤ |V |. ut

5 Conclusions

We have studied how to extend construction heuristics designed for the Mini-
mum Energy Broadcast Problem to the directional version of the problem. Two
approaches from the literature, RB and D, were chosen, and we have given fast
implementations of both. By virtue of the implementations and analysis given
in the current work, the time complexities of previously suggested methods like
RB-BIP and D-BIP are reduced by one order of magnitude.

This achievement can be generalized in several directions. Due to the gen-
erality of RB and D, our results can be transferred also to other existing and
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future construction heuristics for MEBP. To simplify the presentation, we have
chosen to present the implementations for broadcast routing, but they can easily
be adapted to the more general multicast case.
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