
How to put the AF99 to work on gunpoint, and how to make working
gauges to virtual cockpits, 101 course
By Pentti Kurkinen (GZR_Buffalo) pentti.kurkinen@kiipula.fi

Creating working virtual cockpit gauges had bothered me since I made my first panel for the
Brewster B-239. I could see them in the CFS stock planes, so apparently they were possible.
However, no matter what I tried, they stayed elusive and unreachable.

A couple of months ago I finally ran into brick wall with my Messerschmitt Bf 109, and found out,
that the things I wanted to achieve with it were simply outside the capabilities of AF99 and AA. I
ran out of components, and filesize grew out of bounds. Also, the unwanted bleeds were literally
killing me.

Disillusioned, I buried the project for a while, and used my free time to play UO. Well, I still kept
visiting the flight sim sites like Freeflight, Flightsim.com, and Simviation.

One day I saw a new program in Simviation, that grabbed my attention. Takyo Murakami’s SCDIS.
I downloaded it, tried it to a simple model I created, and got some results, SCASM source code. At
first it did not make much of sense, but I have quite a lot of experience as mainframe assembler
coder, so I kind of rolled up my sleeves, and started the detective work. Reading through the
documentation that came with the freeware SCASM compiler I started getting some kind of grasp
of what was getting on in there.

A bit later I ran across two programs, that gave me the real leap forward, Trevor de Stigter’s
M982BGL and Marco Rensen’s SOURCE2MDL. These two combined with the SCASM compiler
gave me the chance to put the AF99 to work on gunpoint :)

Very soon I was creating single components and adding them to my project via SCASM source.
The process works roughly this way:

- The first phase is to create a very simplified version of your model, no finesse, just the
essentials. What is crucial is to have the fuselage, wings, tailplanes and vertical rudder fairly
close to the final dimensions and placement. But they can still be ugly boxes, only the
dimensions and angles matter.

- Then play with the AF99 until you have all the bleeds solved, and the model looks ”right” when
viewd in the FS.

- Now you should divide the fuselage and wings etc. into the anticipated final major components,
using glue where applicable to control bleeds. Keep thinking about your texturing needs and
component convexity at this point! Plan ahead! No small detail at this phase!

- Now you will need 16 .bmp files, all having one solid colour all over them, and all different.
As I used the CFS as the development test platform, I could just make 256 colour bmp’s very
easily. If you are working for the FS98, you need to do PCX’s the same way.

- Next step was plopping these files into my project’s texture folder, I named them same way as
AF99 had done the textures there, so I used xxxxxxxx.0af – xxxxxxxxx.faf, noting what colour

went under which name. And then I made them read only to prevent the AF99 from messing
them up (remember to do this).

- Now I Textured each of the major parts in AF99 with a texture of its own. At that phase the
alignment does not matter a bit, just get them textured.

- Load the model in FS, and look at it. Take notes on the colour of each of the major parts, you
will need this info later.

- Now use the M982BGL to disassemble the model. You will get a largish .scx file to your hard
disk. I let the program to put the source directly into the model folder of my project under the
planes folder in FS.

- Open the source with Wordpad (or your text editor of choice, as long as it can handle LARGE
files, and has a good search&replace). This is what you will see:

; --
; File: bf-109GE-basic.SCX
;**** Disassembled Graphic Drawing code with dummy header ****
; Taken from Aircraft Model File bf-109GE.mdl
; Generated by M98toBGL Copyright 1998/99 Trevor de Stigter
; --
; Uses the following .r8/?af Texture files:
; bf-109ge.0af
; bf-109ge.1af
; bf-109ge.2af
; bf-109ge.3af
; bf-109ge.4af
;
;***** Start of Dummy Header *********
Menu(Static bf-109GE)
mif($Version > 216)
set(areamx 64)
mifend
Header(1 42.004250 41.704250 -87.457917 -87.757917)
LatRange(41.704250 42.004250)
Area(5 N41:51:15.30 W087:36:28.50 32)

 PerspectiveCall(:air_1@)
 Jump(:)
:air_1@
 Perspective
 RefPoint(7 :ret_1@ 1.0 N41:51:15.30 W087:36:28.50 v1= 8000 v2= 120)
 SetScaleX(:ret_1@ 0 0 7)
 TransformCall(:AIRCRAFT 0 529 0
 -6.68 0 0 0 0.00 0)
:ret_1@
;***** End of Dummy Header *****
 Return

:L012B2
; **** Logical start of Aircraft drawing code
:AIRCRAFT

 VectorJump(:L012C6 m 0 32767 0 0.000000)
 Call(:L012CC)
 Return
:L012C6

 Call(:L0136A)
 Return
:L012CC
 VectorJump(:L012EE m -32767 0 0 203.000000)
 VectorJump(:L012EE m -32767 0 0 0.000000)
 Call(:L0131C)
 Return
:L012EE
 Call(:L012F4)
 Return
:L012F4
 VectorJump(:L01316 m 32767 0 0 203.000000)
 VectorJump(:L01316 m 32767 0 0 0.000000)
 Call(:L01336)
 Return
:L01316
 Call(:L01350)
 Return
:L0131C
 VectorJump(:L01330 m 0 0 32767 0.000000)
 Call(:fore_left)
 Return

Not very comprehensible, is it? Well, lets take a closer look:

Units of measurement

All dimensions in the SCASM source are 152 times the dimensions you see in the AF99, so you
will get some additional precision if you want! So if some point is 1.00 units down from the origo
in the AF99, here it will have a value of -152. Note, that the measurements are integers here!

Comment lines

; lines beginning like this are comments, they are there to make the reading of the code easier for
us humans, no BGL code is generated from them. Use them liberally everywhere, so you will
remember what you have done!

Labels

Labels are jump or call destinations, and they look like this:

:L0016D2

The disassembler has named them according to their hexadecimal address in the original BGL code.
The name is the actual address in hex counting from the beginning of the model file, will help in
hex editing too, if necessary! You should note, that a label does not represent any BGL instruction
or data, it is a pointer to the next real BGL instruction following the label.

Just remember, that these labels are case-sensitive. To save yourself from grief, use all caps or all
lower case, and you can possibly retain your sanity! This warning does not apply if you are an
ingrained C++. Java, or Unix junkie, you are then beyond the help already :)

Flow control instructions

There are basically three kinds of flow control instructions in BGL. Jumps, VectorJumps, and Calls.
Common to all of them is, that they are relative, not absolute. This means, that the argument address
is some integer number of bytes back or forward from the location of the instruction.

Jumps

Jumps are the simplest, the execution continues at the label given as its argument. These are one
way tickets, there is no easy way to get back to where you were when you jumped.

Jump(:L001896)

This will cause the execution to continue at the label named L001896.
Jumps can happen to negative or positive directions. The Jumps AF99 uses are 16bit ones, so they
can go about 32K forward or backward from the position of the instruction.

At least CFS, but I think FS98 also, support a newer version of Jump-instruction, the Jump32 that
takes a 32bit argument. The difference is, that Jump32 can reach 2G to both directions!
You will later clean up and modernize the code generated by AF99 by replacing Jumps with
Jump32's.

VectorJump

VectorJump is the real beast. This is the ”Glue” in AF99! If you are not a mathematical genius,
leave generating them to AF99, it is very good in that. But you can make the simple orthagonal ones
yourself, and rearrange them to achieve what you want.

What they do is dividing the virtual world of FS into two by an infinite plane, and depending on the
location of your planes looker, it will tell the code which of the components to be drawn should be
drawn first, and which last.

Vectorjump(:below m 0 32767 0 0.000000)
; put here the code that draws your aircraft when looked from above
Return

:below
; put here the code that draws your aircraft when looked from below
Return

Explanation:

- :below, is a label, that tells, where to go if the looker is below a plane dividing our virtual world.
If the looker is above the plane, then the next instruction after the Vectorjump will be executed. Just
note, that you can give whatever as the name of the label, I am trying to be descriptive here …

- m is a directive telling the subtype of Vectorjump for the SCASM compiler. All our Vectorjumps
are of this type, so don’t pay attention to the man behind the curtain..

- 0 32767 0 0.000000 is the definition of the plane. It is defined by a normalized vector that is
the surface normal of the plane, and a distance of the plane to the vectors direction from the
coordinate zero (origo) of your aircraft.

- 0 is the left/right -component of the vector, positive is right, negative is left, in our example this
component is zero, so the vector is not tilted left or right.

- 32767 is the up/down -component of our vector, positive being up, and negative down. So, in
this case the plane is facing upwards.

- 0 in our example is the forward/aft –component of the vector. Positive being forward of our
aircraft’s origo and negative being aft.

- 0.000000 is the distance of the plane from aircrafts origo to the direction of the vector. It can
have a negative value, if so, the working of the instruction is reversed.

So in our example we have a plane that goes through our aircraft’s origo, and faces directly
upwards.

If the looker looks our plane from above zero, the instruction does nothing, and the next instruction
executed will be the one immediately following this VectorJump.

If the looker is watching our aircraft from below zero, the next instruction executed will be the one
following the label :below.

There is no 32bit variety of the VectorJump –instruction, or at least SCASM 2.39 (the latest) does
not know them.

Calls

While Jumps were one-way tickets, the Calls are two-way, by performing a Return –instruction you
pop back to the next instruction following the last call performed.

As with Jumps, the destination addresses are relative, and also, there are 16bit and 32bit ones. AF99
only uses the older 16bit variety. You will be changing these to Call32’s also if a need arises.

The syntax is following:

Call(:label)

Or

Call32(:label)

Painting the polygons to the virtual world

I can hear you gasp, will we finally get to the point! Well, sort of….

A typical simple textured ,smoothed and non rectangular open-topped box will look like this in the
disassembled model source:

:L0023C8
 VecPoints(1
 674 -567 123 13570 -13174 -11624
 681 -531 123 18240 -3547 -16418
 681 -542 311 17098 -11239 14014
 674 -578 290 12808 -18302 8664
 256 -618 67 -7924 -12885 -11605
 256 -632 290 -8686 -18013 8683
 250 -596 311 -15143 -10806 14043
 250 -582 67 -14001 -3113 -16389
)
 ShadedColor(01 F0)
 Bitmap(bf-109g6.3af 0 0 0 0)
 ShadedTexPoly(m 32163 -6254 -366 768.42134 1 49 40
 2 50 40 3 50 63 4 49 60)
 ShadedTexPoly(m 4229 -32429 -2036 640.50148 1 49 40
 5 1 34 6 1 60 4 49 60)
 ShadedTexPoly(m 2033 -16225 28395 580.13453 3 98 19
 7 175 19 6 174 0 4 99 0)
 ShadedTexPoly(m -32320 -5387 -309 -151.53804 5 1 34
 8 0 34 7 0 63 6 1 60)
 ShadedTexPoly(m 4318 -840 -32470 -18.52809 1 23 56
 2 65 47 8 0 47 5 99 0)
 Smoothing(0)
 Return

This is a subroutine as you can see, it starts with a callable label, and ends with a Return instruction
that will take you back to the instruction following the Call you used to enter this routine. Nothing
prevents you from combining several components into same subroutine. Just remember, that in
FS98 and CFS, the parts drawn last in the sequence will overpaint the parts drawn before them.
In these cases you should use the VectorJump instructions inside the subroutine to define the
correct, observer location dependent drawing order.

This just happens to be the right underwing radiator of my Bf 109G. It is convex, ie. It only has the
”outside”, it is not visible if you happen to be inside it, and all it’s surfaces curve away from it’s
other polygons.

The point list

Definition begins with the Vecpoints –directive. Vecpoints builds us the list of the points that make
the corners of the box.

As you can see, there are 8 lines (as there should be), each describing one point in the space,
relative to the origo of our aircraft.

Each line has 6 parameters. First there are 3 signed integers that give the location of the point.
The first is left/right. The second is up/down. And the third is fore/aft. The same logic and order as
in the parameters of the VectorJump applies here, surprise surprise!

The last 3 parameters give the ”surface normal” of that point. This is used to smooth the appearance
of the polygons we will construct from these points. It is in effect a vector that AF99 has calculated
by taking an average of the surface normals of all the polygons this point is a part of. This happened
when you combined the polygons into a component in the AF99’s Component shop.

Again, the same logic applies on the order of the vector’s components. The vector is normalized,
meaning, that it’s length is 32767. The SCASM docs tell, that it should be kept normalized, but I
have just gone and bent them in some places to achieve the looks I want, with only roughly
normalizing them in my head, and withouth no ill effects. I assume that SCASM does the
normalisation during the compile phase.

If you need unsmoothed polygons, you can use a simpler Points –list. This is very similat to the
VecPoints, but each point has only the locational x,y,and z components. The smoothing vector is
missing.

Surface colour and texture definitions

Next we have 2 directives that control the colour of the surface material if untextured, and the
bitmap to be used if we apply texture to the polygons:

ShadedColor(01 F0)

This is the surface colour directive, pointing to the horrible FS standard colours. If you are making
planes for CFS/FS2000/CFS2, get rid of it. All these new sims support a new directive:

RGBScolor(Ex rrr ggg bbb)

This works followingly: Ex is a hexadecimal number, where the more significant nibble is
unknown, leave it as E. The second, less significant nibble describes the transparency of the parts it
affects with 16 levels of transparency, 0 being fully transparent, and F fully opaque.

Rrr, ggg, and bbb make the colour definition. So, there are 3 integers, each ranging from 0 to 255.
So you get a 24bit colour definition! You can save some textures on surface polygons that have an
uniform colour on them! As a side effect you will also save some code-size too if you leave a
polygon un-textured.

Just remember, that you can insert these directives before each of the polygons in your component,
each can have it’s own surface colour and transparency!

Bitmap(bf-109g6.3af 0 0 0 0)

This directive defines the the bitmap we use to texture the polygons of our component. There
simply is the filename of the bitmap. The zeros are not significant, but they should be there.
If you are working for CFS/FS2000/CFS2, you can use 256*256 pixel 256 colour Windows bitmaps
as textures, and each can have it’s own palette! Just substitute any name you want here, as long as it
is in 8.3 format. The qualifier does not have to be xAF or BMP in any case, any name will do.

The AF99 limit of 16 textures is non-existent, at least in CFS/FS2000/CFS2. I haven’t really pushed
it yet, but I think I once had 18 textures in a CFS plane (by an accident, I simply forgot them into
the code…), no hiccups whatsoever…

But again, that directive is obsolete, a much better exists for CFS and above:

LoadBitMap(0 1 Ex rrr ggg bbb ”filename with spaces”)

Here the zero just has to be there, 1 means, that we are defining a texture for an aircraft, and then
comes the surface definition, just as in RGBScolor. It will be used if there are untextured polys in
our component. The filename –parameter accepts long filenames, but if they have spaces in them,
enclose the filename in quotes. You will need this with the virtual cockpit instrumentation :)

The polygon definitions

Next part of the component are the polygon definitions. These are there in the very same order as
you added them to the list in AF99’s Component Shop.

ShadedTexPoly(m 32163 -6254 -366 768.42134 1 49 40
 2 50 40 3 50 63 4 49 60)

-ShadedTexPoly tells, that this polygon is smoothed, and textured.

There are other variants of this same directive:

-ShadedPoly is a smoothed, but untextured polygon.
-TexPoly is a unsmoothed, but textured polygon.
-Poly is a unsmoothed and untextured polygon.

- m is again just there and needed, it tells to the SCASM, that this directive has all the vectors etc.
calculated by the user (or in this case by the AF99).

- Red defines the surface normal vector of the polygon. All the Poly-variants have this part. This
again conforms to all that has been said about vectors in SCASM before. Sometimes you can
rectify a ”disappearing poly” problem, where a poly vanishes if you look it from very low
angle, by bending this vector to the direction of the disappearance. But of course this problem is
always caused by a non-planar polygon.

- Dark green is the distance from polygon’s center to the planes origo.

- Blue are the indexes to our previously defined VecPoint or Point –list. Indexes start from 1, not
from 0. These points are in the same order as you created them in AF99 when you made the
part. Just note, that you can refer VecPoint definition in Texpoly and Poly, but you can’t refer
Point definition in ShadedPoly or ShadedTexPoly these need VecPoint defined points.

- Violet and light green define the x and y pixel coordinates where this point will be mapped on
the texture bitmap,.

Coordinates run from left to right in the x-axle, and from down to up in the y-axle. The mapping
is totally freeform, nothing forces you to conform to the stupid system used by the AF99.

You can map each polygon as you see fit, A ”wrapping” texturing is possible. Or you can use
same texture strip on all six sides of a landing gear strut. And of course you can save bitmap
area by using mirroring mapping on parts that are symetrical on each side of the aircraft, like
exhaust stacks etc. It is still most convenient to leave large complex components to be textured
by the AF99, but you can fix some things up at this phase, if you are not pleased with the
mapping.

Note, that in case of Poly and ShadedPoly these bitmap coordinates are missing.

Finding your components from the source

Now the real fun starts. Remember, we textured our components with these solid coloured
bitmaps. Now you can use the search-string function in your editor to locate them. Load your
plane into FS, and note the colours of the components. Now you can search the filename sring
from the source by this filename. As you can see from the component definition above, if it is
textured, it contains a BitMap directive.

When your search finds your component, use the search& replace to rename it more
describingly, in our example you could change all the occurrencies of that label in the whole
source to :wingradiator_right .

Now, due to the inefficiencies of the code generated by the AF99, there can be in-between
Jumps or Calls, because the 16bit instructions can not reach far enough on their own.

They will look like this after the first search&replace:

:L018E0
 Call(:wingradiator_right)
 Return

You should change all the :L018E0’s to :wingradiator_right , and then duly delete this
subroutine, it serves no purpose. The result might be, that you get a compile error when
rebuilding the plane, telling that a Call to this label can not reach it’s target. Then just change
that Call to Call32.

You will also see hordes of the following kind of structures in the code:

; ***** Dummy Jump *****
 dwx(000D 8000)
 Return

They are typical for the AF99 generated code, and they should be removed, they serve no
purpose either. In case of a complex plane, there can be kilobytes of this muck in the code!

This operation alone can save your project, if you were close or over the 65536-byte limit of a
working BGL part of the model.

Adding components to your SCASM source

Now you can start adding more components to your source, and replacing your ”placeholder”
garishly textured components to final ones. In the latter case, simply remove almost all
components from your project, leaving only a few. Apply the correct texture mapping to them,
and rebuild, disassemble, locate, copy and paste to your main source, replacing the contents of
that subroutine with different data.

You can work similarly when adding a new component to your plane. Now just remove
components from your project until AF99 lets you to add new ones. Plop in the new component,
rebuild, find, copy, and paste into your SCASM source. Finally add the calls to your new
component into your aircraft main drawing code.

Rebuilding the plane from the SCASM source

For rebuilding, install (or copy) Marco Rensen’s Source2Mdl and scasm.exe to your aircraft’s
model directory, where your source should now reside too. Fire up the Source2Mdl, and you
should get a small screen like this:

Write the name of your source file and .mdl names to the prompts, and press Convert.
If you get compile errors, you find the assembly listing scaerror.log in the same folder.
Correct the errors to the source , save, and press the Convert again. Repeat until no errors.
Then press Exit.

Provided, that you had tagged the the parts to be animated in the AF99, you can now fire up the
AA, and animate the parts with it. As Marco’s program inserts it’s copyright string into the
BGL-code, and does not do that quite right, the AA can sometimes have problems in displaying
the wireframe model. Just zoom away, and click the animatable parts groups in the AA sidebar,
and they should appear.

Now you are ready to test the rebuilt aircraft in the FS!

This has only been the first aid for getting into the grips. You will find that you have entered a
completely new game in FS aircraft production. Now it is only your own imagination and
patience that can prevent you from reaching the aircraft model you always dreamed of.

Next chapter will deal with putting the working gauges to the virtual cockpit. You will need the
previous info in there.

Putting the gauges into the virtual cockpit

There are some problems in getting the Vcockpit to work. The first is the fact that AF99
generated standard code lacks the test for the observer location of 0,0,0. This means, that the
execution of the drawing code will fall through to the last drawing direction subroutine there is.
Usually this direction is fore,above and right. The result is, that now the code thinks that it
should draw the parts and components in the ”nose” group last, as it thinks they are closest to the
observer. Parts in the ”nose” group will bleed through to the cockpit view.

This can be corrected by adding some Vectorjumps to the code branch to where the control falls
in case of the Vcockpit view. You should test for a viewpoint that is exactly zero, or whatever
the coordinates of the inside of your pilot figure’s head happens to be.

Then you can make a different subroutine that draws only the parts needed for the cockpit,
usually canopy frames, cabin walls, front & rear bulkhead, tailsurfaces, and wings. Whatever
will be visible from inside the cockpit. This technique is valid for the FSDS too, it is no use to
force drawing the whole glory of your 10k polygon wonder while inside the plane, because most
of it is not visible anyway, and will just eat up your framerate.

For the instrument board you will need two things. First you need a visible and texturable
dashboard (well, texturing IS optional ☺). This will act something like a projection screen, on
which you will project the gauges. If needed, this can of course consist of several polygons.

Second, you need an another polygon to act as your projector. It should be rectangular and have
same dimensions sideways and up/down. Setting it that way will help the gauge placement
definitions, as the gauges will then use same dimensions in x and y axles.

One problem you will have is, that in CFS the gauge images are all projected to a 256*256
bitmap. They wont show up as very sharp because of the low resolution, unless there are only a
couple of very large gauges there. I avoided this by using two separate rectangles side by side,
each displaying half of the panel. That gave me good enough resolution for the gauges.

Using the same settings with FS2000 & CFS2 result razor sharp gauge images, as these new sims
seem to project the gauges to a bitmap of much larger resolution, maybe 512*512 or
1024*1024.

 It does not matter what colour the polygon will be, it will vanish! Place this screen 0.01 AF99
units closer to the pilot than the visible dashboard, and also put a front/back glue between them if
you are working for CFS of FS98. The reason for setting the “gauge projector” closer to the
viewer than the background is avoiding z-buffer problems in FS2000 and CFS2.

Here’s an example of it in SCASM, both of the “projector polygons” of the Bf 109G6 Vcockpit:

; ***** gauge projector dashboard *****
:dashboard_i
 Points(1
 -130 -179 341
 -130 -49 341
 0 -49 341
 0 -179 341
 130 -179 341
 130 -49 341
)
 LoadBitMap(0 1 E0 178 178 178 "$Bf109l ")
 Inst_7D
 TexPoly(m 0 0 -32767 -341.00000 1 0 255 2 0 0 3 255 0 4 255 255)
 LoadBitMap(0 1 EF 178 178 178 "$Bf109r ")
 Inst_7D
 TexPoly(m 0 0 -32767 -341.00000 4 0 255 3 0 0 6 255 0 5 255 255)
 Smoothing(0)
 Return

As you can see, there are two rectangular polygons, that share the same points at the middle.
They have been defined as TexPoly’s to save space, and because a smoothed polygon would be
useless here. Filenames match those used in my panel.cfg, as you will see later.

Both polygons run their point in the order:
lower left – upper left – upper right –lower right
 ie. clockvise definition.

At the same time I had to map the gauge image on the order:
left top – left-bottom – right bottom – right top
I had to do it this way to show the gauges correctly on the left-right and top-bottom axis.
Othervise they would have been mirrored images on either or both axis.

The Inst_7D directives are there to (supposedly) lessen the perspective distortion of the gauge
images, ie. they will not “blur” when viewed from a very low angle. I just experimented with a
claim I found on the SCASM manual. I don’t see any difference, but no ill effect either…

Well, the stock CFS planes do it this way, and maybe they might know something I don’t… :)

If you work on SCASM, this is also a ready to use recipe for a working solution, just move these
polys into their place on your model by editing the point definitions, nothing else changes if you
keep the width/height ratio the same. You can also generate this kind of polys in AF99 or FSDS,
and then mangle them in a hex editor to be similar. Just use the same point drawing order, and
hex-edit the image mapping to conform. That should be easy as the coordinates are either x’00 or
x’FF

Things needed in the panel.cfg

Next you have to check your panel.cfg. Let’s see an example:

[VCockpit01]
file=
position=7
size_mm=1000,1000
window_pos=1.00,1.0
window_size=2.0,2.0
pixel_size=1000,1000
texture=$Bf109l
background_color=1,1,1
visible=0

gauge00=BF109e!Altimeter,360,700,300,300
gauge01=BF109e!Airspeed,700,700,300,300
gauge03=BF109e!Directional_Gyro,360,380,300,300,FORCE_TRANS
gauge04=FW190a!Attitude,670,355,340,340,FORCE_TRANS
gauge05=BF109e!Gear,0,770,230,230
gauge06=BF109e!Magneto,20,410,120,320
gauge08=JWB.analog_gunv,800,5,70,280
gauge09=JWB.analog_canv,890,5,70,280

[VCockpit02]
file=
position=7
size_mm=1000,1000
window_pos=1.00,1.0
window_size=2.0,2.0
pixel_size=1000,1000
texture=$Bf109r
background_color=1,1,1
visible=0

gauge01=BF109e!Clock,410,10,200,200
gauge02=BF109e!Fuel,500,750,230,230
gauge03=BF109e!Flaps,850,620,85,350
gauge04=BF109e!Boost_Pressure,80,380,300,300
gauge05=BF109e!Tachometer,80,680,300,300

[8 Bit Colors]
PALETTE=PALETTE.BMP

I left away the standard parts, and I assume you are familiar with the principles of panel
definitions. You notice, that there are two [Vcockpit] sections in here. You can get away with
just one, if you are building for FS2000 or CFS2.

Essential here is the texture=$Bf109 line. The texture name of your part should match this
exactly, and what more, it should be filled to the end with x’20.

There are two [Vcockpit] sections here, both have different names for their “tag” textures.
I don’t know if there is some limit on the number of panels you can use, but I can imagine
someone putting together all the different panels of the cockpit of a large airliner (and suffering
then some 3-4 fps on a high end PC). At sensible levels of instrumentation, my experience is,
that I win aroun 15 fps compared to the bitmap based cockpit view by using the virtual view.
And it DOES give a nice, convincing feel of really flying anyway!

Below is a screen capture from a hex editor, showing the filename in the form it should be:

Note, that the “filename” can not be any longer than this, 7 characters maximum, total length 12
characters. The demand for 12 characters space-filled length must be in effect too to get the
gauges to show.

You can see, that this instruction here is the new LoadBitMap. When using it, this part becomes
invisible, just the gauges projected on it will show. I don’t know if the parts will become
transparent if you use the older BitMap –instruction.

file=
position=7
size_mm=1000,1000
window_pos=1.00,1.0
window_size=2.0,2.0
pixel_size=1000,1000
texture=$Bf109l
background_color=1,1,1
visible=0

About the other settings here, size_mm, window_pos, window_size, pixel size. As your projector
polygon is an equal sided square, so should be the measurements here, equal in x &y to get your
gauges to show round and unstretched.

Using the size_mm and pixel_size as 1000 gave me nice and easy measurements to put the
gauges into their places.

The lines defining the identity, placement and size of the gauges are hopefully clear as they are.
Just note the FORCE_TRANS –keyword. This forces the surrounding area of the gauge
transparent, some gauges need it.

Well, I hope I remembered all the essentialities, it is hard to write a tutorial…

