
INF214 Concurrent Programming
December 12th, 2018

Please write clearly! Pay special attention to marking question numbers clearly on your answer
sheets. Exam support materials: none.

Some questions ask for program code. If you do not remember the syntax of whatever language
is being used, it is no big deal. Use pseudo-code that makes your intent clear, and explain with
additional comments if necessary.

Hvis du vil, du kan svare på norsk i stedet for engelsk.
There are 5 questions altogether and 4 pages.

1. Atomic operations and interleavings

Consider the program below, where x is a shared variable, initially 0. P1 and P2 are names of the two
processes, not part of the program.

co
P1

x = x+ 1 ‖
P2

x = x− 1 oc

a. What are all the atomic memory operations in the program.

ANSWER:

10 points

P1 first reads x from the shared memory (call this operation R1), then increments it, writing
possibly to a local (non-shared) temporary, then writes the result to x (call this operation W1).
The atomic memory operations are R1 and W1. P2 has analogous atomic memory operations,
which we name R2 and W2.

b. List all possible interleavings of these operations. Determine the final value of x for each case.
UPDATE: It was clarified during the exam that one can assume sequential consistency.

ANSWER:

10 points

x x x x x x
R1 0 R1 0 R1 0 R2 0 R2 0 R2 0
R2 0 R2 0 W1 1 R1 0 R1 0 W2 -1

W1 1 W2 -1 R2 1 W1 1 W2 -1 R1 -1
W2 -1 W1 1 W2 0 W2 -1 W1 1 W1 0

-1 1 0 -1 1 0

2. Concepts

a. A semaphore is a program variable that holds an integer value. It can be manipulated only by the
operations P and V. Describe the semantics of these operations.

ANSWER:

3 points

Assume s is a semaphore.

1

• P(s) atomically checks if the value of s is at least one, and if so decrements the value by
one. If not, it blocks until s is at least one (and retries the atomic check/decrement).

• P(v) increments the value of s by one.

a. What is the purpose of a barrier?

ANSWER:

3 points

A purpose of a barrier is to make sure that all threads in a given group of threads have reached a
particular point in the program before any thread can proceed past that point.

b. Assume the following two codes are executed in separate threads in a C++ program (assuming
its relaxed memory model). Further assume that v and go are regular (non-atomic) variables,
and that initially v == 0 and go == false.

// Thread 1 // Thread 2
while (!go); v = 1;
print(v); go = true;

Can the program print 0? Why or why not? Is there a data race in the program? (If yes, where?)

ANSWER:

4 points

Yes, the program can pring 0. Thread 1 can observe the writes Thread 2 to variables v and go
in any order (because of compiler rewrites the operations of Thread 2 or because the hardware
executes them concurrently). In particular, Thread 1 can observe go == true and still after
that v == 0.

There are two data races, on go and v. Thread 1 and Thread 2 both access these variables
concurrently, the accesses of Thread 2 are writes, and there is no synchronization between the
accesses.

d. What is a future? Describe the three possible states of a future.

ANSWER:

4 points

Future is a placeholder for a result of a computation; a delayed value, a promise that eventually
the future will hold a value.

The states of the future are:

• pending (future has no value yet)

• fulfilled (future has a value)

• rejected (future is in an error state, it will never get a value)

Valid state transitions are from pending to fulfilled and from pending to rejected.

Several alternative names for the states are fine.

• fulfilled: resolved, ready

• rejected: error

2

e. Describe the difference between a synchronous and asynchronous message passing.

ANSWER:

3 points

In synchronous message passing, the sender process blocks at message send until the receiver
process is ready to receive a message. In asynchronous message passing, the sender process
does not block but rather can continue, regardless of whether a receiver is ready or not. Practical
limitations (reaching the maximum allowed buffer size) may cause the sender to block even in
asynchronous message passing.

f. Describe the idea of Software Transactional Memory in a few sentences.

ANSWER:

3 points

Software transactional memory (STM) is a way to implement (coarse-grained) atomic blocks.
When starting to execute an atomic block, a thread starts a transaction. During the transaction,
all memory reads and writes are logged. At the end of the transaction (and during, in some
implementations) the read log is compared with the current state of the memory. If the memory
is unchanged from when the transaction started, the transaction is committed and the log of
writes are written to the memory. If the memory was changed, the logs are cleared and the
transaction is restarted. Determining whether memory has been changed is based on a version
number stored with every word/object/block in the memory.

STM implementations guarantee that at least one transaction of many that access shared memory
locations will succeed.

3

3. Monitors

In the dining philosophers problem, n philosophers alternate between eating and thinking at random
intervals. To eat, a philosopher needs two forks. There are n forks altogether. In the traditional
formulation of the problem, each philosopher uses the forks to the left and right of him/her. In this
assignment, however, every time a philosopher decides to eat, he/she chooses two forks at random to
use for eating, regardless of whether they are currently in use or not. UPDATE: If one or both of the
chosen forks are in use, the philosopher must wait until they are free to begin eating.

a. Implement a monitor that synchronizes the philosophers’ use of forks. Use some pseudo-code
that resembles C++/alang or the language used in the book. The monitor should implement the
procedures:

void get_forks(int fork1, int fork2);
void release_forks(int fork1, int fork2);

ANSWER:

12 points

class table : monitor {
private:
cond fork_released;
std::vector<bool> forks;

public:
table(int n) : forks(n, false) {}

void get_forks(int fork1, int fork2) {
SYNC;
while (forks[fork1] || forks[fork2]) {
if (forks[fork1]) alang::logl("Waiting for fork ", fork1);
if (forks[fork2]) alang::logl("Waiting for fork ", fork2);
wait(fork_released);

}
forks[fork1] = true;
forks[fork2] = true;

}
void release_forks(int fork1, int fork2) {
SYNC;
forks[fork1] = false;
forks[fork2] = false;
alang::logl("Released forks ", fork1, " and ", fork2);
signal_all(fork_released);

}
}

b. What is the monitor invariant of your monitor?

ANSWER:

2 points

forks.size() == 10 ∧ the number of true elements in forks is even.

Other answers can be OK too if it is clear that the the student understands what a monitor
invariant is.

4

c. Your implementation should be such that it avoids deadlock. Explain why it does avoid it. (Or if
you did not manage to come up with a non-deadlocking implementation, explain how deadlock
could arise).

ANSWER:

3 points

Deadlock cannot arise, because the get_forks function atomically checks that both desired
forks are available and if so reserves them. If both are not available, get_forks releases the
monitor’s intrinsic lock so that other threads can make progress, and then tries again.

d. Discuss briefly the fairness of your implementation. (Can a philosopher starve? Is it likely?)

UPDATE: It was clarified during the exam that the implementation can be fair or not, both are
fine. One just needs to discuss its fairness.

ANSWER:

3 points

The conditions for a philosopher to be able to eat become true infinitely often, but do not
necessarily stay true once the become true. Fairness would thus require a strongly fair scheduler,
so in principle the implementation is not fair in practical schedulers (which are typically weakly
fair) and with an adversarial scheduler a philosopher could starve. In practice it would be
very unlikely for a philosopher to starve; practical schedulers pick processes for execution in
non-adverserial manner.

A skeleton program (for n = 10) that shows a use of the monitor is given. Alang’s prandom(a, b)
gives a random integer in the closed interval [a, b] and sleep_random(t) makes a process sleep for
t milliseconds.

#include "alang.hpp"
class table : monitor {

// Your code
};

int main() {
const int n = 10;
table tbl(n);
{
processes ps;
for (int i = 0; i<n; ++i) {
ps += [&tbl]{
while (true) {
alang::sleep_random(100);
auto fork1 = alang::prandom(0, n-1);
auto fork2 = (fork1 + alang::prandom(0, n-2)) % 10;

// pick a random fork different from fork1

tbl.get_forks(fork1, fork2);

alang::sleep_random(100);
tbl.release_forks(fork1, fork2);

}

5

};
}

}
}

4. Coroutines

a. Two transfer of control events take place during the lifetime of a subroutine (call and return),
whereas five transfer of control events can take place during the lifetime of a coroutine, some of
them more than once.

Describe the five transfer of control events of coroutines. Include explanations of what happens
to activation records of coroutines at these events. You can assume a stack-based language like C
or C++.

ANSWER:

10 points

• Call: coroutine call is similar to a function call. An activation record is pushed onto the stack.
On some coroutine implementations, a call merely primes the coroutine, and immediately
suspends.

• Suspend: The execution of the coroutine is suspeneded. The activation record is saved on
the heap, along with the program counter.

• Resume: The execution of the coroutine is resumed. The activation record is copied from
the heap and pushed on the stack. Program counter is resumed to the saved value.

• Destroy: The activation record that has been saved is deallocated (without resuming execu-
tion). The coroutine can no longer be suspended.

• Return: similar to a return of a function. Activation record is popped of the stack.

b. Consider a graphical user interface that contains a single element box. The following piece of
JavaScript code sets up the event handlers for being able to drag and drop the box element with a
mouse. A drag and drop sequence starts by a mousedown event on the box element, followed
by any number of mousemove events anywhere within window, and ends with a mouseup
event enywhere within window.

let box = document.getElementById("box");

let dd = dragndrop(box); // prime the ’dragndrop’ coroutine

box.onmousedown = (event) => dd.next(event);
window.onmousemove = (event) => dd.next(event);
window.onmouseup = (event) => dd.next(event);

In this code, the dragndrop coroutine, a JavaScript generator, implements the drag and drop
sequence. The variable dd is initialized to the primed coroutine. The mouse events each resume
dd with the current mouse event object.

Your task is to implement the dragndrop coroutine, whose skeleton is given below.

function* dragndrop(box) {
// your code

}

6

Note that the event handlers pass an event object to the coroutine. Once your coroutine’s yield
receives the event object, call it evt, you can find out the type of the event by examining the
evt.type property. The relevant values are ’mousedown’, ’mousemove’, or ’mouseup’.
To move the box to the correct position (in the case where dragging has been initiated and
evt.type == ’mousemove’), you can simply call move(box, evt). For the curious reader,
here’s an implementation of the move function.

function move(box, event) {
box.style.left = event.pageX - box.parentNode.offsetLeft;
box.style.top = event.pageY - box.parentNode.offsetTop;

}

ANSWER:
10 points

function* dragndrop(box) {
while (true) {
let evt = yield;
if (evt.type == ’mousedown’) {

while (true) {
let evt = yield;
if (evt.type == ’mousemove’) move(box, evt);
if (evt.type == ’mouseup’) break;

}
}
// ignore all other kinds of events

}
}

7

5. Program Correctness

a. Describe the meaning of the Hoare triple

{P} S {Q}

ANSWER:

5 points

The triple is an assertion that assuming the predicate P holds before executing the statement S,
Q will hold when S terminates.

b. Provide a proof sketch of the (partial) correctness of the following Hoare triple using the program
logic introduced in class. The variables x and y in the program are integers.

{x ≤ y + 1}
while (x < y) {

co 〈x = x+ 1〉 ‖ 〈y = y − 1〉 oc
}
{x == y ∨ x == y + 1}

The relevant proof rules are given below. Use these rules to justify your reasoning.

ASSIGNMENT

{P [e/x]} x = e {P}

SEQUENCING

{P} s1 {Q} {Q} s2 {R}
{P} s1; s2 {R}

WHILE
{I ∧ b} s {I}

{I} while (b) s {I ∧ ¬b}

CONSEQUENCE

P ′ ⇒ P {P} s {Q} Q⇒ Q′

{P ′} s {Q′}

AWAIT
{P ∧B} s {Q}

{P} 〈await (b) s〉 {Q}

CO
{P1} s1 {Q1} · · · {Pn} sn {Qn} s1, . . . , sn are interference-free

{P1 ∧ · · · ∧ Pn} co S1 ‖ · · · ‖ Sn oc {Q1 ∧ · · · ∧Qn}

You can also use the usual laws of arithmetic and propositional logic in your proof sketch.

ANSWER:
15 points
We choose the a loop invariant as I = x ≤ y + 1. The while-rule gives then:

{x ≤ y + 1 ∧ x < y} s {x ≤ y + 1}
{x ≤ y + 1} while (x < y) s {x ≤ y + 1 ∧ ¬(x < y)}

WHILE

Simplifying

• x ≤ y + 1 ∧ x < y to x < y and

• x ≤ y + 1 ∧ ¬(x < y) to x == y ∨ x == y + 1,

8

the while rule instance becomes the following.

{x < y} s {x ≤ y + 1}
{x ≤ y + 1} while (x < y) s {x == y ∨ x == y + 1}

WHILE

Substituting the loop body s, we get the proof obligation

{x < y} co 〈x = x+ 1〉 ‖ 〈y = y − 1〉 oc {x ≤ y + 1}.

Maybe it is clearer to write it as:

{x < y} co 〈x = x+ 1〉 ‖ 〈y = y − 1〉 oc {x < y + 2}.

We must be careful to come up with pre and post conditions that are interference free, so that the
co-rule can be applied. To this end, we introduce extra variables to stand for the "old" values of x
and y, and formulate the pre and post conditions of the branches of the co-statement as follows, both
proved with first the await rule and then the assignment axiom (not shown):

• {x = x0 ∧ x0 < y0}〈x = x+ 1〉 {x = x0 + 1 ∧ x0 < y0}

• {y = y0 ∧ x0 < y0}〈y = y − 1〉 {y = y0 − 1 ∧ x0 < y0}

Then we can instantiate the co-rule as follows. The side condition that processes are interference free
holds.

{x = x0 ∧ x0 < y0}〈x = x+ 1〉 {x = x0 + 1 ∧ x0 < y0} {y = y0 ∧ x0 < y0}〈y = y − 1〉 {y = y0 − 1 ∧ x0 < y0}
{x = x0 ∧ y = y0 ∧ x0 < y0} co 〈x = x+ 1〉 ‖ 〈y = y − 1〉 oc {x = x0 + 1 ∧ y = y0 − 1 ∧ x0 < y0}

CO

We see that x = x0 ∧ x0 < y0 is equivalent with x < y and that x = x0 + 1 ∧ y = y0 − 1 ∧ x0 < y0 is
equivalent with x < y + 2, which completes the proof.

9

	Atomic operations and interleavings
	Concepts
	Monitors
	Coroutines
	Program Correctness

