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Abstract. We describe an algorithm for the automatic discovery of recurring patterns
in protein structures. The patterns consist of individual residues having a defined
order along the protein’s backbone that come close together in the structure and whose
spatial conformations are similar. The residues in a pattern need not be close in the
protein’s sequence. The work described in this paper builds on an earlier reported
algorithm for motif discovery. This paper describes a significant improvement of the
algorithm which makes it very efficient. The improved efficiency allows us to use
it for doing unsupervised learning of patterns occurring in small subsets in a large
set of structures, a non-redundant subset of the PDB database of all known protein
structures.

1 Introduction

Structural similarities consisting of a few secondary structures or residues can define
structurally or functionally important elements of the proteins. The relationships are sub-
tle and do not always appear significant when found in pairwise structure comparisons.
Standard approaches for analysis of protein structures builds on pairwise comparisons
where the pairwise comparisons are done independently. We have earlier described an
approach which allows information from multiple structures to be used simultaneously
(Jonassen et al., 1999). In this approach all structures are compared to an external model,
a pattern, obliviating the need for all against all pairwise comparisons. The approach was
implemented in a program called SPratt. In this paper we describe a more efficient algo-
rithm, named SPratt2, which allows more challenging discovery problems to be tackled.



German Conference on Bioinformatics 2000

The new method is able to discover automatically and in an entirely unsupervised fash-
ion patterns shared by as few as two structures in a non-redundant subset of PDB. The
method produces large number of patterns compliant with the user-definable constraints,
and methods are described for removing redundancy in the output pattern set to facilitate
the user’s analysis of the output data.

2 Definitions

The local neighbourhood of each residue r in each structure is represented as a string
NSr, called a neighbourhood string. The string encodes all residues in the structure that
are within a distance of d Angstrom from r (typically d = 10), including r itself. The
residue r is named the anchor of NSr. The residues are encoded by their amino acid type
and the mean coordinates of the residue’s side chain atoms. The residue’s order in the
neighborhood string is defined by their order along the protein’s backbone. In this paper
when giving examples of neighbourhood strings in this paper we write the single letter
amino acid code for each of the residues with the anchor underlined.

We then define a packing pattern against which a neighbour string can be matched.
A packing pattern consists of a list of elements where each element defines a match set
(set of allowed amino acids) and one set of coordinates. Each packing pattern has one
unique anchor element. We will write a pattern as the string of single letter amino acid
codes (enclosed in brackets for elements where more than one amino acid is allowed)
underlining the anchor residue.

A neighbour string r1 . . . rk . . . rl is said to match a packing pattern P = p1 . . . pn if
it contains a subsequence ri1

. . . rin so that the residues have amino acid types included
in the match sets of the corresponding pattern elements and so that the anchor residue of
the neighbour string is aligned with the pattern’s anchor. For example, ACEWGGTGEA
matches the packing pattern CWGT. Also, NSr is said to structurally match P within φ

if it is possible to superpose the coordinates of NSr onto the coordinates of P with a
RMSd of maximum φ. A neighbour string that structurally matches a packing pattern
within a threshold φ describes an occurrence of the pattern. Finally, a pattern which have
occurrences in k structures is said to have support k.

When presenting discovered patterns a sequence pattern can be given consisting of
the residues of the packing pattern separated by spacers whose lengths are determined by
the sequence separation of the residues involved in the matches. We use the PROSITE
(Hofman et al., 1999) notation. See Section 4 for examples.

3 Algorithms

Given a set of N structures we want to find packing patterns with occurrences in at least
k of the structures, i.e., patterns with support at least k. Rather than devising a method
for generating all possible packing patterns, the patterns will be generated as generalisa-
tions of neighbour strings from the structures. For example, the neighbourhood string
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d average NS average NS
length length using

constraint
10 18 8
12 29 11
14 42 14
20 95 27

Table 1: Average neighbour string lengths for different radi (d-values) and depending on whether the
half-sphere constraint (see text) is used.

ACEWGGTGEA can be generalised to a large number of (matching) packing patterns,
for example G, GG, WG, and CWGT. If packing patterns are allowed to have amino acid
match sets, the amino acids in the neighbourhood string can be generalised to match sets.
The packing pattern derived from a neighbourhood string will inherit the neighbourhood
string’s coordinate sets.

Geometrical constraints are used to limit the lengths of the neighbour strings while
keeping in the strings the potentially most interesting neighbour residues. For residue r

and a neighbour residue s (within d Ångstrom), it is calculated whether the side chains
‘face’ eachother by calculating a half sphere in the residue’s direction for each of r and
s and only including s in the neighbour string of r if s is in r’s half sphere and vice
versa. Neighbour strings with fewer than 4 elements are discarded. See Table 1 for some
statistics on the length of neighbour strings depending on d and use of the half sphere
rule.

Starting with one neighbour string (called the probe) a simple depth first search algo-
rithm can be used to find all generalisations of the probe that have occurrences in at least k

structures. The simplest generalisation of the probe only contains the probe’s anchor and
matches all neighbour strings whose anchor has the same amino acid type. This gives us
a pattern P (equal to the anchor) with a list of matches MP . This pattern can be extended
by appending a residue a from the probe forming P · a. The matches to P are analysed to
see if they can be extended to matches of P · a, and it is checked whether P · a has suffi-
cient support. If it does, it is again extended in all possible ways by appending elements
defined from residues to the right of a in the probe. At any point in this exploration, the
patterns can be extended to the left, e.g., a pattern P extended to a ·P . To avoid analysing
the same pattern twice, once a pattern has been extended to the left, all further extensions
will be to the left. As the search proceeds all patterns satisfying the constraints given by
the user are output and they are postprocessed by separate programs.

For each pattern, the list of matching neighbour strings is stored. When a pattern P is
extended to P ′ (P ′ = P · a or P ′ = a · P ), each match to P is analysed to see if it can be
extended to match P ′. For P · a each match to P is extended to include the first, if any,
a after the residues matching P . The matches to a · P are found in an analogous way.
Alternative alignments between the pattern and the neighbour strings are not explored
since this could be computationally expensive.



German Conference on Bioinformatics 2000

To ensure that any pattern with minimum support potentially can be found in the
search, all neighbour strings from the N − k + 1 smallest (fewest residues) structures are
used as probes. Any pattern with minimum support will have an occurrence in at least
one of any subset of N − k + 1 structures and the smallest ones are used for efficiency
reasons. The search procedure used makes it likely to find the same pattern multiple
times since several of the matching neighbour strings may be used as probes. Therefore
simple checksums are generated for each identified pattern and when new patterns are
found, their checksum is compared to those of all previously discovered patterns before
it is output.

In the search, the structural similarity of each match and the pattern is assessed by
calculating the distance based RMSd. Distance based RMSd calculation was used in the
search to save computations. Matches whose structural similarity is above the threshold
are discarded. When patterns are output, the structural similarity of each pair of matches
is calculated using superposition based RMSd using McLachlan’s algorithm (McLachlan,
1979), and reported together with the a description of the matches.

In total, the algorithm is guaranteed to generate all patterns having minimum support,
when the requirement of structural similarity is removed. When structural similarity is
required, the heuristic of only including one alignment between a pattern and a matching
neighbour string means that, potentially patterns can be discarded because a misalignment
caused the structural similarity to be too low.

4 Results

SPratt2 was applied to a non-redundant subset of PDB called culledPDB 1 where the
maximum pairwise sequence identity is 30% and only structures with resolution 2.0 or
better are included. The set used was generated May 18th 2000 and contained 779 chains,
in the following it is referred to as PDB*.

The parameters of SPratt2 was set to let it discover patterns matching at least k chains
in PDB*, for k we tried all values between 2 and 20. The radius used was d = 10

and the half sphere constraint (see Algorithms) was applied. Furthermore all matches
were required to superpose onto the pattern with a (distance based) RMSd of maximum
1.0Å. The computation took between 4 and 7 hours on a Sun Ultra 30 workstation with
512 Megabytes of memory. Figure 1 shows how the running time and the number of
produced patterns depend on the value of k.

As Figure 1B shows, the SPratt2 runs produce large numbers of patterns. Semi-
manual analysis of some of these have been carried out. For example, for each pattern the
classification of the matching structures in the SCOP database (Murzin et al., 1995) was
retrieved automatically. It was found that most of the highest scoring patterns match struc-
tures from within the same family or superfamily in SCOP. For example, large number of
patterns having matches within the immunoglobulin and serine protease families. While
this confirms that the algorithm is able to recover known relationships in PDB, we also

1see http://www.fccc.edu/research/labs/dunbrack/culledpdb.html
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Figure 1: A: Running time of SPratt2 (in seconds – vertical axis) is shown when applied to PDB* (see text)
with different values of k (minimum support requirement – horizontal axis). We see that for k = 2 SPratt2
takes almost 8 hours while for k = 20, the run takes around 4 hours. B: The number of patterns (vertical
axis) produced by SPratt2 for different values of k (horizontal axis).

wanted to see if SPratt2 is able to find relationships between even more remote structures.
More comprehensive anlaysis of the produced patterns will be performed and presented
elsewhere. Here we give some details about two patterns that span different classes (alpha
helical packing pattern) and different folds (cystein scaffold) in SCOP. These were among
the patterns having highest scores produced in the run performed with minimum support
5.

4.1 A small cystine scaffold

Small solvent-exposed beta domains are often held into a structural framework by a net-
work of disulfide bonds, without which they would not be stable in solution. These in-
clude small proteinase inhibitors, snake toxins, as well as small extracellular binding
domains of receptors.

The packing pattern represented by the sequence motif C-x(4,19)-C-x(5,9)-C-x(4,17)-
C was discovered and found to match a small two-disulfide framework within several
small beta domains of diverse functions (see Table 2). Though the four cystine residues
have a variety of spacings between them within the structural occurrences, they are found
to superpose within a one Angstrom RMSD. The global topologies of the matching struc-
tures fall into two classes. The first class (e.g., 1bte, 3ebx, 9wga) comprises structures
known as cyclic cystine knots (Craik et al., 1999). These are four beta strands held to-
gether by three disulfide bonds. The packing pattern captures the bonds between strands
1-3 and 204 (strands numbered sequentially from N-terminus). Within this first class is
wheat germ agglutinin (9wga), which has four occurrences of the cyclic cystine knot.
The algorithm was able to find all four occurrences. The second class (1fle; serine pro-
teinase inhibitor) has a different beta strand topology and the packing pattern connects
two strands, and one of these to a loop.
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Pattern
Protein C C C C
1clvI C508 C517 C523 C531
1fleI C32 C38 C44 C53
1bx7 C6 C11 C17 C22
3ebx C3 C17 C24 C41

1bteA C11 C31 C41 C59
9wgaA C3 C12 C18 C24
9wgaA C46 C55 C61 C67
9wgaA C89 C98 C104 C110
9wgaA C132 C141 C147 C153

Table 2: The matches to the pattern represented by the sequence motif C-x(4,19)-C-x(5,9)-C-x(4,17)-C.

Pattern
Protein V L A A
2dbm V11 L130 A133 A137
1fua V91 L164 A167 A171

1gdoA V131 L141 A144 A148
1dciA V105 L253 A256 A260
1iow V143 L163 A166 A170

1qusA V127 L351 A354 A358
4pgaA V95 L140 A143 A147
1bw9A V26 L49 A52 A56
1lam V248 L339 A342 A346

Table 3: The matches to the pattern represented by the sequence motif V-x(9,223)-L-x(2)-A-x(3)-A.
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4.2 Alpha helical packing pattern

Another high scoring pattern found by the algorithm is represented by the motif V-
x(9,223)-L-x(2)-A-x(3)-A. In contrast to the flexible cystine motif, 3 of the distances
in this pattern are exactly conserved (see Table 3). Inspection of the occurrences of this
pattern revealed that the sub-pattern comprising L, A, A is in all occurrences on the buried
face of a helix. The side chain of the Valine in the first position of the pattern faces this
helix and is on a beta strand (e.g., in 1fwa) or on another helix (e.g., in 2gdm). Within
proteins of similar topology, the position of the Valine is not topologically conserved: it
occurs on different strands within a 4 strand a/b protein (1bw9), and in an 8 stranded a/b
protein (1fua).

5 Discussion

The SPratt2 algorithm presented here together with the previously reported SPratt algo-
rithm (Jonassen et al., 1999) represents a novel approach to discover protein structure
motifs. The SPratt2 algorithm is significantly more efficient than the SPratt algorithm
which in practice was limited to the anlaysis of relatively small sets of proteins (up to,
say, 50) and requiring high support.

The increased efficiency is due to several factors. Firstly, in SPratt the discovery
of neighbour string patterns was performed using the tool Pratt (Jonassen et al., 1995;
Jonassen, 1997). Pratt takes as input sets of unaligned sequences and discovers patterns
of the type used in the PROSITE database (Hofman et al., 1999). In SPratt2 the patterns
are effectively describing common subsequences (no restrictions on the sequence distance
between residues mathing pattern elements) which results in SPratt2 exploring a smaller
solution space. Also, in SPratt2 the search algorithm has been tailored to the particular
application while Pratt is a general tool. Secondly, in SPratt2 the structural similarity of
each match and the pattern can be assessed and used to reject matches. This was not
possible in SPratt since Pratt is given only the neighbour strings themselves. Thirdly, we
have introduced the half sphere constraint which reduces the lengths of the neighbour
strings to be analysed. Finally, SPratt2 has been implemented as one program and its
memory usage has been minimized to fascilitate larger scale analyses.

The efficiency of the SPratt2 algorithm enables mining of the complete set of known
protein structures (represented by a non-redundant subset) in an exhaustive and fully auto-
matic manner. In addition to being able to recover known relationships between proteins
within families and super-families, it has also discovered packing patterns that occur in
diverse folds and topologies. The cystine pattern and the helical packing pattern would be
very difficult to induce from sequence information alone. However, in combination with
structural information they are revealed from the data in an unsupervised fashion using
the algorithm described in this paper.

While encouraging, the results also indicate further exploration, development and re-
finement of the method. Patterns spanning superfamilies and even fold classes are the
most interesting, as these are unlikely to be found by sequence based methods. However,
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the two patterns presented here do not appear to preserve topology or even secondary
structure. The diverse topologies of the cystine pattern occurrences and the non-conserved
secondary structure of the Valine in the helix pattern occurrences clearly illustrate this
point. Due to these features, that these patterns cannot be used effectively for structural
alignment, as can more specific patterns discovered in a supervised fashion (Jonassen
et al., 1999). Furthermore, it is clear that a four amino acid pattern, though conserved,
is too short and its connecting regions too degenerate to be used for local tertiary struc-
ture prediction. Future research could address these specificity issues. A simple solution
to the topology problem is to require preservation of secondary structure context of all
elements in a packing pattern. A possible avenue towards the sequence specificity prob-
lem is to combine short packing patterns into wider conjunctions of patterns. One might
also consider weakening the restriction of absolute residue conservation (considering the
use of residue sets) but insisting on much longer patterns spanning a larger volume of
3D space. In conjuction with this, the RMSD tolerance could be relaxed in the hunt for
patterns involving more residue context.

The discovery of the cystine pattern is promising, as similar cystine scaffolds occur
in proteins of diverse function (Craik et al., 1999; Norton & Pallaghy, 1998) and pro-
vide a convenient abstraction for protein fold classification. Future work will include
specializing our algorithm to deal specifically with cystine packing motifs.
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