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Duality and support weight distributions

Hans Georg Schaathun,Member, IEEE

Abstract— We show how to compute the support weight
distribution Ar

i for r ≥ k − d⊥2 + 3, where d⊥2 is the second
minimum support weight of the dual code, provided the weight
enumerator of the dual code is known.

Index Terms— support weight distribution, dual code

I. I NTRODUCTION

We have observed some recent interest in the support weight
distributions, particularly those of self-dual codes [2], [7].
Possibly, these parameters may lead to non-existence proofs,
finally determining the highest minimum distance of self-
dual codes with certain lengths. The original motivation for
introducing the support weight distribution was to compute the
weight enumerator for certain infinite classes of cyclic codes
[3]. The weight enumerator in turn is used for the computation
of error probabilities in error-control systems.

Kløve has previously shown how to compute the support
weight distributionAr

i , provided that we knowAr′

i for r′ ≤
r of the dual code. This result appears first in [5] and was
formulated as a generalised MacWilliams identity in [6]. A
different proof of this result appeared in [9].

In [8], we explored a relation between a code and the
projective multiset corresponding to the dual code. In the
sequel, we will use this relation to determine support weight
distributions of high orders. Whereas previous results rely
on solving a large set of equations, the MacWilliams type
identities, we find formulaic expressions which are faster to
compute.

We hope that this will take us one step towards the complete
determination of support weight distributions of some self-
dual codes, for instance the[72, 36, 16] Type II code. It is not
known whether this code exists or not.

II. PROJECTIVE MULTISETS AND DUALITY

There is a well-studied correspondence between projective
multisets and linear codes. In its easiest description, the
projective multiset is obtained by taking the columns of some
generator matrix of the code, counting multiplicities [4]. We
will keep this description in mind, but still develop a more
mathematically rigorous description, which will aid us in the
study of duality. This description follows the one presented in
[8].

A. Vectors, Codes, and Multisets

A multiset is a collection of elements which are not nec-
essarily distinct. More formally, we define a multisetγ on a
setS as a mapγ : S → {0, 1, 2, . . .}. The numberγ(s) is the
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number of occurrences ofs in the collectionγ. The mapγ is
always extended to the power set ofS,

γ(S′) =
∑
s∈S′

γ(s), ∀S′ ⊆ S.

The numberγ(s) or γ(S′) is called the value ofs or S′.
The size ofγ is the valueγ(S). We will be concerned with
multisets of vectors. We will always keep the informal view
of γ as a collection in mind.

We consider a fixed finite fieldF q with q elements. A
message word is ak-tuple overF q, while a codeword is an
n-tuple overF q. Let M be a vector space of dimensionk
(the message space), andV a vector space of dimensionn
(the ambient space). The generator matrixG gives a linear,
injective transformationG : M → V , and the codeC is
simply the image underG.

The columns ofG form a multisetγC on M . Two codes are
said to be permutation equivalent if one is obtained from the
other by reordering the columns of the generator matrix, and
thusγC definesC up to permutation equivalence. Two codes
are also equivalent if one can be obtained from the other by
replacing a columng of G by αg for some non-zero scalarα.
Hence the codeC can alternatively be defined by the projective
multiset γ′C obtained by mappingγC into PG(k − 1, q), the
projective geometry of dimensionk − 1 over F q.

We say that two multisetsγ0 and γ1 on M are equivalent
if γ1 = γ0 ◦ φ for some automorphismφ on M . Such an
automorphism is given byφ : g 7→ gA whereA is a square
matrix of full rank. Replacing eachgi by giA in the encoding
function is equivalent to replacing the messagem by Am.
In other words, equivalent multisets give different encoding,
but they give the same code. This is an important observation,
because it implies that the coordinate system onM is not
essential.

Let B := {e1, e2, . . . , en} be the coordinate basis ofV .
The vectors may be considered as linear forms onV . There is
a natural endomorphismµ : V → V /C⊥, whereµ(v) =
v + C⊥. The elements ofV /C⊥ are linear forms onC,
and µ(ei)(c) = gim wheneverc = mG. So whenC is
identified with M , gi will correspond toµ(ei), establishing
an isomorphism betweenV /C⊥ and M and proving the
following lemma.

Lemma 1:A code C ⊆ V is given by the vector multiset
γC := µ(B) on V /C⊥ ∼= M .

Given a collection{s1, s2, . . . , sm} of vectors and/or sub-
sets of a vector spaceV , we write 〈s1, s2, . . . , sm〉 for its
span. In other words〈s1, s2, . . . , sm〉 is the intersection of all
subspaces containings1, s2, . . . , sm.

B. Weights

We define the supportχ(c) of c ∈ C to be the set of
coordinate positions not equal to zero, that is

χ(c) := {i | ci 6= 0}, wherec = (c1, c2, . . . , cn).

The support of a subsetS ⊆ C is

χ(S) =
⋃
c∈S

χ(c).
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The weight (or support size)w(S) is the cardinality ofχ(S).
The ith minimum support weightdi(C) is the smallest weight
of an i-dimensional subcodeDi ⊆ C. The subcodeDi will
be called a minimumi-subcode. The weight hierarchy ofC
is (d1(C), d2(C), . . . , dk(C)).

The support weight distribution ofC is the set of parameters
{Ar

i (C) : i = 1, . . . , n; r = 0, . . . , k}, whereAr
i (C) is the

number ofr-dimensional subcodes of weighti.
The following lemma was proved in [4], and the remark is

a simple consequence of the proof.
Lemma 2:There is a one-to-one correspondence between

subcodesD ⊆ C of dimensionr and subspacesU ⊆ M of
codimensionr, such thatγC(U) = n− w(D).

Remark 1:Consider two subcodesD1 and D2, and the
corresponding subspacesU1 andU2. We have thatD1 ⊂ D2

is equivalent toU2 ⊂ U1.
We definedk−r(γC) such thatn− dk−r(γC) is the largest

value of anr-spaceVr ⊆ M . From Lemma 2 we get this
corollary.

Corrollary 1: If C is a linear code andγC is the corre-
sponding multiset, thendi(γC) = di(C).

C. Projective spaces and multisets

A submultisetγ′ ⊆ γ is a multiset with the property that
γ′(x) ≤ γ(x) for all x. If γ is a multiset on some vector space
V , we define a cross-section ofγ to be the restrictionγ|U to
some subspaceU ⊆ V . Cross-sections of projective multisets
are defined in the same way.

In some cases it is easier to deal with cross-sections and
their sizes, than with subspaces and their values. In particular,
we have thatn − dk−r(γC) is the size of the largestr-
dimensional cross-section ofγC .

Let [
k

r

]
=

r−1∏
i=0

qk−i − 1
qr−i − 1

denote the number of distinct linearr-spaces containing the
origin. The number ofr-spaces containing a givenm-space is
given by

[
k−m
r−m

]
.

The r-th generalised Singleton bound states thatdr ≤ dk −
k+r. The code isr-MDS if it meets this bound with equality.

Consider anm-spaceΠm ⊆ PG(k − 1, q). Let

πΠm
: PG(k − 1, q)\Πm → PG(k − 2−m, q)

be the projection map throughΠm. Let C ′ be the code
corresponding toγC′ := γC◦π−1. Note thatC ′ has parameters
[n− γC(Πm), k− 1−m]. Everyr-space inPG(k− 2−m, q)
is the image of an(r + m + 1)-space containingΠm in
PG(k − 1, q). Hence

∆r(C ′) ≤ ∆r+m+1(C)− γC(Πm).

Hence, ifΠm has maximum value, thenC ′ is (k− 1−m1 +
m− 2)-MDS. Note thatC ′ can be viewed as a subcode ofC
[1].

D. Duality

Write (d1, . . . , dk) for the weight hierarchy ofC, and
(d⊥1 , . . . , d⊥n−k) for the weight hierarchy ofC⊥. Let B ⊆ B.
Then µ(B) is a submultiset ofγC . Every submultiset of
γC is obtained this way. Obviouslydim〈B〉 = #B. Let
D := 〈B〉 ∩ C⊥ be the largest subcode ofC⊥ contained in
〈B〉. Then D is the kernel ofµ|〈B〉, the restriction ofµ to
〈B〉. Hence

dim〈µ(B)〉 = dim〈B〉 − dim D. (1)

Clearly #B ≥ w(D).
We are particularly interested in the case when whenµ(B)

is a cross-section ofµ(B). This is of course the case if and
only if µ(B) equals the cross-sectionµ(B)|〈µ(B)〉.

Let U ⊆ V /C⊥ be a subspace. We haveµ(B)|U = µ(B),
whereB = {e ∈ B | µ(e) ∈ U}. Hence we haveµ(B) =
µ(B)|〈µ(B)〉 if and only if there exists no pointe ∈ B\B such
that µ(e) ∈ 〈µ(B)〉.

It follows from (1) that a large cross-sectionµ(B) of a given
dimension, must be such that〈B〉 contains a large subcode of
C⊥ of sufficiently small weight.

Define for any subcodeD ⊆ C⊥,

β(D) := {ex | x ∈ χ(D)} ⊆ B.

Obviously β(D) is the smallest subset ofB such thatD is
contained in its span. It follows from the above argument that
if D is a minimum subcode andµ(β(D)) is a cross-section,
thenµ(β(D)) is a maximum cross-section forC. Thus we are
lead to the following two lemmata.

Lemma 3: If n−dr = d⊥i , B ⊆ B, and#B = n−dr, then
µ(B) is a cross-section of maximum size and codimensionr if
and onlyB = β(Di) for some minimumi-subcodeDi ⊆ C⊥.

Lemma 4:Let r be an arbitrary number,0 < r ≤ n − k.
Let i be such thatd⊥i ≤ n−dr < d⊥i+1, and letDi ⊆ C⊥ be a
minimum i-subcode. Thenµ(〈B〉) is a maximumr-subspace
for any B ⊆ B such thatDi ⊆ 〈B〉 and#B = n− dr.

E. Support weight distributions

Let Vr
i (C) be the set of allr-spaces of valuei, i.e.

Vr
i (C) := {Π ⊆ PG(k − 1, q) | γC(Π) = i,dim Π = r}.

We define thevalue distributionof γC to be

V r
i (γC) = V r

i (C) := #Vr
i (C). (2)

By Lemma 2, each element ofVr
i (C) corresponds to ak −

1− r-dimensional subcode of weightn− i. HenceV r
i (C) =

Ak−1−r
n−i (C).
We will mostly abbreviate and writeV r

i = V r
i (C), Ar

i =
Ar

i (C), Ãr
i = Ar

i (C
⊥), and Ṽ r

i = V r
i (C⊥). Define

mi = mi(C) := di(C⊥)− i− 1.

Obviouslym0 = −1 andmn−k = k − 1. We will determine
V r

i for mj ≤ r < mj+1 for j = 0 andj = 1. We start with a
relatively simple result.
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Lemma 5: If mj+1 > mj , then

V
mj

mj+j+1 = Ãj
mj+j+1,

V
mj

i = 0, i > mj + j + 1.
Proof: Consider anmj-spaceΠ for some j where

mj+1 > mj . From Lemma 3 we know thatΠ has value
d⊥j = mj + j +1 if and only if it containsxi for all i ∈ χ(D)
where D ⊆ C⊥ is a j-dimensional subcode of weightd⊥j .
This gives the first equation. The second equation is obvious.

The difference sequence(δ0, δ1, . . . , δk−1) is defined by
δi = dk−i − dk−1−i, and is occasionally more convenient
than the weight hierarchy. The maximum value of anr-
dimensional, projective subspace is∆r = δ0 + . . . + δr =
n− dk−1−r.

III. T HE NEW RESULTS

The following theorem was proved in [5].
Theorem 1:For −1 ≤ r < m1, and any codeC, we have

that V r
i (C) = Vr

j (n, k) where

Vr
j (n, k) =

(
n

j

) r−j+1∑
i=0

(−1)i

[
k − j − i

r − j + 1− i

](
n− j

i

)
,

for any codeC.
Our result is the determination ofV i

r (C) whenm1 ≤ r <
m2. We know thatV r

i = 0 for all i > r + 2.
Consider anr-spaceΠ of value r + 2. The cross-section

γC |Π defines an[r + 2, r + 1] code C ′. Let s := m1(C ′).
We say thatΠ has Types. Clearly m1 ≤ s ≤ r. The set of
r-spaces of Types is denoted byS(r, s).

Given anr-spaceΠ′ of value i ≤ r + 1, we say thatΠ′

is Type I if it contains a(i − 2)-spaceΠ′′ of value i. This
(i− 2)-space is unique when it exists. ClearlyΠ′′ has Types
for somes, and then we say thatΠ′ is Type I(s).

If Π′ is not Type I, we say that it is Type II, and then it
contains a unique(i− 1)-space of valuei. Let Ur

i (X) be the
set of r-spaces of valuei and TypeX, whereX is I, II, or
I(s) for somes. Write Ur

i (X) := #Ur
i (X).

A. Subspaces of Maximum Value

If C is an [n, n − 1] code, there is a uniques such that
δs(C) = 2, andδi(C) = 1 for i 6= s. Clearly m1(C) = s. In
this case, we callC an [n, n− 1] code of Types.

Lemma 6:Let γC be a projective multiset defining an
[n, n − 1] codeC of Type s. Then there is a uniques-space
Πs of values + 2.

Proof: There exists at least one suchs-space sinces =
m1 = ∆s(C)− 2. Suppose there are two distincts-spacesΘ1

andΘ2 of values+2. Let i be the dimension ofΘ := Θ1∩Θ2.
Clearly i < s and thusγC(Θ) ≤ i + 1. We get

γ(〈Θ1,Θ2〉) ≥ 2(s + 2)− (i + 1) = 2s− i + 3,

but
dim〈Θ1,Θ2〉 = 2s− i = 2s− i,

so
γ(〈Θ1,Θ2〉) ≤ ∆2s−i(C) = 2s− i + 2.

The lemma follows by contradiction.
There is only one[n, n−1] code of Types up to equivalence.

The corresponding projective multiset is obtained by taking a
frame for a projectives-space and then adding projectively
independent points to obtain an(n− 2)-space.

Lemma 7:For any codeC, if m1 ≤ s ≤ r < m2, we have

#S(r, s) = Ã1
s+2

(
n− s− 2

r − s

)
.

Proof: The number of maximumr-spaces of Typer = s
is

#S(s, s) = Ã1
s+2, (3)

by Lemma 5.
An r-spaceΠr of Type s contains a uniques-spaceΠs

of value s + 2 by Lemma 6. Hence there is a one-to-one
correspondence betweenr-spaces of Types and pairs(Πs, S)
whereΠs ∈ S(s, s) andS ⊂ γC\Πs is a set ofr − s points.
There areÃ1

s+2 ways to chooseΠs by (3) and
(
n−s−2

r−s

)
ways

to chooseS. Hence we get the result.
Lemma 8: If m1 ≤ r < m2, then

V r
r+2 =

r∑
s=m1

Ã1
s+2

(
n− s− 2

r − s

)
,

V r
i = 0, i > r + 2.

Proof: An r-space of valuer +2 has Types for somes
wherem1 ≤ s ≤ r. Thus we can take the sum of the equation
in Lemma 7. Hence the result.

B. Whenn = k + 1
In this section we study an[n, n − 1] codeC of Type s.

We will need the numberF(j, n, s) := Un−3
j (II) for C in the

later sections.
We obviously have thatF(j, n, s) = 0 if j ≥ n− 1. When

n = s + 2, C is MDS, so

F(j, s + 2, s) = Vs−1
j (s + 2, s + 1). (4)

Lemma 9:For any[n, n− 1] code of Types, if j ≤ n− 2,
thenUn−3

j (II) is given by

F(i, n, s) =
i∑

j=0

Vs−1
j (s + 2, s + 1)

(
m

i− j

)
(q − 1)m−i+j ,

wherem = n− s− 2.
Proof: Note that ifn = s+2, the lemma reduces to (4).

We consider the projective spacePG(n− 2, q). We want to
find the numberF(i, n, s) of hyperplanes of valuei and Type
II. Consider an arbitrary such hyperplaneΠ. There is a unique
s-spaceΘ ⊆ PG(n − 2, q) of value s + 2. Every hyperplane
must meetΘ in a subspace of dimensions−1 or more. Since
Π has Type II,Θ′ := Θ ∩ Π is exactly an(s− 1)-space. Let
j = γC(Θ′).

Given j (0 ≤ j ≤ s), there areF(j, s + 2, s) ways to
chooseΘ′. Let Π′ ⊆ Π be the smallest subspace of valuei and
containingΘ′. GivenΘ′, we findΠ′ by choosingi− j points
among then− s− 2 points of positive value not contained in
Θ. Given j, there are thus

F(j, s+2, s)
(

n− s− 2
i− j

)
= Vs−1

j (s+2, s+1)
(

n− s− 2
i− j

)
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ways to chooseΠ′.
Consider now the projectionπΠ′ . The multisetγ′′ := γC ◦

π−1
Π′ defines an[n − i, n − 1 − s − i + j] code. There is but

one pointx of valueγ′′(x) = s + 2− j, namelyx = πΠ′(Θ).
The remaining points have value 0 or 1. We define a new
projective multisetγ′ by γ′(x) = 1 and γ′(y) = γ′′(y) for
y 6= x. The corresponding code is a projective[n′, n′] code
wheren′ = n− i− s− 1 + j.

Finding Π = Π′ of value i is the same as finding a
hyperplane of zero value forγ′, which is the same as counting
one-dimensional subcodes of weightn′ for the [n′, n′] code.
This number is(q − 1)n′−1. The lemma follows by summing
over all j.

C. Other subspaces

Now we return to the general[n, k] code C, in order to
determineV r

j for j ≤ r + 1.
Proposition 1: For m1 ≤ r < m2 andr ≥ i− 2, we have

Ur
i (I(s)) = Vr+1−i

0 (n− i, k + 1− i)Ã1
s+2

(
n− s− 2
i− s− 2

)
,

Ur
i (I) = Vr+1−i

0 (n− i, k + 1− i)V i−2
i .

For r < i− 2, we haveUr
i (I) = Ur

i (I(s)) = 0.
Proof: We have from Lemma 7, that

U i−2
i (I(s)) = Ã1

s+2

(
n− s− 2
i− 2− s

)
.

An r-space of valuei and Types contains a unique(i − 2)-
spaceΠ′ of value i and Types. There areU i−2

i (I(s)) ways
to chooseΠ′.

Consider then the multisetγ′ := γC ◦π−1
Π′ obtained by pro-

jection throughΠ′. We know thatγ′ defines an[n−i, k+1−i]
codeC ′. Finding anr-spaceΠ = Π′ of value i corresponds
to finding an(r + 1− i)-space of value 0 forγ′. Furthermore
γ′ defines a code with

∆m2−i(C ′) ≤ ∆m2−1(C)− i = m2 + 1− i.

HenceC ′ is (k−1−m2+i)-MDS, and sincer+1−i ≤ m2−i,
there areVr+1−i

0 (n − i, k + 1 − i) ways to chooseΠ = Π′.
This proves the first equation, and the second one follows by
summing over alls.

Proposition 2: If m1 < j ≤ m2, we have

U j−1
j (II) =

(
n

j

)
− U j−2

j (I)−
j−1∑

s=m1

(s + 2)U j−1
j+1 (I(s)).

For i > j, we haveU j−1
i (II) = 0.

Proof: We consider all the
(
n
j

)
possible ways to chose a

setS of j points of positive value. To findU j−1
j (II), we must

subtract the number of cases where thesej points generate a
subspace of Type I.

Sincej − 1 < m2, we have three cases:
1) dim〈S〉 = j − 1 andγC(〈S〉) = j. (Type II)
2) dim〈S〉 = j − 2 andγC(〈S〉) = j. (Type I)
3) dim〈S〉 = j − 1 andγC(〈S〉) = j + 1. (Type I)

The number of setsS giving the first case isU j−1
j (II), while

for the second case, it isU j−2
j (I). The third case is more

difficult, becauseS does not contain all points of positive value
in 〈S〉. Suppose〈S〉 has Types. Then 〈S〉 can be chosen
in U j−1

j+1 (I(s)) different ways. There is one pointx 6∈ S of
positive value in〈S〉, andx must be contained in the unique
s-spaceΠs ⊆ 〈S〉 of values+2. Moreoverx can be any point
of positive value inΠs, hence there ares+2 different choices
for S giving the same〈S〉 of the third case. This gives the
lemma.

Let

U(r1, v1, X1; r2, v2, X2)
={(Π1,Π2) | Π1 ⊆ Π2,Πj ∈ Urj

vj
(Xj), j = 1, 2}.

We will write vj = ∗ resp.Xj = ∗, when we allow any value
of vj resp.Xj .

Lemma 10:If m1 ≤ r < m2 and0 ≤ j ≤ r, then

Ur
j (II) =

q − 1
qr+1−j − 1

(
Ur−1

j (II)
qk−r − 1

q − 1

−
r+2∑

v=j+1

#U(r − 1, j, II; r, v, ∗)
)

.

Proof: We will count the number of elements ofU(r −
1, j, II; r, j, II) in two different ways. Consider a pair

(Π′,Π) ∈ U(r − 1, j, II; r, j, II).

There areUr
j (II) ways to chooseΠ. For Π′, we can choose

any (r−1)-space containing the unique(j−1)-space of value
j in Π. Hence

#U(r − 1, j, II; r, j, II) = Ur
j (II)

[
r + 1− j

r − j

]
= Ur

j (II)
qr+1−j − 1

q − 1
.

(5)

This gives the first of the two expressions we seek.
Now we observe that

#U(r − 1, j, II; r, ∗, ∗) =
r+2∑
v=j

#U(r − 1, j, II; r, v, ∗). (6)

This number can equivalently be obtained by counting the
number of (r − 1)-spaces of valuej and Type II, and the
number ofr-spaces containing each such space. This gives

#U(r − 1, j, II; r, ∗, ∗) = Ur−1
j (II)

[
k − r

1

]
= Ur−1

j (II)
qk−r − 1

q − 1
.

(7)

Clearly we have that

#U(r − 1, j, II; r, j, I) = 0,

and if we combine this with with (6) and (7), we get

#U(r − 1, j, II; r, j, II) = Ur−1
j (II)

qk−r − 1
q − 1

−
r+2∑

v=j+1

#U(r − 1, j, II; r, v, ∗),

which is our second expression for#U(r − 1, j, II; r, j, II).
Combining this with (5), we get the lemma.
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Lemma 11:If j < v − 1, then

#U(r − 1, j, II; r, v, I(s)) = Ur
v (I(s))F(j, v, s)qr+2−v.

Proof: Consider a pair

(Π′,Π) ∈ U(r − 1, j, II; r, v, I(s)).

There areUr
v (I(s)) ways to chooseΠ. There is a unique(v−

2)-spaceΘ ⊆ Π of value v and Types. The intersection
Θ′ := Π′∩Θ is a(v−3)-space of valuej. There areF(j, v, s)
ways to chooseΘ′.

Consider the projectionπΘ′ . Finding Π′ is the same as
finding a hyperplane inim πΘ′ not meetingπΘ′(Θ), which
is a point. There are(qr+3−v − 1)/(q − 1) hyperplanes in
im πΘ′ , of which (qr+2−v − 1)/(q − 1) meetπΘ′(Θ). Hence
there areqr+2−v hyperplanes not meetingπΘ′(Θ).

Lemma 12:If j < v, then

#U(r − 1, j, II; r, v, II) = Ur
v (II)Vv−2

j (v, v)qr+1−v.
Proof: Consider a pair

(Π′,Π) ∈ U(r − 1, j, II; r, v, II).

There areUr
v (II) ways to chooseΠ. There is a unique(v−1)-

spaceΘ ⊆ Π of valuev, andγC |Θ defines a[v, v] code. The
intersectionΘ′ := Π′ ∩Θ is a (v− 2)-space of valuej. There
areVv−2

j (v, v) ways to chooseΘ′.
Consider the projectionπΘ′ . Finding Π′ is the same as

finding a hyperplane inim πΘ′ not meetingπΘ′(Θ), which
is a point. There areqr+1−v such hyperplanes.

We define for brevity:

F(r, j) :=
r+2∑

v=j+1

#U(r − 1, j, II; r, v, ∗).

Proposition 3: We have

F(r, j) =
r+2∑

v=j+2

qr+2−v

[
Ur

v−1(II)Vv−3
j (v − 1, v − 1)

+
r∑

s=m1

Ur
v (I(s))F(j, v, s)

]
.

Proof: First note that

#U(r − 1, j, II; r, r + 2, II) = 0,

becauseUr
r+2(II) = 0, and that

#U(r − 1, j, II; r, j + 1, I) = 0,

because there is no subspace of valuej in a subspace of value
j + 1 and Type I. Now the result follows from Lemmata 11
and 12.

Proposition 4: If m1 ≤ r < m2 and0 ≤ j ≤ r, then

Ur
j (II) =

qk−r − 1
qr+1−j − 1

Ur−1
j (II)− q − 1

qr+1−j − 1
F(r, j),

whereF(r, j) is given by Proposition 3.
Proof: This is simply a rephrase of Lemma 10.

If we combine all the results of this paper, we get the
following theorem as a conclusion.

Theorem 2:For k ≥ r > k + 2− d2(C⊥), it is possible to
computeAr

i (C) for all i provided we know the (first) weight

enumerator ofC⊥. We have fork + 1 − d1(C⊥) < r ≤ k,
that

Ar
i (C) =

(
n

n− i

) k+i−r−n∑
j=0

(−1)j

[
k − n + i− j

k − r − n + i− j

](
i

j

)
,

and fork + 2− d2(C⊥) < r ≤ k + 1− d1(C⊥), that

Ar
i (C) = Uk−1−r

n−i (II) + Uk−1−r
n−i (I),

whereUk−1−r
n−i (II) andUk−1−r

n−i (I) are given by Propositions 1,
2 and 4.

IV. D ISCUSSION OF FUTURE WORKS

We have found formulæ for computing some high order sup-
port weight distributions. The formulæ are good for electronic
computation of the parameters, and for instance computing
the third through the 24th support weight distribution of the
[24, 12] Golay code is a matter of seconds. On the other hand,
simplified formulæ more comprehensible to human readers
would definitely be an improvement.

It will not be too difficult to continue and computeAr
i (C)

for

k − d⊥2 + 2 ≥ r > k + 3−min{d⊥3 , 2d⊥1 },

provided the second support weight distribution ofC⊥ is
known. We have omitted these results, because they would be
too tedious, without adding significantly to the understanding
of the subject.

To go belowk + 3− 2d⊥1 is more difficult, because ifi ≥
2d⊥1 , we may have a codewordc ∈ C⊥ and a subcodeD ⊆
C⊥ of dimension more than one, such thatχ(c) = χ(D). This
codewordc will be counted inÃ1

i , but for computingAr
j , only

D should be counted. It is a long way to making a general
statement forr ≤ k + r− 2d⊥1 , but in special cases there may
be possibilities.

We have tried to compute support weight distributions of
the tentative[72, 36] Type II self-dual code. By combining
Theorems 1 and 2 with the MacWilliams-Kløve identities, we
are left with about 100 unknowns. There is a chance that this
system may be solved completely by extending the techniques
presented here, and combining it with all the techniques found
in the literature. That will be extensive labour in itself, so we
leave it to future works.
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