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Abstract

Let Γ be a code of length n, and (T, U) a pair of disjoint sub-
sets of Γ . We say that (T, U) is separated if there exists a coordin-
ate i, such that for any codeword (c1, . . . , cn) ∈ T and any codeword
(c′1, . . . , c′n) ∈ U, ci 6= c′i. The code Γ is (t, u)-separating if all pairs
(T, U) with #T = t and #U = u are separated.

Separating codes (or systems) are known from combinatorics, and
they have also been applied, under various terminology, for water-
marking.

We present some new bounds, generalisations, and constructions
for separating codes.
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Codes séparants

Résumé
Soit Γ un code de longeur n, et (T, U) un couple de sous-ensembles

disjoints de Γ . On dit que (T, U) est séparé s’il existe une position i
telle que pour tout mot (c1, . . . , cn) ∈ T et tout mot (c′1, . . . , c′n) ∈ U,
ci 6= c′i. Le code Γ est dit (t, u)-séparant si tout tel couple où #T = t et
#U = u est séparé.

Les codes, ou systèmes, séparants sont connus en Combinatoire ;
ils ont été utilisés, sous des vocables divers, dans des problèmes de
marquage numérique.

Nous présentons de nouvelles bornes, des généralisations et des
constructions de codes séparants.

Mots-clefs
système séparant, code intersectant
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Skiljande kodar

Samandrag

Lat Γ vera ein kode med leng n, og lat (T, U) vera eit par av dis-
junkte delmengder av Γ . Me seier at (T, U) er skilt om det er ein plass
i slik at for alle ord (c1, . . . , cn) ∈ T og alle ord (c′1, . . . , c′n) ∈ U, har
me ci 6= c′i. Koden Γ er skiljande om alle slike par med #T = t og
#U = u er skilde.

Skiljande kodar, eller system, er kjende frå kombinatorikken, og
dei har vorte nytta, under ymse namn, til vannmerking og kopivern.

Me skal finna nokre nye grenser, generaliseringar og konstruksjo-
ner for skiljande kodar.

Stikkord
skiljande system, snittande kode



Chapter 1

Introduction

The theory of separating systems has been applied in different areas of
science and technology such as automata synthesis, technical diagnosis,
constructions of hash functions, and authenticating ownership claims.

The following property and generalisations have been studied e.g. by
Körner and Simonyi under the set-theoretic terminology of (i, j)-separation
[19]. Associate in a natural way to every row r of an n×M array T a bi-
partition of the set of coordinates E = {1, 2, . . . , M}, i.e. a pair {Ar, Br} of
disjoint subsets of E such that Ar ∪ Br = E. Then for any ordered t-tuple
( j1, j2, . . . , jt) of E, there is a bipartition which separates { j1, j2, . . . , jw}
from { jw+1, . . . , jt}. The problem of finding the minimum size of such a
separating family of partitions for arbitrary |E| remains open. The case of
(2, 2)-separation is introduced by Sagalovich in the context of automata:
two such systems transiting simultaneously from state a to a′ and from b
to b′ respectively should be forbidden to pass through a common inter-
mediate state. He has written a long series of papers since the sixties, e.g.
[24, 25]; a fairly recent survey can be found in [26]. States are simply binary
n-tuples and only shortest paths are allowed during transitions; in other
words, the only ‘moves’ permitted while transiting from a to a′ are com-
plementing the d(a, a′) bits where a and a′ differ (one at a time). Clearly if
the separation property holds, no two such minimal-length paths between
a and a′, and b and b′ will intersect.

The design of self-checking asynchronous networks has been a challen-
ging problem. Friedmann et al. [15] have shown that the unicode single-
transition-time asynchronous state assignment correspond to (2, 2)- and
(2, 1)-separating systems.

Digital watermark is a perceptually invisible pattern embedded in a
digital image. The watermark can carry information about the owner of
the image or the recipient: watermarking for copyright protection, finger-
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CHAPTER 1. INTRODUCTION

printing [4], or traitor tracing [31]. Codes were introduced in [4] (see also
[14]) as a method of ‘digital fingerprinting’ which prevents a coalition of
a given size from forging a copy with no member of the coalition being
caught, or from framing an innocent user.

The rest of this chapter will be spent on defining basic terminology and
notation, whereas in the next section we will discover some bounds on the
length and distance of separating codes, as well as some constructions.

In Chapter 3, we will introduce generalised separation and hashing,
and give some more general results. Chapter 4 will be dealing with inter-
secting codes and demonstrate the relation between separation and inter-
section.

We will try to summarise the known results in form of tables of rates
in Chapter 5. Finally we will give some results on maximum weights in
Chapter 6.

1.1 Separating Codes

Let G be an additive group and V the set of n-tuples over G. An (n, M)
code Γ is an M-subset Γ ⊆ V. If G is a field of q elements and C is a k-
dimensional subspace C 5 V, then we say that C is a [n, k]q (linear) code.

The feasible set F(T) of some vector set T ⊆ V is

F(T) := {(v1, . . . , vn) ∈ V | ∀i, 1 ≤ i ≤ n, ∃(a1, . . . , an) ∈ T, ai = vi}.

In the case of fingerprinting, each user holds one codeword, and a coali-
tion of users make a set T of codewords; then F(T) is the set of (false)
fingerprints they can produce.

Definition 1
We say that a code C is (t, u)-separating if, for any pair (T, U) of disjoint
subsets of C where #T = t and #U = u, the feasible sets are disjoint, i.e.
F(T) ∩ F(U) = ∅.

In earlier works on watermarking, (t, t)-separating codes have been called
t-PIC (partially identifying codes) [10] or t-SFP (secure frameproof) [31, 30,
29]. The current terminology appears to be older though [26]. Different
special cases have also appeared in litterature; the t-frameproof codes from
[29] are just (t, 1)-separating codes. The (2, 1)-separating, binary codes has
also been studied in [20].





1.2. MINIMUM AND MAXIMUM WEIGHTS

Definition 2
A (t, u)-configuration is a pair (T, U) of disjoint vector sets of sizes t and u
respectively. We say that (T, U) is separated if F(T)∩ F(U) = ∅, and other-
wise it is non-separated. A (t, u)-NSC is a non-separated (t, u)-configuration.

A code is (t, u)-separating if and only if it contains no (t, u)-NSC. Obvi-
ously, if C is (t, u)-separating, then it is also (u, t)-separating, and (t′, u′)-
separating for all t′ ≤ t and all u′ ≤ u.

Remark 1.1
If π : V 7→ V is an automorphism, then (T, U) is a (t, u)-NSC if and only
if (π(T), π(U)) is a (t, u)-NSC.

Remark 1.2
If (T, U) is a (t, u)-NSC, then so is (T + c, U + c) for any c ∈ V. If T +
c, U + c ⊂ C, then T, U ⊂ C′ for some code C′ equivalent to C. If C is
linear and T, U ⊂ C, then T + c, U + c ⊂ C.

Remark 1.1 tells us that if C is a linear (t, u)-separating code, then so is
any equivalent code. Also, if Γ is a non-linear (t, u)-separating code, then
so is any equivalent code, by Remark 1.2.

1.2 Minimum and Maximum Weights

For any vector c = (c1, . . . , cn) ∈ V we define the support to be

χ(c) := {i | ci 6= 0}.
For any subset S ⊆ V, the support is

χ(S) :=
⋃
c∈S

χ(c).

We define the weight of subsets and codewords to be the size of their sup-
port, and denote it w(c) := #χ(c) or w(S) := #χ(S).

Let C be a linear code. The r-th minimum support weight dr of C is the
least weight of an r-dimensional subcode of C. The r-th maximum support
weight mr is the largest weight of an r-dimensional subcode of C. Both
these numbers were first studied in [16], and the minimum support weight
has received quite some attention following [35], where it was called the
r-th generalised Hamming weight.

It is clear that d1 is the minimum distance of the code, and likewise m1

is the maximum distance of the code; so these two numbers are defined
also for non-linear codes. Several general definitions of dr exist for non-
linear codes, but we will not need any of them here.


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Chapter 2

Separation

The first section of this chapter is devoted to necessary conditions for
(t, t′)-separation. We will start with lower bounds on q in terms of t and t′.
The second half of the section will present bounds on the minimum and
maximum distances.

In Section 2.2, we give sufficient conditions for a code to be (2, 2)-
separating based on minimum and maximum weights. Finally, in Sec-
tion 2.3, we present some constructions.

2.1 Bounds for linear codes
Proposition 1
Let a and b be two linearly independent codewords, and write T = {a, b +
αa | α ∈ GF(q)}. Then (0, T) is a (q + 1, 1)-NSC.

Proof: We shall prove that in every position i, at least one codeword in T
has a 0. If bi = 0, this holds, so assume bi 6= 0. Then b + (−a−1

i )bia has 0
in position i, as required. �

Corollary 1
If C is q-ary, linear (t, t′)-separating, then max{t, t′} ≤ q.

This bound is tight in the binary case, since (2, 2)-separating, binary, linear
codes are known to exist (e.g. [26]).

Theorem 1
If C is a non-binary, linear (t, t′)-separating, then t + t′ ≤ q + 1.

Proof: We have already proved that t, t′ ≤ q. It only remains to prove
that we can construct a (t, q + 2− t)-NSC for all t such that 2 ≤ t ≤ q. Let
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CHAPTER 2. SEPARATION

α0,α1, . . . ,αq−1 be all the fields elements, where α0 = 0 and α1 = 1. Let a
and b be two independent codewords. A (t, q + 2− t)-NSC is given by

({α0a, . . . ,αt−1a}, {αta, a +α1b, . . . , a +αq+1−tb}).

First note thatαta matches 0 on every position not in χ(a), and a + b match
a on every position not in χ(b). In every position in χ(a) ∩ χ(b), we get
t different field values in the first set, and q + 1− t different field values
from the a +αib. Since there are only q elements in the field, they cannot
be separated. �

Proposition 2
If C is a linear, (q, 1)-separating code, then m1 < n− k + 2.

Proof: We shall prove that if n − m1 ≤ k − 1, then C cannot be (q, 1)-
separating. Consider a codeword c of maximum weight and let T = {αc |
α ∈ GF(q)}. Since the code is linear, for every set of k − 2 coordinate
positions, there exist at least q− 1 non-zero codewords which are zero on
these positions. In particular, there is a non-zero codeword a which is zero
on every position not in χ(c). Thus (T; a) is a (q, 1)-NSC. �

Proposition 3
If C is a linear, binary (2, 2)-separating code, then m1 < n− 2(k− 2).

Proof: If k ≤ 1, the result is trivial. For k = 2, it only says that the all-one
codeword 1 cannot be in the code C, lest (0, 1; c, c + 1) form a (2, 2)-NSC
for c ∈ C\{0, 1).

We then turn to the case k ≥ 3. We shall prove that if n−m1 ≤ 2(k− 2),
then C cannot be (2, 2)-separating. Consider a codeword c of maximum
weight. Since the code is linear, for every set of k− 2 coordinate positions,
there exist at least three non-zero codewords which are zero on these posi-
tions, and thus at least one which is not c. In particular, there is a non-zero
codeword a which is zero on half the positions not in χ(c), and one b
which is zero on the other half. Thus (0, c; a, b) is a (2, 2)-NSC. �

Proposition 4
If C is non-binary, linear, (t, 2)-separating, then d1 > (t− 1)k.

Proof: Assume for a contradiction that d1 ≤ (t− 1)k. We shall construct
a (t, 2)-NSC. Let c be a codeword of minimum weight. By Remark 1.1, we
can assume that c is one on every non-zero coordinate. Since the code is
linear, for every set of k− 1 coordinates there exist at least (q− 1) non-zero
codewords which are zero on these coordinates. For every set of k coordin-
ates there exists at least one non-zero codeword which are either one or
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2.2. (2, 2)-SEPARATING CODES

zero on these coordinates. Hence there exist t− 1 codewords a1, . . . , at−1

such that at least one of them is either one or zero on every position in
χ(c). Hence (0, c;αc, a1, . . . , at−1) is a (2, t)-NSC for everyα 6= 0, 1. �

2.2 (2, 2)-separating codes

Let c′, c, a, b be distinct vectors such that ({c′, c}, {a, b}) is a (2, 2)-NSC.
From this assumption, we will derive some statements on the minimum
and maximum weights of any code which is not (2, 2)-separating. This
will give a sufficient condition for a code to be (2, 2)-separating in The-
orem 2.

By Remark 1.2, we can assume that c′ = 0; and by Remark 1.1, we can
assume that c = (1, . . . , 1, 0, . . . , 0). We write

c = (c1, c2, . . . , cn),
a = (a1, a2, . . . , an),
b = (b1, b2, . . . , bn).

Let r be such that ci = 1 for i ≤ r and ci = 0 for i > r. Since (0, c; a, b)
is a (2, 2)-NSC, there is no coordinate i such that both ai 6∈ {0, ci} and
bi 6∈ {0, ci}.

We consider the sum
Σ := d(0, a) + d(0, b) + d(c, a) + d(c, b)

= w(a) + w(b) + w(a− c) + w(b− c).

We have trivially that

4d1 ≤ Σ ≤ 4m1. (2.1)

Consider now the matrix with rows 0, c, a, b. Let xi be the i-th column
in this matrix. We have four main types of columns:

Type 0 : xi = (0, 0, 0, 0),
Type I : xi ∈ {(0, 0, 0,α), (0, 0,α, 0)}, α 6= 0,

Type IIa : xi ∈ {(0, 1, 0, 0), (0, 1, 1, 1)},
Type IIb : xi ∈ {(0, 1, 0, 1), (0, 1, 1, 0)},
Type III : xi ∈ {(0, 1, 0,β), (0, 1,β, 0), (0, 1, 1,β), (0, 1,β, 1)}, β 6∈ {0, 1}.
No other possibility exists because the rows form a (2, 2)-NSC. We have
now that

Σ =
n

∑
i=1
σ(xi), (2.2)





CHAPTER 2. SEPARATION

where σ(xi) is 0 for Type 0, 2 for Types I and II, and 3 for Type III. Let vX

denote the number of columns of Type X. Then we get

n = v0 + vI + vII + vIII, (2.3)
Σ = 2vI + 2vII + 3vIII. (2.4)

Proposition 5
If (0, c; a, b) is a (2, 2)-NSC, then

Σ = w(c) + w(a− b) + w(a + b− c).

Proof: We have trivially that

n− w(c) = v0 + vI. (2.5)

Define two vectors

y = (y1, y2, . . . , yn) := a + b− c,
z = (z1, z2, . . . , zn) := a− b.

We have that

xi of Type 0 ⇒ yi = 0 ∧ zi = 0,
xi of Type I ⇒ yi = 1 ∧ zi = ±1,
xi of Type IIa ⇒ yi = ±1 ∧ zi = 0,
xi of Type IIb ⇒ yi = 0 ∧ zi = ±1,
xi of Type III ⇒ yi ∈ {β,β− 1} = {α 6= 0}

∧zi ∈ {±(β− 1),±β} = {α 6= 0}.

This gives

n− w(a + b− c) = n− w(y) = v0 + vIIb,
n− w(a− b) = n− w(z) = v0 + vIIa.

By adding together the two equations above as well as (2.5), we get

3n− (w(c) + w(a− b) + w(a + b− c)) = 3v0 + vIIa + vIIb + vI.

From (2.4) and (2.3) we get that

Σ = 3n− (3v0 + vIIa + vIIb + vI) = w(c) + w(a− b) + w(a + b− c),

as required. �
We observe that d(a, b) = w(a− b) and d(0, c) = w(c) are distances in

the code; hence they are bounded by m1. If C is linear, w(a + b− c) is also
a distance in the code, and thus bounded by m1. If C is non-linear, we still
have w(a + b− c) ≤ n. This gives directly the following theorem.





2.2. (2, 2)-SEPARATING CODES

Theorem 2
If a code satisfies 4d1 > 2m1 + n, or if 4d1 > 3m1 and it is linear, then it is
(2, 2)-separating.

Corollary 2
All linear, equidistant codes are (2, 2)-separating. A non-linear, equidistant
code is (2, 2)-separating if 2d1 > n.

The binary linear case of Theorem 2 has previously been proved by Sagalovich
[25] (see also [26]). The non-linear case of the corollary was proved in [11].

The non-linear case of the corollary is tight, in fact

C = {(1000), (0100), (0010), (0001)}

is an equidistant (4, 4, 2) code, but it is not separating. The linear case of
the theorem is also tight, as the following example shows.

Example 2.1 From the proposition we get that if (0, c; a, b) is a binary (2, 2)-
NSC and 4d1 = 3m1, then

w(c) = w(a− b) = w(a + b− c) = m1 = 4l,
w(a) = w(b) = w(a− c) = w(b− c) = d1 = 3l.

It turns out that the only possible (2, 2)-NSC is the following, or replications
thereof: 

0
c
a
b

 =


000000
111100
110010
101001

 .

Note that the linear code 〈a, b, c〉 has also d1 = 3 and m1 = 4.

Proposition 6
If C is binary, linear and 2d1 > m2, then it is (2, 2)-separating.

Proof: Let (0, c; a, b) be a (2, 2)-NSC. We consider first the case where
a, b, and c are linearly independent. Then a + b, a + b + c, and c are the
three non-zero codewords in some 2-dimensional subcode D. Thus we get
that

w(c) + w(a− b) + w(a + b− c) = 2w(〈a + b, c〉) ≤ 2m2, (2.6)

and by Proposition 5 that

4d1 ≤ Σ = w(c) + w(a− b) + w(a + b− c) ≤ 2m2.


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If a, b, and c are linearily dependent, then a + b + c = 0, and (2.6) becomes

w(c) + w(a− b) + w(a + b− c) ≤ 2m1,

which is stronger. �
It is easy to show that m2 ≤ b3m1/2c, which is a maximum support

weight analogue of the Griesmer bound. If this bound is not met with
equality, then the above result is stronger than that of Theorem 2.

2.3 (2, 2)-separating constructions

The next results provide a way to combine (2, 2)-separating codes into
new ones.

Theorem 3 [23]
Let M = M1 M2, with M2 ≥ M1 and M2 is not divisible either by 2 or by
3. Suppose C1(n1, M1) and C2(n2, M2) are binary (2, 2)-separating. Then
there is a (2, 2)-separating (n, M) code with n = n1 + 4n2.

Example 2.2 Suppose we take C1 = C2 where M1 = 11, n1 = 11, then M =
121, n = 55. Applying Theorem 3 again, with C1(11, 11) and C2(55, 121),
leads to a (2, 2)-separating code with M = 1331, n = 231.

Take now M1 = M2 = 13, n1 = n2 = 13, then M = 169, n = 65.
Applying Theorem 3 a second time with M1 = 13, n1 = 13 and M2 = 169, n1 =
65 leads to a (2, 2)-separating code with M = 1859, n = 273.

It is relatively easy to apply Theorem 2 on codes with few weights,
such as the following examples with two- and three-weight codes.

Example 2.3 Take a linear projective code over GF(p2) [5] with length

n =
(pk1 − (−1)k1)(pk1−1 − (−1)k1−1)

p2 − 1
,

dimension k1 and weights w1 = p2k1−3, w2 = p2k1−3 + (−p)k1−2.
In the case p = 2 for k1 = 4 it gives a (45, 44)4 code, which is (2, 2)-

separating since it satisfies 4d1 > 3m1.

Example 2.4 A three-weight code over GF(p) is given in [5] with length

n = p + 1 + p2(pk1−1 − (−1)k1−1)(pk1−2 − (−1)k1−2)/(p− 1),





2.3. (2, 2)-SEPARATING CONSTRUCTIONS

dimension k = 2k1 and weights w1 = p2k1−2 − (−p)k1 − (−p)k1−1, w2 =
p2k1−2, w3 = p2k1−2 − (−p)k1 .

In the binary case for k = 6 it gives a (39, 26)2 code, which is (2, 2)-separating
since it satisfies 4d1 > 3m1.


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Chapter 3

Generalised separation and
hashing

A (n, m, {w1, w2})-separating hash family, as defined in [32], is the same
as a (w1, w2)-separating, m-ary code of cardinality n. The perfect hash
families studied in [32] can also be viewed as a variant of separating codes,
if we adopt the following definition.

Definition 3
A sequence (T1, . . . , Tz) of pairwise disjoint vector sets is called a (t1, . . . , tz)-
configuration if #Tj = t j for all j. Such a configuration is separated if there
is a position i, such that for all l 6= l′ every vector of Tl is different from
every vector of Tl′ on position i.

A code is (t1, . . . , tz)-separating if every (t1, . . . , tz)-configuration is sep-
arated.

For z = 2, this definition coïncides with the previous one. A (M, q, z)-
perfect hash family from [32] is a (1, 1, . . . , 1)-separating (with z ones)
(n, M) code. For brevity, we will say that such a code is z-hashing. The
(t, u)-partial hashing [3] is (1, 1, . . . , 1, u − t)-separation (with t ones) in
our terminology.

3.1 Basic results

Define

P(t1, . . . , tz) :=
z−1

∑
i=1

z

∑
j=i+1

tit j. (3.1)
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CHAPTER 3. GENERALISED SEPARATION AND HASHING

Note that if t j = 1 for all j, then

P(t1, . . . , tz) =
(

z
2

)
, (3.2)

and if z = 2, then

P(t1, t2) = t1t2. (3.3)

The following proposition generalises the results on separating and per-
fect hashing families from [32, 2].

Proposition 7
An (n, M, d)q code Γ is (t1, . . . , tz)-separating if

d
n
> 1− 1

P(t1, . . . , tz)
.

Proof: Suppose Γ is non-(t1, . . . , tz)-separating, and consider some non-
separated (t1, . . . , tz)-configuration (T1, . . . , Tz) and the sum

Σ :=
z−1

∑
i=1

z

∑
j=i+1

∑
(x,y)∈Ti×Tj

d(x, y).

This is the sum of P(t1, . . . , tz) distances in the code, so Σ ≥ P(t1, . . . , tz)d.
Each coordinate can contribute at most P(t1, . . . , tz) to the sum Σ, but if
any coordinate does contribute that much, then the configuration is sep-
arated on this coordinate. Hence each coordinate can contribute at most
P(t1, . . . , tz)− 1 to the sum Σ, and we get

P(t1, . . . , tz)d ≤ Σ ≤ (P(t1, . . . , tz)− 1)n.

Simplifying this, we get that any non-(t1, . . . , tz)-separating code must sat-
isfy

d
n
≤ 1− 1

P(t1, . . . , tz)
,

and the proposition follows. �
It must be noted that, to get infinite families of separating codes with

good rate, the alphabet size q grows extremely rapidly in the t j-s, due
to the Plotkin bound. However, better separating codes can be built by
concatenation. Though this construction is well-known in various special
cases from the literature [2], we have not found as general a statement as
the one we give below.





3.1. BASIC RESULTS

Proposition 8
If Γ1 is a (t1, . . . , tz)-separating, M′-ary (n1, M) code and Γ2 a (t1, . . . , tz)-
separating, q-ary, (n2, M′) code, then the concatenated code Γ := Γ2 ◦ Γ1 is
a (t1, . . . , tz)-separating (n1n2, M)q code.

Proof: Consider a (t1, . . . , tz)-configuration (T1, . . . , Tz) in Γ . Then there
is a corresponding configuration in Γ1, (T′′1 , . . . , T′′z ) which is separated on
some coordinate i by assumption. Considering only the positions of Γ cor-
responding to position i in Γ2, we get a (t′1, . . . , t′z)-configuration (T′1, . . . , T′z)
in Γ1 where 1 ≤ t′j ≤ t j for all j. Since also Γ1 is (t1, . . . , tz)-separating,
(T′1, . . . , T′z) is separated on some position j. Hence (T1, . . . , Tz) must be
separated, as required. �

Note that the only thing we know about the minimum distance of Γ
is that it is at least equal to that of Γ1. In general the concatenated code
will not satisfy the requirement of Proposition 7. We will give a thorough
example of the technique in Section 3.2.

Proposition 9
If C is a linear, (t1, . . . , tz)-separating code and z ≥ 3, then ∑z

j=1 t j ≤ q.

Recall that the case when z = 2 was solved in Theorem 1.
Proof: First we prove that t1 + t2 < q, for if

T1 ∪ T2 ⊇ {αc | α ∈ GF(q)},

then no third set T3 will be separated from T1 and T2.
Let α0,α1, . . . ,αq−1 be all the field elements, where α0 = 0 and α1 = 1.

Let a and b be two independent codewords. Let

T1 := {α0a, . . . ,αt1−1a},
T2 := {αt1 a, . . . ,αt2−1a},

and let T3, . . . , Tz be any sequence of pairwise disjoint sets such that

T :=
z⋃

j=3

Tj = {a +α1b, . . . , a +αt′b},

where t′ = t3 + . . . + tz. Clearly, T1 and T2 are only separated on χ(a). Also
T and T1 are only separated on χ(b). On any coordinate i ∈ χ(a) ∩ χ(b),
t1 + t2 different values occur in T1 ∪ T2 and t′ different values occur in T.
Hence the configuration can only be separated if

t′ + t1 + t2 = t1 + . . . + tz ≤ q,

as required. �
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Corollary 3
If C is a linear q-ary, (t, u)-partially hashing code with t ≥ 2, then u ≤ q.

These bounds are tight, since q-hashing codes can be constructed for
any q.

3.2 The tetracode and compositions thereof

The ternary constructions will make use of three ingredient codes, and
apply twice the concatenation method.

The first seed is the remarkable [4, 2, 3]3 tetracode T, defined by the
generator matrix

G =
[

1 1 1 0
0 1 2 1

]
.

This code is self-dual and MDS (on Singleton’s bound d = n− k + 1). It
is both an extended perfect Hamming code and a simplex (all codewords
are at distance 3 apart). The next result is a consequence of Theorem 2 and
Proposition 7.

Proposition 10
The [4, 2, 3]3 tetracode is both (2, 2)- and (3, 1)-separating, and 3-hashing.

The fact that the tetracode is 3-hashing was already known from [21].
The codes constructed in the sequel are also 3-hashing, but we do not claim
that they are particularly good compared to existing codes. Our main in-
terest is (2, 2)- and (3, 1)-separation after all.

Let R1 be the [9, 3, 7]32 Reed-Solomon code, which is both (2, 2)- and
(1, 3)-separating, and 3-hashing by Proposition 7. The concatenated code
T ◦R1 has parameters [36, 6]3, and by Proposition 8, it is (2, 2)- and (1, 3)-
separating, and 3-hashing. In order to produce infinite families of sep-
arating codes, we need the following constructive result from Tsfasmann
[33].

Lemma 1
For any α > 0 there is an infinite families of codes A(N) with parameters
[N, NR, Nδ]q for N ≥ N0(α) and

R + δ ≥ 1− (
√

q− 1)−1 −α.

We should note that the rate of A(N) is interesting only for large q,
but T ◦R1 allows for concatenation with A(N) over GF(36) which may be





3.2. THE TETRACODE AND COMPOSITIONS THEREOF

acceptable. Thus consider the family of [N, K, D = d3N/4e + 1]36 codes
A(N), which has rate R′ ≈ 1/4− (33 − 1)−1 = 11/52. The concatenated
code T ◦R1 ◦ A(N) gives an infinite family of linear, ternary (3, 1)- and
(2, 2)-separating and 3-hashing codes with rate R′/6 ≈ 0.0352.

If we only want (3, 1)-separating and 3-hashing codes, we can obtain a
better rate by using the Reed-Solomon code R2 with parameters [10, 4, 7]32 ,
which results in the concatenated code T ◦ R2 with parameters [40, 8]3.
Then we take the infinite family A(N) of codes with parameters [N, K, D =
d2N/3e+ 1]38 of rate 1/3− (34− 1)−1, and the concatenated code T ◦R2 ◦
A(N) is an infinite family of linear ternary (3, 1)-separating and 3-hashing
codes with rate approximately 77/1200 ≈ 0.0642.

Example 3.1 We sketch a construction with q = 4 as well. As in the previous
example, we concatenate three codes to build the infinite family. Each code has
d/n > 3/4 and thus is (2, 2)-separating by Proposition 7. The first two are
doubly extended Reed-Solomon codes. We take successively:

1. C1[5, 2, 4]4;

2. C2[17, 5, 13]42 , getting C1 ◦ C2[85, 10]4;

3. and finally, C(N)[N, K, D = d3N/4e + 1]410 with rate ≈ 1/4 − (45 −
1)−1 ≈ 1/4.

The final outcome is an infinite constructive family of linear quaternary (2, 2)-
separating codes with rate approximately 1/34 ≈ 0.029.
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Chapter 4

Intersecting codes

Intersecting codes is another known concept from the literature. In this
chapter we will see how we can construct separating codes from intersect-
ing codes.

Definition 4
A linear code C of dimension k ≥ t is said to be t-wise intersecting if any
t linearly independent codewords have intersecting supports. If t > k, we
say that C is t-wise intersecting if and only if it is k-wise intersecting.

It is easy to verify that any t-wise intersecting code is also (t − 1)-wise
intersecting.

4.1 How intersecting codes give separation

Proposition 11
For a linear, binary code, the following properties are equivalent:

1. 3-wise intersection;

2. (2, 2)-separation.

The fact that linear, (2, 2)-separating codes must be 3-wise intersecting
holds not only for binary codes, and it is proved in Proposition 12 below.
Unfortunately, this is the only result we have found in the non-binary case.

The fact that t-wise intersecting, binary codes gives rise to separating
codes can be generalised. The statement of the proposition, to the effect
that 1 implies 2, will follow from the special case t = 3, j = 2 of Proposi-
tion 14 below.
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Proposition 12
Every linear (2, 2)-separating code is 3-wise intersecting.

Proof: If k = 2, three-wise intersection is equivalent to 2-wise inter-
section according to our definition. Any (2, 2)-separating code is (2, 1)-
separating and hence 2-wise-intersecting by [8].

Suppose C is (2, 2)-separating, and consider three independent code-
words a, b, c. We shall prove that these three words have intersecting sup-
ports. Consider the (2, 2)-configuration (0, c + a; a, b). Since C is (2, 2)-
separating, there is a position i where a isα 6= 0 and b is β 6= 0, and c + a
is γ 6∈ {α,β}. Now c is γ −α 6= 0 on position i. �

Due to this proposition, we can use many bounds on separating codes
as bounds on intersecting codes. For instance, by Theorem 2, every code
with 4d > 3m is 3-wise intersecting. In the binary case, we get that 2d >
m2 implies 3-wise intersection by Proposition 6.

Proposition 13
If C is a t-wise intersecting, binary, linear code, and Γ ⊆ C is a nonlin-
ear subcode such that any t non-zero codewords are linearly independent,
then Γ is ( j, t + 1− j)-separating for all j such that 1 ≤ j ≤ t.

Proof: Choose any (two-part) sequence Y′ of t + 1 codewords from Γ ,

Y′ := (a′1, . . . , a′j; c′1, . . . , c′t+1− j).

By Remark 1.2, Y′ is ( j, t + 1− j)-separated if and only if Y := Y′ − c′t+1− j
is. Hence it suffices to show that

Y = (a1, . . . , a j; c1, . . . , ct− j, 0)

is ( j, t + 1− j)-separated.
Since any t codewords in Y′ are linearly independent, so are the t first

codewords of Y. The zero vector is of course not independent of anything.
Now, consider

{a1 + c1, . . . , a1 + ct− j; a1, . . . , a j},

which is a set of linearly independent codewords from C, and hence all
non-zero on some coordinate i. Since a1 + cl is non-zero on coordinate i,
cl must be zero for all l. Hence Y, and consequently Y′, is separated on
coordinate i. �

Proposition 14
If C is a t-wise intersecting binary linear code, and Γ ⊆ C is a nonlinear
subcode such that any t− 1 non-zero codewords are linearly independent,
then Γ is ( j, t + 1− j)-separating for all even j such that 1 < j ≤ t.
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Proof: We define Y as in the previous proof, and the t − 1 first code-
words of Y are linearly independent. If ct− j is linearly independent of the
others, then we are done by the first proof; hence we assume that ct− j is
dependent on the t− 1 first codewords, and since any t− 1 codewords are
independent, it must in fact be the sum of the t− 1 first codewords.

By the same argument as in the previous proof, we get one coordinate
i, where a1 + c1, . . . , a1 + ct−1− j, a1, . . . , a j are all one, and c1, . . . , ct−1− j are
zero. Now, ct− j is the sum of the t − 1 first codewords, of which j are 1
and the rest are zero on coordinate i. Since j is even, ct− j is zero and Y is
separated. �

Note that if t is even, then either j or t + 1− j is even; thus we get the
following corollary.

Corollary 4
If C is a t-wise intersecting, linear, binary code for even t, and Γ ⊆ C is
a nonlinear subcode such that any t− 1 non-zero codewords are linearly
independent, then Γ is ( j, t + 1− j)-separating for all j such that 1 ≤ j ≤ t.

A 3-wise intersecting, binary code is (2, 2)-separating according to the
above proposition, but no binary linear code is (3, 1)-separating; hence the
restriction that j be even cannot be dropped in general.

It is perhaps not obvious how these propositions may be used to con-
struct non-linear separating codes with a reasonable rate. The remainder
of the section is devoted to explaining this.

Lemma 2
Given an [n, rm + 1] linear, binary code C, we can extract a non-linear sub-
code Γ of size 2r + 1 such that any 2m + 1 codewords are linearly inde-
pendent.

Note that the rate of Γ is approximately R/m where R = (rm + 1)/n is
the rate of C.
Proof: Let C′ be the [2r, 2r − 1 − rm, 2m + 2] extended BCH code. The
columns of the parity check matrix of C′ make a set Γ ′ of 2r vectors from
GF(2)rm+1, such that any 2m + 1 of them are linearly independent. Now
there is an isomorphismφ : GF(2)rm+1 → C, so let Γ = φ(Γ ′) ∪ {0}. �

Theorem 4
Given an [n, nR] t-wise intersecting binary (asymptotical) code, there is a
construction of a non-linear code Γ of rate R/ b(t− 1)/2c, which is ( j, t +
1− j)-separating.
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Proof: First consider t even, and write t = 2m + 2, where m > 0, the case
t = 2 is trivial from Proposition 11, anyway. By Proposition 14, we want
to extract Γ such that any 2m + 1 codewords are independent, and such Γ
exist with rate R/m by Lemma 2.

Then consider odd t, and write t = 2m + 1, where m > 0. By Pro-
position 13, we want to extract Γ such that any 2m + 1 codewords are
independent, and such Γ exist with rate R/m by Lemma 2. �

Example 4.1 In [9], it was shown that for sufficiently large n, and for any rate
R < 1− 1

t log(2t − 1), there are t-wise intersecting linear, binary [n, k] codes of
rate R. Though non-constructive, this result guarantees the existence, for any t,
of non-linear, binary codes which are ( j, t + 1− j)-separating for all j and have
rate arbitrarily close to

1− 1
t log(2t − 1)
b(t− 1)/2c .

4.2 Binary constructions

In this section we will give some sample constructions of separating codes,
based on results on t-wise intersection from [9].

Proposition 15 [9]
The punctured dual of the 2-error-correcting BCH code with parameters
[22t+1 − 2, 4t + 2, 22t − 2t − 1], is t-wise intersecting.

Example 4.2 For t = 4, we get from Proposition 15 a 4-wise intersecting code
with parameters [29 − 2, 18]. Now the shortende code Γ ′ of the 217 codewords
having a 1 in the last position (say) is clearly such that any 3 of its elements are
independent, thus we get a (3, 2)-separating (29 − 3, 217 + 1) code Γ := Γ ′ ∪
{0} by Corollary 4. We can concatenate Γ with the code A(N) with parameters
[N, RN, 5N/6 + 1]218 from Lemma 1 to get a (3, 2)-separating code with rate
R ≈ 0.00557.

If Γ(n, M) is (t, t′)-separating, then so are the 2 subcodes Γ0 (resp. Γ1)
having 0 (resp. 1) in the first coordinate. Taking the largest and removing
the first coordinate (which no longer separates anything), gives a shortened
(n− 1, dM/2e) (t, t′)-separating code.

Proposition 16
There is a constructive infinite sequence of binary ( j, t + 1− j)-separating
codes of rate 2−3(t−1)(1 + o(1)).
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This proposition follows directly from the following lemma:

Lemma 3 [9]
There is a constructive infinite sequence of t-wise intersecting binary codes
with rate arbitrarily close to

Rt =
(

21−t − 1
22t+1 − 1

)
2t + 1
22t − 1

= 22−3t(t + o(t)).

Proof: By concatenating geometric [N, K, D]q codes from Lemma 1 satis-
fying D > N(1− 21−t) with q = 24t+2, and with a rate arbitrarily close to
21−t − 1/(√q− 1), with the [22t+1 − 2, 4t + 2, 22t − 2t − 1] code of Propos-
ition 15, we obtain the result. �

Example 4.3 The 3-wise binary intersecting [126, 14] code (case t = 3 of Pro-
position 15), yields a (2, 2)-separating code with parameters (126, 214).

Example 4.4 Let q = p2m. Consider (see Lemma 1) a family of codes A(N) with
parameters [N, NR, Nδ]q with N ≥ N0(α) and

R + δ ≥ 1− (pm − 1)−1 −α.

Choosing p = 2, m = 7, δ = 3/4 +ε, (see Proposition 7) and concatenating
A(N) and C, the binary [126, 14, 55] code, yields a constructive infinite sequence
{A(N) ◦ C}N of binary linear (2, 2)-separating codes with rates arbitrarily close
to 0.026.

4.3 Upper bounds on intersecting codes

We now present an upper bound on the rate of such codes.

Theorem 5
A t-wise intersecting code Ct[n, k, d] gives rise by projection to a (t − 1)-
wise intersecting code Ct−1[d, k− 1].

Proof: Let a ∈ C be a fixed element of minimum weight d. Denote
by Ca the [n, k− 1] supplementary subspace of {0, a} in C. Consider any
(t− 1) independent codewords {b1, . . . , bt−1} in Ca. Then {a, b1, . . . , bt−1}
is full rank, hence these t codewords of C intersect (on the support of a).
Thus C/a, the projection of Ca on the support of a is a (t− 1)-intersecting
[d, k− 1] code. �
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To get an upper bound on the dimension of such codes in the binary
case, we use recursively any upper bound from coding theory, for instance
the McEliece et al. bound (see [22]):

R ≤ H2

(
1
2
−

√
d
n

(
1− d

n

))
.

For t = 3, we get the following sequence of codes:

C3[n, k, d], C2[d, k− 1, d′], C1[d′, k− 2],

where Ci is i-wise intersecting, and has write rate Ri.
From C1, we have that k− 2 ≤ d′, which implies that

R2 = (k− 1)/d ≤ (d′ − 1)/d ≤ d′/d.

By the McEliece bound, this implies R2 ≤ 0.28. Finally we have

R1 =
k
n
≤ 0.28d + 1

n
≤ 0.108,

where the final bound follows by applying again the McEliece bound. The
following corollary arise from the same technique and some other values
for t.

Corollary 5
The asymptotic rate of the largest t-wise intersecting binary code is at most
Rt, with R2 ≈ 0.28, R3 ≈ 0.108, R4 ≈ 0.046, R5 ≈ 0.021, R6 ≈ 0.0099.

Note that the McEliece bound is only valid asymptotically. In par-
ticular, the [126, 14] 3-wise intersecting code from Example 4.3 has rate
1/9 > R3.

4.4 An upper bound on separation

An extension of arguments from [26] and [19] gives the following theorem.

Theorem 6
If Γi(n = di−1, Mi, di) is (i, j)-separating, then it gives rise by projection to
a code Γi+1 with the following properties:

1. Γi+1 is (i − 1, j − 1)-separating, with parameters (di, Mi+1 = Mi −
2, di+1);
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2. qdi+1 ≥ Mi − 2.

Proof: It is based on the case q = i = j = 2 studied in [19]. Let Γi be
like in the statement of the theorem. With no loss of generality, it contains
two codewords a, a′ differing exactly in the first di coordinates. Now any
two non-intersecting coalitions T, T′ of respective sizes i and j, with a ∈
T, a′ ∈ T′ have nonintersecting feasible sets by hypothesis. Since a and a′

coincide on coordinates {di + 1, . . . , n}, this property is kept by projecting
on {1, . . . , di} and removing a and a′ from their respective coalitions. This
proves 1. To get 2, just note that all projections must be different at the first
iteration (when i = 2) and apply induction. �

We have, by use of non-binary linear programming bounds (see [1]):

R(δ) ≤ Hq(((q− 1)− (q− 2)δ− 2
√

(q− 1)δ(1− δ))/q).

In the ternary case, this gives the following upperbounds on the rates
of (t, t)-separating codes : 0.357, 0.168, 0.09 for t = 2, 3, 4 respectively.

In the linear ternary case, the previous bounds are shifted, giving 0.168, 0.09
for t = 2, 3 respectively.
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Chapter 5

Asymptotic Results

5.1 Binary Codes

In Table 5.1, we present some upper and lower bounds for codes with
different separating capabilities. Most of the bounds are known from pre-
vious works, the rest is given in form of examples in this section.

Example 5.1 Let C be a 4-wise intersecting code with rate

R ≈ R = 1− log 15
4
≈ 0.0233,

as described in Example 4.1. Make a non-linear subcode Γ ⊆ C as in Lemma 2
such that any three codewords are linearly independent. This gives a (3, 2)-
separating code with rate R/ b(t− 1)/2c = R ≈ 0.0233.

Lemma 4
Given an [n, rm] linear, binary code C, we can extract a non-linear subcode
Γ of size 2r such that any 2m non-zero codewords are linearly independent.

Proof: Let C′ be the [2r − 1, 2r − 1− rm, 2m + 1] BCH code. The columns
of the parity check matrix of C′ make a set Γ ′ of 2r− 1 vectors from GF(2)rm,
such that no 2m of them are linearly independent. Now there is an iso-
morphismφ : GF(2)rm → C, so let Γ = φ(Γ ′) ∪ {0}. �

Example 5.2 For t = 5, we get from Proposition 15 a 5-wise intersecting code
with parameters [211− 2, 22], which leads to a non-linear (3, 3)-separating code Γ
with rate R′ ≈ 11/2046 by Lemma 4. We concatenate Γ with the code A(N) with
parameters [N, RN, 8N/9 + 1]222 from Lemma 1 to obtain a (3, 3)-separating
code with rate R ≈ 1/1674 = 0.000597.
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Lower bounds Upper bounds
Linear Non-Linear Linear Nonlinear

(t, t′) Const. Non-const. Const. Non-const.
(2, 1) 0.1561 0.211 — 0.21 [20] 0.281 0.5 [20]
(3, 1) N/A N/A 0.0448 [8] — N/A ?
(4, 1) N/A N/A 0.0181 [8] — N/A ?
(2, 2) 0.0264 0.0642 [26] — 0.0642 [26] 0.108 [12] 0.28 [26]
(3, 2) N/A N/A 0.005572 0.02333 N/A ?
(3, 3) N/A N/A 0.0005975 0.0156 [3] N/A 0.0658 [7]
1 Bounds from intersecting codes [9].
2 Example 4.2.
3 Example 5.1.
4 Example 4.4.
5 Example 5.2.

Table 5.1: Bounds on rates for infinite families of binary codes with various
separating properties.

5.2 On linear (2, 2)-separation

We will dwell a little extra on the case of (2, 2)-separation, and present
existence proof of codes with certain rates over different fields. The first
lemma is fairly well-known, and can be found in [22].

Lemma 5
Asymptotically, for almost all codes, we have

Ai =
(n

i )(q− 1)i

qn(1−R) ≈ enH(i/n)2i ln(q−1)

en(1−R) ln q ,

where H is the natural entropy function and R = k/n is the rate.

Since we are dealing with the asymptotical case, we normalise by set-
ting i = nω, and we define a function f (ω, R, q) by

Aωn = Ai = en f (ω,R,q).

From Lemma 5, we get

f (ω, R, q) = H(ω) +ω ln(q− 1)− (1− R) ln q. (5.1)
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Note that for a given Ai, there are two solutions for i. Setting Ai ≈ 1, the
two solutions will be the minimum and the maximum weights. These are
of course also the zeroes of f .

Let δ = d1/n and µ = m1/n be respectively the minimum and max-
imum normalised weights. Because µ and δ are the zeroes of f , we get

H(δ) + δ ln(q− 1) = H(µ) +µ ln(q− 1),

or

(δ−µ) ln(q− 1) = δ ln δ+ (1− δ) ln(1− δ)
−µ lnµ − (1−µ) ln(1−µ).

(5.2)

Lemma 6 (Varshamov-Gilbert)
For almost all codes, the rate and the normalised minimum distance are
related by the following equation

H(δ) + δ ln(q− 1) = (1− R) ln q.

Proof: This follows from equating f (ω, R, q) = 0 as in (5.1). �
We know from Proposition 7 that if δ > 3/4, then the code is (2, 2)-

separating, hence we can, by substituting δ = 3/4 in the Gilbert-Varshamov
equation, get rates for which asymptotically almost any code is (2, 2)-
separating. The rates such obtained are presented under ‘Technique I’ in
Table 5.2. Due to the Plotkin bound, this does not give anything over small
fields.

Technique II in the table is an improvement based on Theorem 2, which
says that every code with 4δ > 3µ is 2-separating. We insert δ = 4µ/3 in
(5.2), and get

δ

3
ln(q− 1) = δ ln δ+ (1− δ) ln(1− δ)

− 4δ
3

ln
4δ
3
− (1− 4δ

3
) ln(1− 4δ

3
),

(5.3)

We have solved this equation numerically for the smallest fields, and the
results are given in Table 5.2. Of course, we will always have

0 ≤ δ ≤ µ ≤ 1,

which will bound δ ≤ 3/4 in (5.3). This results in no real solution of (5.3)
for q ≥ 11.
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Technique I Technique II Others
q δmax δ Rate δ Rate Rate
2 0.5000 0.75 N/A 0.4286 0.01477 0.0642 [26]
3 0.6667 0.75 N/A 0.5695 0.01859 0.03521

4 0.7500 0.75 N/A 0.6385 0.02206 0.0292

5 0.8000 0.75 0.00459 0.6786 0.02532
7 0.8571 0.75 0.02043 0.7218 0.03153
8 0.8750 0.75 0.02774 0.7340 0.03457
9 0.8889 0.75 0.03427 0.7426 0.03766
11 0.9091 0.75 0.04530 N/A N/A
13 0.9231 0.75 0.05417 N/A N/A
16 0.9375 0.75 0.06464 N/A N/A
17 0.9412 0.75 0.06757 N/A N/A
19 0.9474 0.75 0.07279 N/A N/A
1 The concatenated code T ◦ R1 ◦ A(N) from Section 3.2.

(Constructive.)
2 Example 3.1. (Constructive.)

Table 5.2: Rates for which we can guarantee the asymptot-
ical existence of linear (2, 2)-separating codes. The number
δmax = (q− 1)/q is the maximum possible minimum distance
by the Plotkin bound.
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Chapter 6

On Maximum and Minimum
Weights

We have used minimum and maximum support weights a couple of times
in this report. Whereas minimum support weights are much studied, the
results on maximum weights are rare. In this chapter we will show how
bounds on minimum support weights may be applied on maximum sup-
port weights. In particular, we will prove a maximum weight analogue of
the well-known Griesmer bound.

Some of the idea behind maximum support weights is that mt−1 provide
a bound on the size of F(T) for any coalition T of size t. A coalition is a sub-
set T ⊆ C, and we can assume, with no loss of generality by Remark 1.2,
that 0 ∈ T. Then it is clear that the detectable bits are those in χ(T). Hence
#F(T) ≤ qmt−1 where t = #T.

6.1 Preliminaries

A linear [n, k] code C over GF(q) can be represented by a projective multiset

γ : PG(k− 1, q)→ {0, 1, 2, . . .},

where PG(k− 1, q) is the projective (k− 1)-space over GF(q), and γ(x) is
the number of times x occurs as a column in the generator matrix G of C.

We extend the multiset to the power set:

γ(S) = ∑
x∈S
γ(x), ∀S ⊆ PG(k− 1, q).

The code has length n = γ(PG(k − 1, q)). The number γ(S) is called the
value of S.
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CHAPTER 6. ON MAXIMUM AND MINIMUM WEIGHTS

Let

δ0 := max{γ(x) | x ∈ PG(k− 1, q)}.
If δ0 = 1, γ is a set and C is a projective code.

The anticode of C is defined [13] by the multiset γ′, given by

γ′(x) = δ0 −γ(x), x ∈ PG(k− 1, q). (6.1)

We have defined the minimum and maximum support weights dr and
mr for the code C. From previous works on projective multisets [17, 34] it
is well known that for each subcode Dr ⊆ C of dimension r, there is is a
subspace Πk−1−r ⊆ PG(k− 1, q) of codimension r, such that

γ(Πk−1−r) + w(Dr) = n.

Therefore the maximum value of a subspace of codimension r is n − dr,
and the minimum value of such a subspace is n−mr. It follows from the
same argument that dk − dk−1 = δ0.

Consider the value of Πk−1−r in the anticode. There are (qk−r − 1)/(q−
1) points in Πk−1−r. Hence we get from (6.1) that

γ′(Πk−1−r) = δ0
qk−r − 1

q− 1
−γ(Πk−1−r). (6.2)

It is obvious from this equation that a subcode of minimum weight in C
has maximum weight in the anticode (and vice versa).

Lemma 7
If C is an [n, k] code, then the length of its anticode is

n′ = δ0
qk − 1
q− 1

− n.

Proof: From (6.2), we get that

n′ = γC′(PG(k− 1, q)) = δ0
qk − 1
q− 1

−γC(PG(k− 1, q)) = δ0
qk − 1
q− 1

− n.

�

Lemma 8
If (d1, . . . , dk) is the weight hierarchy of C, and (d′1, . . . , d′k′) the weight hier-
archy of its anticode, then

m′r = (dk − dk−1)
qk − qk−r

q− 1
− dr,

d′r = (dk − dk−1)
qk − qk−r

q− 1
−mr.
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6.2. TURNING THE GRIESMER BOUND

Proof: From (6.2) we get that

n′ −m′r = (dk − dk−1)
qk−r − 1

q− 1
− (n− dr),

n′ − d′r = (dk − dk−1)
qk−r − 1

q− 1
− (n−mr).

If we apply Lemma 7, we get

m′r = δ0
qk − 1
q− 1

− n− δ0
qk−r − 1

q− 1
+ (n− dr)

= δ0
qk − qk−r

q− 1
− dr,

d′r = (dk − dk−1)
qk−r − 1

q− 1
− (n−mr)

= δ0
qk − qk−r

q− 1
−mr,

as required. �
To find codes with low values for mt we can search for codes with high

minimum support weights dt and a low value δ0. Probably we can restrict
ourselves to projective codes, such that δ0 = 1.

Remark 6.1
Let C′ be the anticode of C. Then C is the anticode of C′ if and only if there
is some point x ∈ PG(k− 1, q) of value γC(x) = 0. In other words if and
only if δ0(C) = δ0(C′).

6.2 Turning the Griesmer Bound

A well-known bound on the minimum support weights, is the Griesmer
Bound, which we state below. We will show that, via anticodes, the Gries-
mer Bound induces a bound on the maximum support weights.

Lemma 9 (Griesmer Bound)
For any linear code, we have

dr ≥
r−1

∑
i=0

⌈
d1

qi

⌉
.





CHAPTER 6. ON MAXIMUM AND MINIMUM WEIGHTS

Proposition 17 (Remseirg Bound)
For any linear code, we have

mr ≤
r−1

∑
i=0

⌊
m1

qi

⌋
.

Proof: From Lemma 8, we have

mr = δ′0
qk − qk−r

q− 1
− d′r.

We apply the Griesmer bound to get

mr ≤ δ′0
qk − qk−r

q− 1
−

r−1

∑
i=0

⌈
d′1
qi

⌉
.

We apply again Lemma 8 to get

mr ≤ δ′0
qk − qk−r

q− 1
−

r−1

∑
i=0

⌈
1
qi

(
δ0

qk − qk−1

q− 1
−m1

)⌉
.

= δ′0
qk − qk−r

q− 1
−

r−1

∑
i=0

⌈
δ0qk−1−i − m1

qi

⌉
= δ′0qk−r qr − 1

q− 1
− δ0

r

∑
i=1

qk−i −
r−1

∑
i=0

⌈
−m1

qi

⌉
= (δ′0 − δ0)qk−r qr − 1

q− 1
+

r−1

∑
i=0

⌊
m1

qi

⌋
.

By the definition of anticodes (6.1), it is clear that δ′0 ≤ δ0, thus the propos-
ition follows. �
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