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Abstract

A projective multiset is a collection of projective points, which
are not necessarily distinct. A linear code can be represented as a
projective multiset, by taking the columns of a generator matrix as
projective points. Projective multisets have proved very powerful in
the study of generalised Hamming weights.

In this paper we study relations between a code and its dual us-
ing the projective multisets, and we attack three different problems:
the sub-chain conditions used by Chen and Kløve [CK97a, CK96,
CK99b], the greedy weights from [CEZ99, CK01, CK99a], and the
support weight distributions, all of which are studied with respect to
duality relations.
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Dualitet og vekter for lineære kodar og projektive
multimengder

Samandrag

Ei projektiv multimengt er ei samling av projektive punkt som ik-
kje treng vera ulike. Me kan representera ein kvar lineær kode som ei
projektiv multimeng ved å taka søylene frå ein generatormatrise for
koden. Projektive multimengder har vist seg å vera særs nyttige for å
studera vekthierarkiet åt koden.

I denne rapporten vil me sjå på samanhengen mellom ein kode og
den dual koden, med hjelp av projektive multimengder. Me skal sjå
på tre ulike spørsmål: delkjedeføresetnadene som Chen og Kløve har
nytta [CK97a, CK96, CK99b], på grådigvektene frå [CEZ99, CK01,
CK99a] og på støttevektfordelingane. Heile tida er det dualitetssaman-
hengane me konsentrer oss om.

Stikkord

lineære kodar, projektive multimengder, vekthierarki, grådigvekter, du-
al kode



Chapter 1

Introduction

1.1 Background

1.1.1 Generalised Hamming Weights

A linear code is a normed space and the weights (or norms) of codewords are
crucial for the code’s performance. One of the most important parameters of a
code is the minimum distance or minimum weight of a codeword.

The concept of weights can be generalised to subcodes or even arbitrary subsets
of the code. (This is often called support weights or support sizes.) One of the key
papers is [Wei91], where Wei defined therth generalised Hamming weight to be
the least weight of ar-dimensional subcode. After Wei’s work, we have seen
many attempts to determine the generalised Hamming weights of different classes
of codes.

Weights are alpha and omega for codes. Yet we know very little about the
weight structure of most useful codes. The generalised Hamming weights give
some information, and several practical applications are known. Still they do not
fully answer our questions.

One practical application of the generalised Hamming weights is to determine
the trellis complexity of the code. Fujiwara et al. [FKLT93] first found this re-
lation. Forney [For94b] discussed the relation in more detail and introduced the
ordered and the inverse ordered dimension/length profiles to determine the trellis
complexity. It was evident that the generalised Hamming weights could only give
lower bounds on this complexity in the general case.

Several other parameters describing weights of subcodes have been introduced,
and they can perhabs contribute to understanding the structure of linear codes. The
support weight distribution appeared as early as 1977 in [HKM77]. The chain con-
dition from [WY93] and the double chain condition from [For94a] are important
for some applications. Chen and Kløve have introduced certain sub-chain condi-
tions, which they use to classify codes in a series of papers, e.g. [CK97a, CK96,
CK99b]. Cohen, Encheva, and Zemor [CEZ99] have introduced a new set of para-
meters, which we will call CEZ weights. Inspired by these parameters, Chen and
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Kløve [CK01, CK99a] introduced the greedy weights.
It is well known that a code and its dual are closely related. Wei [Wei91]

proved one relation between the generalised Hamming weights of a code and its
dual. Kløve [Klø92] has generalised the MacWilliams identities to give a relation
for the support weight distributions.

1.1.2 Projective Multisets

We consider a linear[n, k] codeC. We usually define a linear code by giving the
generator matrixG. The rows ofG make a basis forC, and as such they are much
studied. Many works consider the columns instead. This gives rise to theprojective
multisets[DS98]. The weight hierarchy is easily recognised in this representation
[HKY92, TV95]. Other terms for projective multisets include projective systems
[TV95] and value assignments [CK97a].

The great advantage of projective multisets is that they do not depend on the
coordinate system. Codes, on the other hand, depends heavily on the coordinate
system, because the coordinates determine the weights. Therefore the projective
multiset approach has proved very useful in the study of generalised Hamming
weights. Problems which appear as hard in terms of linear codes may be easy
in terms of projective multisets, e.g. determining the weight hierarchy of product
codes [Sch00b].

There are at least two ways to develop the correspondence between codes and
multisets. Most coding theorists will probably just take the columns of some gen-
erator matrix (e.g. [HKY92, CK97a]). Some mathematicians (e.g. [DS98, TV95])
develop the projective multisets abstractly. They take the elements to be the co-
ordinate forms onC

(c1, c2, . . . , cn) 7→ ci, 1 ≤ i ≤ n,

and get a multiset on the dual space ofC (this isnot the dual code). Hence their
argument does not depend on the (non-unique) generator matrix ofC.

We will need the abstract approach for our results, but we will try to carefully
explain the connections between the two approaches, in the hope to reach more
readers.

No one has so far been able to find any close relation between the two projective
multisets corresponding to a code and its dual. We will not find any either. However
we will find important duality results by using a relation between the dual codeC⊥

and the projective multiset corresponding toC.





Chapter 2

Preliminaries

2.1 Vectors, Codes, and Multisets

A multiset is a collection of elements, which are not necessarily distinct. More
formally, we define a multisetγ on a setS as a map

γ : S → {0, 1, 2, . . .}.

The numberγ(s) is the number of occurences ofs in the collectionγ. The mapγ
is always extended to the power set ofS,

γ(S′) =
∑
s∈S′

γ(s), ∀S′ ⊆ S.

The numberγ(s), wheres ∈ S or s ⊆ S, is called the value ofs. The size ofγ is
the valueγ(S).

We will be concerned with multisets of vectors and multisets of projective
points (projective multisets). We will always keep the informal view ofγ as a
collection in mind.

We consider a fixed finite fieldF with q elements. A message word is ak-
tuple overF, while a codeword is ann-tuple overF. LetM be a vector space
of dimensionk (the message space), andV a vector space of dimensionn (the
channel space). The generator matrixG gives a linear, injective transformation
G : M→ V, and the codeC is simply the image underG.

As vector spaces,M andC are clearly isomorphic. For every message word
m, there is a unique codewordc = mG.

A codeword(c1, c2, . . . , cn) = mG is given by the valueci in each coordinate
positioni. If we knowm, we obtain this value as the inner product ofm and the
ith columngi of G, i.e.

ci = gi ·m =
k∑
j=1

mjgi,j , (2.1)
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where

gi = (gi,1, gi,2, . . . , gi,k),
m = (m1,m2, . . . ,mk).

The columnsgi are elements ofM. These vectors are not necessarily distinct, so
they make a multiset

γC : M→ {0, 1, 2, . . .}.

If we reorder the columns ofG, we get an equivalent code. HenceγC definesC up
to equivalence. If we replace a column with a proportional vector, we also get an
equivalent code. Therefore many papers considerγC as a multiset on the projective
spaceP(M), and a projective multiset will also define the code up to equivalence.

Example 2.1
Let C be the [7, 4] Hamming code. The message spaceM has dimension 4, while
the channel spaceV has dimension 7. A generator matrix is

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 .
The corresponding vector multiset γC contains the vectors

(1000), (0100), (0010), (0001), (1101), (1011), (0111).

The first symbol of a codeword is determined by the first vector, (1000). For the
message (0110), the first encoded symbol is c1 = (0110) · (1000) = 0. In fact, the
corresponding codeword is c = (0110)G = (0110110).

We say that two multisetsγ andγ′ onM are equivalent ifγ′ = γ ◦ φ for some
automorphismφ onM. Such an automorphism is given byφ : g 7→ gA whereA
is a square matrix of full rank. Replacing all thegi by giA in (2.1) is equivalent to
replacingm byAm. In other words, equivalent multisets give different encoding,
but they give the same code. This is an important observation, because it implies
that the coordinate system onM is not essential.

Now we seek a way to represent the elements ofγC as vectors ofV.
Let bi be theith coordinate vector ofV, that is the vector with 1 in positioni

and 0 in all other positions. The set of all coordinate vectors is denoted by

B := {b1,b2, . . . ,bn}.

If we know the codewordc corresponding tom, the ith coordinate positionci is
given as the inner product ofbi andc.

ci = bi · c =
n∑
j=1

cjbi,j , (2.2)
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where

bi = (bi,1, bi,2, . . . , bi,k),
c = (c1, c2, . . . , ck).

We note thatbi takes the role ofgi, andc takes the role ofm from (2.1).
However,bi is not the only vector ofV with this property. In fact, for any

vectorc′ ∈ C⊥, we have(bi + c′) · c = ci. Therefore, we can consider the vector
bi as the cosetbi + C⊥ of C⊥. The set of such cosets is usually denotedV/C⊥,
and it is a vector space of dimension

dimV/C⊥ = dimV − dimC⊥ = n− (n− k) = k = dimM.

HenceM ∼= V/C⊥ as vector spaces. Obviouslybi + C⊥ corresponds togi.

Example 2.1 (cont.)
We still consider the [7, 4] Hamming code C and the codeword c = (0110110).
The first coordinate is determined as

c1 = (0110110) · [(1000000) + C⊥]

= (0110110) · (1000000) + (0110110) · C⊥ = 0 + 0 = 0.

We letµ : V → V/C⊥ be the natural endomorphism, i.e.µ : g 7→ g + C⊥.
This map is not injective, so ifS ⊆ V, it is reasonable to view the imageµ(S) as
a multiset. Our analysis gives this lemma.

Lemma 2.1
A code C ⊆ V is given by the vector multiset γC := µ(B) onV/C⊥ ∼=M.

Given a collection{s1, s2, . . . , sm} of vectors and/or subsets of a vector space
V, we write 〈s1, s2, . . . , sm〉 for its span. In other words〈s1, s2, . . . , sm〉 is the
intersection of all subspaces containings1, s2, . . . , sm.

Also note that we writeA ⊂ B only if A is a proper subset ofB. We write
A ⊆ B if A is an arbitrary subset ofB, possibly equal toB.

2.2 Weights

We define the supportχ(c) of c ∈ C to be the set of coordinate positions not equal
to zero, that is

χ(c) := {i | ci 6= 0}, wherec = (c1, c2, . . . , cn).

The support of a subsetS ⊆ C is

χ(S) =
⋃
c∈S

χ(c).
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The weight (or support size)w(S) is the cardinality ofχ(S). The ith minimum
support weightdi(C) is the smallest weight of ani-dimensional subcodeDi ⊆ C.
The subcodeDi will be called a minimumi-subcode. The weight hierarchy ofC
is (d1(C), d2(C), . . . , dk(C)).

Lemma 2.2 (Helleseth-Kløve-Ytrehus 1992)
There is a one-to-one correspondence between subcodes D ⊆ C of dimension r
and subspaces U ⊆M of codimension r, such that γC(U) = n− w(D).

Proof: SinceC andM are isomorphic, a subcodeD ⊆ C corresponds to a
subspaceM ⊆ M. From (2.1) we can see thati ∈ χ(D) if and only if gi is not
orthogonal onM . Hence we get that

γC(M⊥) = n− w(D), (2.3)

whereM⊥ ⊆M is the subspace of vectors orthogonal onM . If dimD = r, then
dimM⊥ = k − r. The lemma follows withU = M⊥. �

Consider a chain of subcodes

{0} = D0 ⊂ D1 ⊂ D2 ⊂ . . . ⊂ Dk = C.

The proof of Lemma 2.2 implies that the corresponding subspaces ofM form a
chain

M = U0 ⊃ U1 ⊃ U2 ⊃ . . . ⊃ Uk = {0},

whereUi corresponds toDi.
We definedk−r(γC) such thatn− dk−r(γC) is the largest value of anr-space

Πr ⊆ PG(k − 1, q). From Lemma 2.2 we get this corollary.

Corollary 2.1
If C is a linear code and γC is the corresponding multiset, then di(γC) = di(C).

Definition 2.1 (Chain Condition)
We say that a code is chained if there is a chain 0 = D0 ⊆ D1 ⊆ . . . ⊆ Dk = C,
where each Di is a minimum i-subcode of C.

In terms of vector systems, the chain of subcodes corresponds to a chain of
maximum value subspaces (by the proof of Lemma 2.2).

The difference sequence(δ0, δ1, . . . , δk−1) is defined byδi = dk−i − dk−1−i,
and is occasionally more convenient than the weight hierarchy. The maximum
value of anr-space isδ0 + δ1 + . . .+ δr−1.

2.3 Submultisets

Viewing the multisetγ as a collection, we probably have an intuitive notion of a
submultiset. The formal definition of a submultiset is this.
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Definition 2.2 (Submultiset)
Let γ be a multiset on S. A submultiset γ′ ⊆ γ is a map

γ′ : S → {0, 1, 2, . . .},

where γ′(s) ≤ γ(s) for all s ∈ S.

The most interesting kind of submultisets for our purposes are cross-sections.

Definition 2.3 (Cross-sections)
Let γ be a multiset on a vector spaceV, and U ⊆ V a subspace. The cross-section
γ|U is the submultiset given by

γ|U (x) :=
{
γ(x), if x ∈ U,

0, otherwise.

If U has dimensionr in the definition, then we callγ|U anr-dimensional cross-
section. In some cases it is easier to deal with cross-sections and their sizes, than
with subspaces and their values. In Lemma 2.2, we can consider the cross-section
γC |U rather than the subspaceU . In particular, we have thatn − dk−r(γC) is the
size of the largestr-dimensional cross-section ofγC .

2.4 Duality

Consider a codeC ⊆ V and its orthogonal codeC⊥ ⊆ V. Write (d1, . . . , dk) for
the weight hierarchy ofC, and(d⊥1 , . . . , d

⊥
n−k) for the weight hierarchy ofC⊥. Let

B be the set of coordinate vectors forV, and letµ be the natural endomorphism,

µ : V→ V/C⊥,
µ : v 7→ v + C⊥.

According to Lemma 2.1, the vector multiset corresponding toC, is γC := µ(B).
Let B ⊆ B. Thenµ(B) is a submultiset ofγC . Every submultiset ofγC is

obtained this way. Obviouslydim〈B〉 = #B. LetD := 〈B〉 ∩ C⊥ be the largest
subcode ofC⊥ contained in〈B〉. ThenD is the kernel ofµ|〈B〉, the restriction of
µ to 〈B〉. Hence

dim〈µ(B)〉 = dim〈B〉 − dimD. (2.4)

Clearly#B ≥ w(D).
With regard to the problem of support weights, we are not interested in arbitrary

submultisets ofγC . We are only interested in cross-sections. Therefore, we ask
whenµ(B) is a cross-section ofµ(B). This is of course the case if and only if
µ(B) equals the cross-sectionµ(B)|〈µ(B)〉.

Let U ⊆ V/C⊥ be a subspace. We haveµ(B)|U = µ(B), whereB = {b ∈
B | µ(b) ∈ U}. Hence we haveµ(B) = µ(B)|〈µ(B)〉 if and only if there exists no
pointb ∈ B\B such thatµ(b) ∈ 〈µ(B)〉.





CHAPTER 2. PRELIMINARIES

It follows from (2.4) that a large cross-sectionµ(B) of a given dimension, must
be such that〈B〉 contains a large subcode ofC⊥ of sufficiently small weight.

Define for any subcodeD ⊆ C⊥,

β(D) := {bx | x ∈ χ(D)} ⊆ B.

Obviouslyβ(D) is the smallest subset ofB such thatD is contained in its span.
It follows from the above argument that ifD is a minimum subcode andµ(β(D))
is a cross-section, thenµ(β(D)) is a maximum cross-section forC. Thus we are
lead to the following two lemmas.

Lemma 2.3
If n − dr = d⊥i , B ⊆ B, and #B = n − dr, then µ(B) is a cross-section of
maximum size and codimension r if and only B = β(Di) for some minimum
i-subcode Di ⊆ C⊥.

Lemma 2.4
Let r be an arbitrary number, 0 < r ≤ n−k. Let i be such that d⊥i ≤ n−dr < d⊥i+1,
and letDi ⊆ C⊥ be a minimum i-subcode. Then µ(〈B〉) is a maximum r-subspace
for any B ⊆ B such that Di ⊆ 〈B〉 and #B = n− dr.

As an example of our technique, we include two old results from [Wei91,
WY93], with new proofs based on the argument above.

Proposition 2.1 (Wei 1991)
The weight sets

{d1, d2, . . . , dk} and {n+ 1− d⊥1 , n+ 1− d⊥2 , . . . , n+ 1− d⊥n−k}

are disjoint, and their union is {1, 2, . . . , n}.

Proof: Suppose for a contradiction thatdi = n − s andd⊥j = s + 1 for somei,
j, ands. LetDj ⊆ C⊥ be a minimumj-subcode. LetBi ⊆ B such thatµ(Bi) is a
maximum cross-section of codimensioni. We have#β(Dj) = #Bi + 1 and thus
dim〈Bi〉 ∩ C⊥ < j. Hencedimµ(Bi) ≥ dimµ(β(Dj)). Thusµ(Bi) cannot be
maximum cross-section, contrary to assumption. �

Proposition 2.2 (Wei and Yang 1993)
If a C is a chained code, then so is C⊥, and vice versa.

Proof: SupposeC⊥ is a chained code. We prove that thenC is a chained code.
The converse follows by duality.

Let
{0} = D0 ⊂ D1 ⊂ . . . ⊂ Dk = C⊥

be a chain of subcodes of minimum weight. Choose a coordinate ordering, such
that

χ(Di) = {1, 2, . . . , d⊥i }, ∀i.
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For eachr = 1, 2, . . . , n, letBr ⊆ B be the set of ther first coordinate vectors. By
our argument,µ(Br) is a cross-section of maximum size except ifd⊥i = r + 1 for
somei; in which case there is no cross-section of maximum size andr elements.
Obviouslyµ(Br) ⊆ µ(Br+1) for all r. �
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Chapter 3

Subchains

We define a number of sub-chain conditions, which are implications of the chain
condition. LetMi(C) be the set of maximum(i+ 1)-spaces ofγC . (The indexi is
the projective dimension. This notation has previously been used with projective
multisets.) For anyi andj such that0 ≤ i < j ≤ k − 2, we have the condition:

(Ci.j) : ∃α ∈Mi(C), β ∈Mj(C), s.t.α ⊂ β.

or equivalently

(Ck − 1− i.k − 1− j) : ∃Dj ⊂ Di ⊂ C, s.t. dimDi = i, w(Di) = di,

dimDj = j, w(Dj) = dj .

The negations of these conditions,(Ni.j) := ¬(Ci.j), will be called thenon-
chain conditions. The chain condition will be denoted by(C0). The codes which
satisfies all the non-chain conditions are called extremal non-chain codes.

The order of a condition(Ci.j) or (Ni.j) is the numberj − i. For a code of
dimensionk, there arek − 2 first-order sub-chain conditions defined. Of ordert,
k−1− t conditions are defined. All together, there are(k−1)(k−2)/2 sub-chain
conditions.

Codes may be classified according to which sub-chain conditions they satisfy
[CK96, CK97a]. There are2(k−1)(k−2)/2 different classes of codes of dimension
k, not counting the class of chained codes.

For k = 4, possible weight hierarchies for each class have been studied by
Chen and Kløve. In higher dimensions the number of classes grows too large.
The only classes which have been investigated in the general case are the extreme
cases, namely the chained codes [EK94, CK98] and the extremal non-chain codes
[CK97a, CK99b, Sch00a].

3.1 Duality relations

We have seen that ifC is chained, then so isC⊥. We will later see that ifC satisfies
all the sub-chain conditions, but not the chain condition itself, then so doesC⊥. We
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call such codes Case B codes or just B-codes [CK97b]. Since the number of classes
depends on the dimension, and since a code and its dual have different dimension
in general, it is hard to see further duality results in the same genre. Even though
we will discover more duality results in the sequel, we will not be able, in general,
to determine the class ofC⊥, solely from knowing the class ofC.

Lemma 3.1
If ds−1 = ds−1, then (Ck−1−s.k−s) holds. In fact, for any minimum s-subcode
D, and any subcode D′ ⊂ D of weight w(D′) ≤ ds − 1, we can find a minimum
(s− 1)-subcode D′′, such that D′ ⊆ D′′ ⊂ D.

Proof: LetD andD′ be as described. Arbitrarily choosei ∈ χ(D)\χ(D′), and
defineD′′ := {x ∈ D | xi = 0}. ClearlydimD′′ = s − 1, D′ ⊆ D′′ ⊂ D, and
w(D′′) ≤ ds − 1, which is also the least possible weight. HenceD′′ is a minimum
(s− 1)-subcode. �

Corollary 3.1
If ds−i = ds − i for some s and i > 1, then (Ck − 1− s.k − 1 + i− s) holds.

Lemma 3.2
If dk−1−r = dk − 1− r where 0 ≤ r ≤ k − 3, then (Cr.s) holds for all s.

Proof: First observe thatdk−1−r′ = dk − 1− r′ for all r′ ≤ r. LetDk−1−s ⊆ C
be a minimum(k − 1− s)-subcode. By Lemma 3.1, we can form a chain

Dk−1−s ⊂ Dk−1−r ⊂ Dk−r ⊂ . . . ⊂ Dk = C

of minimum subcodes, proving the lemma. �

Lemma 3.3
Suppose C⊥ satisfies (Nn− k− 1− j.n− k− 1− i) where i < j, d⊥i+1 > d⊥i + 1,
and d⊥j+1 > d⊥j + 1. Then C satisfies (Nk − 1− r.k − 1− s) where d⊥i = n− dr
and d⊥j = n− ds.

By biduality, the lemma is equivalent to the following remark for which the
proof will look a little cleaner.

Remark 3.1
Suppose C satisfies (Nk − 1 − j.k − 1 − i) where i < j, di+1 > di + 1, and
dj+1 > dj + 1. Then C⊥ satisfies (Nn − k − 1 − r.n − k − 1 − s) where
di = n− d⊥r and dj = n− d⊥s .

Proof: Since the lemma is follows from the remark, we will prove the remark.
Becausedi+1 > di + 1 anddj+1 > dj + 1, there arer ands such thatdi = n−d⊥r
anddj = n− d⊥s .

Suppose for a contradiction thatC⊥ satisfies(Cn− k− 1− r.n− k− 1− s).
Let Ds ⊂ Dr ⊆ C⊥ be minimums- andr-subcodes. By Lemma 2.3,µ(β(Dr))
andµ(β(Ds)) are maximum cross-sections of codimensionsi andj respectively,
butµ(β(Dr)) ⊂ µ(β(Ds)); thus the lemma follows by contradiction. �
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Lemma 3.4
If d⊥i = n− dr, then r = k + i− d⊥i .

Proof: By Proposition 2.1, we have that

{d1, . . . , dr, n+ 1− d⊥n−k, . . . , n+ 1− d⊥i } = {1, 2, . . . , n+ 1− d⊥i }.

Clearlyr+n− k− i+ 1 is the cardinality on the left hand side, whilen+ 1− d⊥i
is the cardinality on the right hand side. Hencer + n− k − i+ 1 = n+ 1− d⊥i ,
and the lemma follows. �

Proposition 3.1
If d⊥i+1 > d⊥i +1 and d⊥j+1 > d⊥j +1, thenC⊥ satisfies (Cn−k−1−j.n−k−1−i)
if and only if C satisfies (Cd⊥i − i− 1.d⊥j − j − 1).

Proof: The if-part follows directly from Lemmas 3.3 and 3.4. The only-if-part
follows by duality. �

Lemma 3.5
Suppose C satisfies (Nk − 1 − r.k − 1 − s) for some r and s. Let r′′ ≥ r be the
least integer such that dr′′+1 > dr′′ + 1, and let s′′ ≥ s be the least integer such
that ds′′+1 > ds′′ + 1. Then C also satisfies (Nk− 1− r′.k− 1− s′) for all s′ and
r′ such that r ≤ r′ ≤ r′′ and s ≤ s′ ≤ s′′.

Note that by Lemma 3.2, there must exist such anr′′ < k, and by Corollary 3.1
there exists such ans′′ < r′.
Proof: First consider the case whereds+1 = ds + 1. Suppose for a contradiction
that(Ck − 1 − r.k − 2 − s) holds. Then there is a minimumr-subcodeD and a
minimum(s+1)-subcodeD′ ⊂ D. By Lemma 3.1, there is a minimums-subcode
D′′ ⊂ D′ ⊂ D. Hence(Nk− 1− r.k− 2− s) holds by contradiction. By iterating
the argument, we find that(Nk− 1− r.k− 1− s′) holds fors′ = s, s+ 1, . . . , s′′.

Then consider the case wheredr+1 = dr + 1. Suppose for a contradiction that
(Ck−2−r.k−1−s) holds. Then there is a minimums-subcodeD and a minimum
(r + 1)-subcodeD′ ⊃ D. By Lemma 3.1, there is a minimumr-subcodeD′′ such
thatD ⊂ D′′ ⊂ D′, contradicting(Nk−1−r.k−1−s). Hence(Nk−2−r.k−1−s)
holds. By iterating the argument we prove(Nk − 1 − r′.k − 1 − s) for r′ =
r, r + 1, . . . , r′′.

By combining the two first results, we get thatC satisfies(Nk−1−r′.k−1−s′).
�

Corollary 3.2
If C satisfies (Ck − 1− r.k − 1− s) for some r and s. Let r′′ ≤ r be the greatest
integer such that dr′′−1 < dr′′ − 1, and let s′′ ≤ s be the greatest integer such that
ds′′−1 < ds′′ − 1. Then C also satisfies (Ck − 1 − r′.k − 1 − s′) for all r′ and s′

such that r′′ ≤ r′ ≤ r and s′′ ≤ s′ ≤ s.

Theorem 3.1
If C satisfies all the sub-chain conditions, then so does C⊥.
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i [0,22] 23 [24,35] 36 [37,43] 44 [45,47] 48 [49,50] 51
dk−1−i [56,34] 32 [31,20] 18 [17,11] 9 [8,6] 4 [3,2] 0

j
[0, 22] (Y2) - - - - - - - - -

23 Y3 - - - - - - - - -
[24, 35] Y3 Y2 (Y2) - - - - - - -

36 Y3 N1 Y5 - - - - - - -
[37, 43] Y3 Y5 Y2 (Y2) - - - - -

44 Y3 N1 N1 - - - - -
[45, 47] Y3 Y4 Y4 Y2 (Y2) - - -

48 Y3 N1 N1 N1 - - -
[49, 50] Y3 Y4 Y4 Y4 Y4 Y2 (Y2) -

51 - - - - - - - - - -

Table 3.1: The sub-chain conditions satisfied forC⊥. The entry is Y if(Ci.j) is
satisfied. Entry - means that he sub-chain condition is not defined, while an entry
in parenthesis means that the sub-chain condition is undefined for some values ofi
andj.

Proof: Suppose for a contradiction thatC satisfies all sub-chain conditions, while
C⊥ satisfies(Nn− k− 1− j.n− k− 1− i) for somei andj. By Lemma 3.5,C⊥

satisfies(Nn−k−1−j′.n−k−1−i′), whered⊥i′+1 > d⊥i′+1 andd⊥j′+1 > d⊥j′+1. By

Lemma 3.3,C satisfies(Nk−1−r.k−1−s) whered⊥i′ = n−dr andd⊥j′ = n−ds.
The lemma follows by contradiction. �

Corollary 3.3
If C is a B-code, then so is C⊥.

3.2 A duality example

In [Sch00a] we learnt that an optimal, binary, extremal non-chain codeC has differ-
ence sequence(4, 5, 9, 14, 25). This gives a weight hierarchy of(25, 39, 48, 53, 57).
The orthogonal codeC⊥ has weight hierarchy

(2, 3, 4, 6, 7, . . . , 9, 11, 12, . . . , 18, 20, 21, . . . , 32, 34, 35, . . . , 57),

by Proposition 2.1, and its dimension is52. We will determine the non-chain con-
ditions satisfied byC⊥, cf. Table 3.1.

We observe thatd⊥i+1 > d⊥i + 1 for

i ∈ {i0 = 0, i1 = 3, i2 = 7, i3 = 15, i4 = 28}.

Note thatij+1 = ij + δj − 1. We also see thatd⊥0 = 0, d⊥3 = 4, d⊥7 = 9, d⊥15 = 18,
andd⊥28 = 32.
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By Proposition 3.1 we get,

C⊥ satisfies(N51− i2.51− i1) = (N44.48)
⇐= C satisfies(N4− 3− 1.9− 7− 1) = (N0.1).

C⊥ satisfies(N51− i3.51− i1) = (N36.48)
⇐= C satisfies(N4− 3− 1.18− 15− 1) = (N0.2).

C⊥ satisfies(N51− i4.51− i1) = (N23.48)
⇐= C satisfies(N4− 3− 1.32− 28− 1) = (N0.3).

And similarily,C⊥ satisfies(N36.44), (N23.44), and(N23.36). This gives us the
entries in the table, marked with superscript 1.

Now consider an arbitrary pair(r, s) where0 ≤ s < r < n− k − 1 = 51 and
ask, doesC⊥ satisfy(C51− r.51− s)?

Definei5 := n − k = 52 for convenience. Ifij ≤ s < r < ij+1, for some
j = 0, 1, 2, 3, 4, thends− dr = s− r, so(C51− r.51− s) holds by Corollary 3.1.
In the table, the Y-s marked with a superscript ‘2’ follows. From Lemma 3.2, we
get the sub-chain conditions with Y3 in the table.

To find further entries, we need more knowledge aboutC. It was found in
[Sch00a, Cor. 7] that any maximum cross-section of dimension 2 has difference
sequence(δ0 − 1, δ1, δ2 + 1), and a maximum cross-section of dimension 1 has
difference sequence(δ0 − 1, δ1 + 1). Hence ifD2 andD3 are minimum 2- and
3-subcodes ofC, there are subcodes

E3 ⊃ D2,dimE3 = 3, w(E3) = d3 + 1,
E4 ⊃ D2,dimE4 = 4, w(E4) = d4 + 1,
E′4 ⊃ D3,dimE′4 = 4, w(E′4) = d4 + 1.

Defineβ⊥ analogously toβ:

β(D) := {bx | x ∈ χ(D)} ⊆ B.

The cross-sectionsµ(β⊥(D2)) ⊂ µ(β⊥(E3)) gives us(C36.45). Similarily, we
get (C36.49) and(C44.49). From Corollary 3.2, we get all the Y-s marked with
superscript ‘4’.

Finally consider [Sch00a, Thm. 10]. A2-spaceΠ2 of maximum value must be
contained in a3-spaceΠ3 and valueδ0 + δ1 + δ2 + δ3 − 1. Hence a minimum
2-subcodeD2 ⊂ C contains a 1-subcode of weightd1 + 1, and forC⊥, we get
(C24.36). From Corollary 3.2, we get the Y-s marked with a superscript ‘5’.

This is as far as we get with the results we have found. Since there are several
non-equivalent optimal extremal non-chain codes, the remaining sub-chain condi-
tions may depend on the actual choice ofC.
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3.3 Bounds on the Difference Sequences

Proposition 3.2 (Chen and Kløve [CK96])
Let (δ0, δ1, δ2, δ3) be a Case B difference sequence. Then

(C0.1) ⇒ δ3 ≤ qδ2 − (q + 1)
(C0.2) ⇒ δ2 ≤ qδ1 − (q + 1)
(C1.2) ⇒ δ1 ≤ qδ0 − (q + 1).

Lemma 3.6
If (δ0, . . . , δk−1) is a Case B difference sequence, then δi ≤ qδi−1 for all i.

Proof: An i-spaceΠi of valueδ0 + . . . + δi, contains an(i − 2)-spaceΠi−2 of
valueδ0 + . . .+ δi−2, for 1 ≤ i ≤ k− 1. There areq+ 1 (i− 1)-spaces containing
Πi−2 in Πi. Hence

γ(Πi) ≤ (q + 1)δi−1 + δi−2 + δi−3 + . . .+ δ0, (3.1)

and the lemma follows. �
We note that these bounds are considerably weaker than the bounds fork = 4

in the proposition. The reason is that fork = 4, γ(Πi−1) < δ0 + . . . + δi−1, lest
the chain condition is satisfied. This holds fork = 4 only. Moreover, if a code
satisfies the bounds in Lemma 3.6 with equality for alli, then it is a simplex code
and hence satisfies the chain condition.

Problem 3.1
Translate the bounds above to bounds for the dual code.





Chapter 4

Greedy Weights

Cohen, Encheva, and Zemor [CEZ99] introduced a new set of parameters, which
we will call CEZ weights(g1, . . . , gk). Chen and Kløve [CK99a, CK01] intro-
duced a similar set of parameters, called the greedy weights, which we will denote
(e1, . . . , ek). The second greedy weight coincides with the second CEZ weight,
and it has been studied in detail. Only a little is known about the higher greedy
weights.

The results of this chapter appears in a more compact form in [Sch01].

4.1 Definitions

Definition 4.1 (CEZ r-subcode)
A CEZ r-subcode, r ≥ 1, is an r-dimensional subcode containing a minimum
(r − 1)-subcode, such that no other such code has lower weight.

Definition 4.2 (CEZ weights)
The rth CEZ weight, gr, is the weight of a CEZ r-subcode.

Definition 4.3 (Greedyr-subcode)
A (bottom-up) greedy 1-subcode is a minimum 1-subcode. A (bottom-up) greedy
r-subcode, r ≥ 2, is any r-dimensional subcode containing a (bottom-up) greedy
(r − 1)-subcode, such that no other such code has lower weight.

Definition 4.4 (Greedy subspace)
Given a vector multiset γ, a (bottom-up) greedy hyperplane is a hyperplane of max-
imum value. A (bottom-up) greedy space of codimension r, r ≥ 1, is a subspace
of codimension r contained in a (bottom-up) greedy space of codimension r − 1,
such that no other such subspace has higher value.

A greedyr-subcode corresponds to a greedy subspace of codimensionr, and
ther-th greedy weight may be defined from either, as follows.
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Definition 4.5 (Greedy weights)
The rth (bottom-up) greedy weight er is the weight of a (bottom-up) greedy r-
subcode. For a vector multiset, n − er is the value of a (bottom-up) greedy space
of codimension r.

Remark 4.1
We have obviously that d1 = g1 = e1, g2 = e2 and dk = gk = ek, for any k-
dimensional code. For most codes e2 = g2 > d2 [CEZ99]. The chain condition is
satisfied if and only if er = dr for all r.

We introduce a third set of parameters, the top-down greedy weights. It is in a
sense the dual of the greedy weights, and we will see later on that top-down greedy
weights can be computed from the greedy weights of the orthogonal code, and vice
versa.

Definition 4.6 (Top-Down Greedy Subspace)
A top-down greedy 0-space of a vector multiset is {0}. A top-down greedy r-
space is an r-space containing a top-down greedy (r − 1)-subspace such that no
other such subspace has higher value.

Definition 4.7 (Top-Down Greedy Weights)
The r-th top-down greedy weight ẽr is n− γC(Π), where Π is a top-down greedy
subspace of codimension r.

We will occasionally speak of (top-down) greedy cross-sections, which is just
γC |U for some (top-down) greedy spaceU .

Remark 4.2
The top-down greedy weights share many properties with the (bottom-up) greedy
weights. For all codes ẽr ≥ dr. The chain condition holds if and only if ẽr = dr
for all r. In general, ẽr may be equal to, greater than, or less than er.

Example 4.1
We take an example of a B-code from [CK96]. The projective multiset is presented
in Figure 4.1. A chain of greedy subspaces is

∅ ⊂ 〈A〉 ⊂ 〈A,L〉 ⊂ 〈A,B,C〉 ⊂ PG(4, q),

and a chain of top-down greedy subspaces is

∅ ⊂ 〈C〉 ⊂ 〈C,D〉 ⊂ 〈A,C,D〉 ⊂ PG(4, q).

In the binary case, we get greedy weights (4, 6, 9, 12), and top-down greedy weights
(3, 6, 10, 12). The weight hierarchy is (3, 6, 9, 12).





4.2. BASIC PROPERTIES

JJJJ
JJJJ
JJJJ
JJJJ
JJJJ
JJJJ
JJJJ
JJJJ
JJJJ
JJJJ
JJJJ
JJJJ
JJJJ
JJJJ
JJJJ
JJJJ
JJJJ
JJJJ
JJJJ
JJ













































































AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AA
������������
������������
������������
������������
������������
������������
������

s
A

s
J

s
I

s
L s

C

sB
sDsG sH sF

γ(p) = for
0 p ∈ 〈A,B,C〉\{A,D}, p ∈ {F,H, I, J}
1 p ∈ 〈B,F 〉\{B,F,H}, p ∈ 〈G, I〉\{G,H, I}, p = D
3 p = C
2 otherwise

Figure 4.1: Case B, Construction 1 from [CK96].

4.2 Basic properties

Theorem 4.1 (Monotonicity)
If (e1, e2, . . . , ek) are greedy weights for some code C, then 0 = e0 < e1 < e2 <
. . . < ek. Similarily, if (ẽ1, ẽ2, . . . , ẽk) are top-down greedy weights for some code
C, then 0 = ẽ0 < ẽ1 < ẽ2 < . . . < ẽk.

Proof: Let

{0} = Π0 ⊂ Π1 ⊂ . . . ⊂ Πk =M,

be a chain of greedy subspaces. We are going to show thatγC |Πi contains more
points thanγC |Πi−1 for all i. It is sufficient to show thatγC |Πi contains a set of
points spanningΠi.

SinceγC is non-degenerate, it contains a set of points spanningΠk. Sup-
pose thatγC |Πr contains a set of points spanningΠr. ConsiderΠr−1. Suppose
dim〈γC |Πr−1〉 < r − 1. Obviously there is a pointx ∈ γC |Πr − γC |Πr−1 . Hence
we can replaceΠr−1 by 〈γC |Πr−1 , x〉 and get a subspaceΠ′r−1 ⊂ Πr with larger
value. This contradicts the assumption thatΠr−1 is a greedy subspace.

We can replace theΠi with a chain of top-down greedy subspaces, and repeat
the proof to prove the second statement of the lemma. �

Monotonicity also holds for the weight hierarchy by a similar argument [Wei91],
but in general it does not hold for the CEZ weights.
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Example 4.2
Consider the [16, 4; 5]2 code defined by the following generator matrix

G =


1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

 .
The weight hierarchy of the code is (5, 9, 11, 16), the greedy weights are (5, 11,
14, 16), and the top-down greedy weights are (6, 9, 11, 16).

We can see that the fourth row generates a minimum one-subcode of weight 5.
The first three rows generates a chained code with weight hierarchy (6, 9, 11), and
this is also a CEZ 3-subcode. A CEZ 2-subcode is generated by the fourth and first
rows, and has weight 11. Hence g2 = g3 = 11.

In general therth CEZ weight may be less than, equal to, or greater than the
rth greedy weight. For a chained codeer = gr. For a B-code,dr = gr for all r,
buter > gr = dr for somer. In the following example,g3 > e3.

Example 4.3
A binary code with g3 > e3 is given by the generator matrix

G =
[
G1 0
0 G2

]
,

where

G1 =

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1

 ,
G2 =

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

 .
The code given byG1 satisfies the chain condition and has weight hierarchy (6, 12, 16),
while G2 gives a chained code with (7, 11, 17) as a weight hierarchy.

The code given by G has weight hierarchy (6, 11, 16, 23, 27, 33). The greedy
weights differs from the weight hierarchy only in e2 = 12, and the CEZ weights
differs from the greedy weights only in g3 = 17 > e3 = d3 = 16.

4.3 Duality

By using the same approach as in Section 2.4, we will find duality results on
the greedy weights. And we start by making a top-down greedy analogue of
Lemma 3.1.
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Lemma 4.1
Suppose ẽi+1 > ẽi + 1 where 0 ≤ i ≤ k, and define s := n− ẽi + i− k. Then U
is a top-down greedy cross-section of codimension i if and only if U = µ(β(Ds))
for some greedy s-subcode Ds ⊆ C.

Proof: Let ī be the largest value ofi ≤ k − 1 such that̃ei+1 > ẽi + 1. Then
δj = 1 for 0 ≤ j ≤ k− 1− (̄i+ 1). It follows that any subsetBj of j ≤ k− 1− ī
elements, gives rise to a top-down greedy cross-sectionµ(Bj) of dimensionj (and
sizej). The codimension of such aµ(Bj) is k − j ≥ ī+ 1.

Henceµ(Bk−ī) is a top-down greedy cross-section of codimensionī, if and
only if it is a maximum value cross-section of codimensionī. Hence, fori = ī, the
lemma follows from Lemma 2.3.

Supposẽem+1 > ẽm + 1, and assume the lemma holds for alli, ī ≥ i > m.
We will prove the lemma by induction. Define

j := max{j > m | ẽj − ẽm+1 = j − (m+ 1)}.

Clearly,ẽj+1 − ẽj > 1.
Now consider a top-down greedy subspaceµ(B) of codimensionm, where

B ⊆ B. Clearly there isB′ ⊂ B such thatµ(B′) is a top-down greedy subspace
of codimensionj. By the induction hypothesis,B′ = β(Dr) for some greedy
r-subcodeDr ⊆ C⊥ wherer = n− k − ẽj + j. Also,

#B′ = w(Dr) = e⊥r = n− ẽj .

Note that we can make top-down greedy cross-sections of codimensionx for
m < x ≤ j by addingj − x random elementsby to B′. This implies also that
there cannot be a subcodeDr+1 of dimensionr + 1 such thatDr ⊂ Dr+1 ⊆ C
andw(Dr+1) ≤ w(Dr) + 1 + j − x. Hence

e⊥r+1 ≥ n− ẽj + 1 + j −m. (4.2)

Let B′′ = Bk−(m+1) ⊆ B be such thatµ(B′′) is a top-down greedy cross-
section of codimensionm+ 1 with B′ ⊂ B′′ ⊂ B. Note thatDr = 〈B′′〉 ∩ C⊥.

Let

z := #B −#B′′ = (n− ẽm)− (n− ẽm+1) = ẽm+1 − ẽm.

Write D := 〈B〉 ∩ C⊥. Sincedimµ(B) − dimµ(B′′) = 1, we must haveB =
β(D), and there must be a chain ofz subcodes

Dr ⊂ Dr+1 ⊂ Dr+2 ⊂ . . . ⊂ Dr+z−1 = D

whereDi has dimensioni for r ≤ i < r + z andw(Di) = w(Di+1) − 1 for
r < i ≤ r + z − 2. Moreover, by the bound (4.2), we get

w(Di) = n− ẽj + 1 + j −m+ i− r − 1 = e⊥i .
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And in particular

w(D) = w(Dr+z−1) = n− ẽj + j −m+ z − 1 = e⊥r+z−1.

It remains to show thats = r+z−1 (wheres is given in the lemma). Consider

r + z − 1− s = (n− k − ẽj + j) + (ẽm+1 − ẽm)− 1− (n− k − ẽm +m)
= j − ẽj + ẽm+1 − (m+ 1) = 0,

by the definition ofj. �

Corollary 4.1
If i and s are as given in Lemma 4.1, then e⊥s = n− ẽi.

Theorem 4.2 (Duality)
Let (e1, . . . ek) be the greedy weight hierarchy of a code C, and (ẽ⊥1 , . . . , ẽ

⊥
n−k)

the top-down greedy weight hierarchies for C⊥. Then

{ẽ1, ẽ2, . . . , ẽk} and {n+ 1− e⊥1 , n+ 1− e⊥2 , . . . , n+ 1− e⊥n−k}

are disjoint sets whose union is {1, . . . n}.

Proof: Let i1 < i2 < . . . be the values ofi for which ẽi > ẽi−1. Going to
the proof of Lemma 4.1, withm = ix, we getj = ix+1. The proof showed that
n− ẽy + 1 6= e⊥s for all s, for all y, ix ≤ y < ix+1. This holds for allx, hence the
theorem. �

Since the CEZ weights does not form a monotonous sequence in general, an
analogue of Theorem 4.2 would not make sense for CEZ weights.

4.4 Bounds on greedy weights

It is known that for any chained code,dr−dr−1 ≤ q(dr+1−dr). The same relation
holds for the top-down and bottom-up greedy weights of arbitrary codes.

Proposition 4.1
For any sequence of bottom-up greedy weights (e1, . . . ek) or top-down greedy
weights (ẽ1, . . . , ẽk), we have

er − er−1 ≤ q(er+1 − er),
ẽr − ẽr−1 ≤ q(ẽr+1 − ẽr),

for 1 ≤ r < k.

Proof: Let Πr+1 ⊂ Πr ⊂ Πr−1 be a chain of greedy subspaces of codimen-
sionsr + 1, r, andr − 1 respectively. ClearlyγC(Πr−1\Πr) = er − er−1 and
γC(Πr\Πr+1) = er+1 − er.
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There areq subspaces containingΠr+1 in Πr−1 in addition toΠr, and each of
them has value at moster. Henceer+1 − er ≤ q(er − er−1).

The proof for the top-down greedy weights is similar. �
The following is another analogue of known results on weight hierearchies of

chained codes.

Proposition 4.2
Any set (e1, e2, . . . ek) of greedy weights can be split for any i, 1 ≤ i < k, into
two sets of greedy weights, (e1, . . . ei) and (ei+1 − ei, ei+2 − ei, . . . ek − ei).

Proof: If C is a code with greedy weights(e1, e2, . . . ek), and let

{0} = D0 ⊂ D1 ⊂ D2 ⊂ . . . ⊂ Dk = C

be a chain of greedy subcodes.
The subcodeDi is an[ei, i] code with greedy weights(e1, . . . ei).
If C is punctured onχ(Di), we get an[ek−ei, k− i] code with greedy weights

(ei+1 − ei, ei+2 − ei, . . . ek − ei). �

Remark 4.3
Also the top-down greedy weights have the property described by Proposition 4.2.
The proof is similar.

The generalised Hamming weights are likely to increase by this construction,
and hence the greedy gains are likely to decrease. In any case the greedy gains
cannot increase.
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Chapter 5

Support Weight Distribution

Identification of self-dual codes with high minimum weight is a classic problem
in coding theory. Dougherty and Gulliver [DG01] have studied the support weight
distributions of such codes. Possibly, some existence or non-existence results may
be obtained through higher weights, even though it will not be in this paper. . .

5.1 Preliminaries

Let PG(k − 1, q) denote the projective geometry of dimensionk − 1 over the
finite field F with q elements. LetPGr(k − 1, q) denote the set ofr-spaces in
PG(k− 1, q). For simplicity, we will not make a distinction between a pointx and
the 0-space{x}. The linear dimension ofPG(k−1, q) is k = dim lin PG(k−1, q).
In this chapter we will considerγC as a multiset onPG(k − 1, q) = P(M) rather
than onM. We recall from the introduction that this projective multiset preserves
all properties related to the code.

From elementary projective geometry, we get number of distinctr-spaces as
follows

#PGr(k − 1, q) =
[

k

r + 1

]
:=

r∏
i=0

qk−i − 1
qr+1−i − 1

.

The number ofr-spaces containing a givenm-space is given by
[
k−m−1
r−m

]
.

Definition 5.1
A projective multiset (or a code) is called r-DMDS (r-dual MDS) or (k − 1− r)-
MDS if ∆r = r + 1. A projective multiset (or code) is barely r-DMDS if it is
r-DMDS and not (r + 1)-DMDS.

An equivalent and more classic definition is that a code isr-MDS if it meets
ther-th generalised singleton bound with equality, i.e. ifdr = dk − k + r. Note
that anyi-DMDS code is(i − 1)-DMDS, and being0-DMDS is equivalent with
being a projective code.
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5.1.1 Support Weight Distribution

Let Vr
i (C) be the set of allr-spaces of valuei, i.e.

Vr
i (C) = {Π 5 PG(k − 1, q) | γC(Π) = i,dim Π = r}.

We define thevalue distributionof γC to be

V r
i (γC) = V r

i (C) := #Vr
i (C). (5.1)

Let Ar
i (C) be the set ofr-dimensional subcodes ofC with weight i. The support

weight distribution ofC is given by

Ari (C) := #Ar
i (C).

By Lemma 2.2, there is a one-to-one correspondence betweenVr
i (C) andAk−1−r

n−i (C).
Hence

V r
i (γC) = V r

i (C) = Ak−1−r
n−i (C).

We will mostly abbreviate and writeV r
i = V r

i (C), Ari = Ari (C), Ãri = Ari (C
⊥),

andṼ r
i = V r

i (C⊥).
Trivially, we have

V −1
0 = Akn = 1, (5.2)

V k−1
n = A0

0 = 1. (5.3)

Define
mi = mi(C) := di(C⊥)− i− 1.

Obviouslym0 = −1 andmn−k = k − 1. We will determineV r
i for mj ≤ r <

mj+1 for eachj = 0 andj = 1. We start with a relatively simple result.

Lemma 5.1
If mj+1 > mj , then

V
mj
mj+j+1 = Ãjmj+j+1,

V
mj
i = 0, i > mj + j + 1.

Proof: Consider anmj-spaceΠ for somej wheremj+1 > mj . From Lemma 2.3
we know thatΠ has valued⊥j = mj + j + 1 if and only it containsxi for all
i ∈ χ(D) whereD 5 C⊥ is aj-dimensional subcode of weightd⊥j . This gives the
first equation. The second equation is obvious. �

In this chapter, we will see thatAri (C) can be computed for allr ≥ k + 2 −
d2(C⊥) if we know the complete (first) weight enumerator forC⊥. The result will
be summarised in Theorem 5.2.
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5.1.2 Making new codes from others

Consider anm-spaceΠm 5 PG(k − 1, q). Let

πΠm : PG(k − 1, q)\Πm → PG(k − 2−m, q)

be the projection map throughΠm. Let C ′ be the code corresponding toγC′ :=
γC ◦ π−1. Note thatC ′ has parameters[n− γC(Πm), k − 1−m]. Everyr-space
in PG(k − 2 − m, q) is the image of an(r + m + 1)-space containingΠm in
PG(k − 1, q). Hence

∆r(C ′) ≤ ∆r+m+1(C)− γC(Πm).

Hence, ifΠm has maximum value, thenC ′ is (m1 −m− 2)-DMDS. Note thatC ′

can be viewed as a subcode ofC [DS98].

5.2 In the rangem0 ≤ r < m1

Note that any code is (barely)R-DMDS whereR = m1− 1. We writeVri (n, k) =
V r
i (C) for someR-DMDS [n, k] codeC, wherer ≤ R. We will see that this

number is well-defined and independent ofC.
When a code isR-DMDS, it means that for allr ≤ R, any(r + 1)-subset ofγ

spans anr-space ofPG(k − 1, q). It follows immediately that

Vrr+1(n, k) =
(

n

r + 1

)
, (5.4)

Vrj (n, k) = 0, ∀j > r + 1. (5.5)

Lemma 5.2
For 0 ≤ r < m1, Vrj (n, k) is well-defined, and we have

Vr0(n, k) =
[

k

r + 1

]
−

r+1∑
j=1

Vrj (n, k), (5.6)

Vrj (n, k) =
(
n

j

)
Vr−j0 (n− j, k − j), 0 < j ≤ r + 1, (5.7)

Vrj (n, k) = 0, j > r + 1. (5.8)

Proof: Equation (5.8) comes from (5.5). Forj = r + 1, we get from (5.2) that
(5.7) reduces to

Vrr+1(n, k) =
(

n

r + 1

)
,

which has been proved in (5.4). If we can prove (5.7) for0 < j ≤ r, then (5.6)
follows by definition. Thus the lemma becomes trivial forr = 0, and we can
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proceed by induction. Hence assume (5.7) hold forr − 1, and that0 < j ≤ r.
Then also (5.6) holds forr − 1.

An r-spaceΠr of valuej contains a unique(j − 1)-spaceΠ of valuej. There
are a totalV j−1

j such subspaces in the geometry, by the induction hypothesis. We
consider the projectionπΠ, which defines an(m1 − 1 − j)-DMDS codeC ′ by
γC ◦ π−1

Π .
Theser-spaces correspond to the(r− j)-spaces inimπΠ. HenceΠr has value

j if and only if πΠ(Πr) has zero value. The number of such(r − j)-spaces is
Vr−j0 (n− j, k − j) by the induction hypothesis. Hence

Vrj (n, k) = Vj−1
j (n, k)Vr−j0 (n− j, k − j).

By application of (5.4), we get (5.7). The result follows by induction. �

Lemma 5.3[Aig79, p. 77]
We have for all natural numbers n that

n∑
k=0

(−1)k
(
n

k

)
= 0.

Lemma 5.4
For 0 ≤ r < m1, Vr0(n, k) is well-defined, and we have

Vr0(n, k) =
r+1∑
j=0

(−1)j
[

k − j
r + 1− j

](
n

j

)
.

Proof: For r = −10 andr = 0, the lemma reduces to

V−1
0 (n, k) = 1,

V0
0 (n, k) =

[
k

1

]
− n,

which matches (5.2) and (5.6). We assume that the lemma holds forr − 1 and
proceed by induction.

We have from Lemma 5.2, that

Vr0(n, k) =
[

k

r + 1

]
−

r+1∑
j=1

Vrj (n, k)

=
[

k

r + 1

]
−

r+1∑
j=1

(
n

j

)
Vr−j0 (n− j, k − j),

If we combine with the induction hypothesis, we get

Vr0(n, k) =
[

k

r + 1

]
−

r+1∑
j=1

(
n

j

) r−j+1∑
i=0

(−1)i
[

k − j − i
r − j + 1− i

](
n− j
i

)
.
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We setm = i+ j and rewrite to get

Vr0(n, k) =
[

k

r + 1

]
−

r+1∑
m=1

[
k −m

r + 1−m

]m−1∑
i=0

(−1)i
(

n

m− i

)(
n−m+ i

i

)

=
[

k

r + 1

]
−

r+1∑
m=1

[
k −m

r + 1−m

]m−1∑
i=0

(−1)i
(
n

m

)(
m

i

)
.

By Lemma 5.3, we get

−
m−1∑
i=0

(−1)i
(
n

m

)(
m

i

)
= (−1)m

(
n

m

)(
m

m

)
= (−1)m

(
n

m

)
.

Hence

Vr0(n, k) =
[

k

r + 1

]
+

r+1∑
m=1

[
k −m

r + 1−m

]
(−1)m

(
n

m

)

=
r+1∑
j=0

[
k − j

r + 1− j

]
(−1)j

(
n

j

)
,

as required. The lemma follows by induction. �
The following theorem is a direct result of Lemmata 5.2 and 5.4.

Theorem 5.1
For 0 ≤ r < m1, Vrj (n, k) is well-defined, and we have

Vrj (n, k) =
(
n

j

) r−j+1∑
i=0

(−1)i
[

k − j − i
r − j + 1− i

](
n− j
i

)
.

5.3 In the rangem1 ≤ r < m2

5.3.1 Some notation

In this section we considerm1 ≤ r < m2. We know thatV r
i = 0 for all i > r+ 2.

Consider anr-spaceΠ of value r + 2. The cross-sectionγC |Π defines an
[r + 2, r + 1] codeC ′. Let s := m1(C ′). We say thatΠ has types. Clearly
m1 ≤ s ≤ r. The set ofr-spaces of types is denoted byS(r, s).

Given anr-spaceΠ′ of valuei ≤ r+ 1; we say thatΠ′ is Type I if it contains a
(i− 2)-spaceΠ′′ of valuei for somei. This(i− 2)-space is unique when it exists.
ClearlyΠ′′ has types for somes, and then we say thatΠ′ is Type I(s).

If Π′ is not Type I, we say that it is Type II, and then it contains a unique(i−1)-
space of valuei. Let Uri (X) be the set ofr-spaces of valuei and TypeX, where
X is I, II, or I(s) for somes. WriteU ri (X) := #Uri (X).
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5.3.2 Subspaces of Maximum Value

If C is an[n, n− 1] code, there is a uniques such thatδs(C) = 2, andδi(C) = 1
for i 6= s. Clearlym1(C) = s. In this case, we callC an[n, n− 1] code of types.

Lemma 5.5
Let γC be a projective multiset defining an [n, n− 1] code C of type s. Then there
is a unique s-space Πs of value s+ 2.

Proof: There exists at least one suchs-space since∆s(C) = s + 2. Suppose
there are two distincts-spacesΘ1 andΘ2 of values+ 2. Let i be the dimension of
Θ := Θ1 ∩Θ2. Clearlyi < s and thusγC(Θ) ≤ i+ 1. We get

γ(〈Θ1,Θ2〉) ≥ 2(s+ 2)− (i+ 1) = 2s− i+ 3,

but
dim〈Θ1,Θ2〉 = 2s− i = 2s− i,

so
γ(〈Θ1,Θ2〉) ≤ ∆2s−i(C) = 2s− i+ 2.

The lemma follows by contradiction. �
There is only one[n, n− 1] code of Types up to equivalence. The correspond-

ing projective multiset is obtained by taking a frame for a projectives-space and
then add projectively independent points to obtain an(n− 2)-space.

Lemma 5.6
For any code C, if m1 ≤ s ≤ r < m2, we have

#S(r, s) = Ã1
s+2

(
n− s− 2
r − s

)
.

Proof: The number of maximumr-spaces of typer is

#S(s, s) = Ã1
s+2, (5.9)

by Lemma 2.3.
An r-spaceΠr of type s contains a uniques-spaceΠs of value s + 2 by

Lemma 5.5. Hence there is a one-to-one correspondence betweenr-spaces of type
s and pairs(Πs, S) whereΠs ∈ S(s, s) andS ⊂ γC\Πs is a set ofr − s points.
There areÃ1

s+2 ways to chooseΠs by (5.9) and
(
n−s−2
r−s

)
ways to chooseS. Hence

we get the result. �

Lemma 5.7
If m1 ≤ r < m2, then

V r
r+2 =

r∑
s=m1

Ã1
s+2

(
n− s− 2
r − s

)
,

V r
i = 0, i > r + 2.

Proof: An r-space of valuer+ 2 has types for somes wherem1 ≤ s ≤ r. Thus
we can take the sum of the equation in Lemma 5.6. Hence the result. �
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5.3.3 Whenn = k + 1

In this section we study an[n, n − 1] codeC of types. We will need the number
F(j, n, s) := Un−3

j (II) for C in the later sections.
We obviously have thatF(j, n, s) = 0 if n < j + 2. Whenn = s + 2, C is a

MDS, so

F(j, s+ 2, s) = Vs−1
j (s+ 2, s+ 1). (5.10)

Lemma 5.8
For any [n, n− 1] code of type s, if j ≤ n− 2, then U j−1

j (II) is given by

F(i, n, s) =
i∑

j=0

Vs−1
j (s+ 2, s+ 1)

(
n− s− 2
i− j

)
(q − 1)n−2−s+i−j .

Proof: Note that ifn = s+ 2, the lemma reduces to (5.10).
We consider the projective spacePG(n − 2, s). We want to find the number

F(i, n, s) of hyperplanes of valuei and Type II. Consider an arbitrary such hy-
perplaneΠ. There is a uniques-spaceΘ 5 PG(n − 2, s) of values + 2. Every
hyperplane must meetΘ in a subspace of dimensions − 1 or more. SinceΠ has
Type II, Θ′ := Θ ∩Π is exactly an(s− 1)-space. Letj = γC(Θ′).

Givenj, there areF(j, s+2, s) ways to chooseΘ′. LetΠ′ 5 Π be the smallest
subspace of valuei and containingΘ′. GivenΘ′ we findΠ′ by choosingi−j points
among then− s− 2 points of positive value not contained inΘ. Giveni, there are
thus

F(j, s+ 2, s)
(
n− s− 2
i− j

)
= Vs−1

j (s+ 2, s+ 1)
(
n− s− 2
i− j

)
ways to chooseΠ′.

Consider now the projectionπΠ′ . The multisetγ′′ := γC ◦ π−1
Π′ defines an

[n − i, n − 1 − s − i + j] code. There is but one pointx of value γ′′(x) =
s+ 2− j, namelyx = πΠ′(Θ). The remaining points have value 0 or 1. We define
a new projective multisetγ′ by γ′(x) = 1 andγ′(y) = γ′′(y) for y 6= x. The
corresponding code is a projective[n′, n′] code wheren′ = n− i− s− 1 + j.

FindingΠ = Π′ of valuei is the same as finding a hyperplane of zero value for
γ′, which is the same as counting one-dimensional subcodes of weightn′ for the
[n′, n′] code. This number is(q− 1)n

′−1. The lemma follows by summing over all
j. �

5.3.4 Other subspaces

Now we return to the general[n, k] codeC, in order to determineV r
j for j ≤ r+1.
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Proposition 5.1
For m1 ≤ r < m2 and r ≥ i− 2, we have

U ri (I(s)) = Vr+1−i
0 (n− i, k + 1− i)Ã1

s+2

(
n− s− 2
i− s− 2

)
,

U ri (I) = Vr+1−i
0 (n− i, k + 1− i)V i−2

i .

For r < i− 2, we have U ri (I) = U ri (I(s)) = 0.

Proof: We have from Lemma 5.6, we have that

U i−2
i (I(s)) = Ã1

s+2

(
n− s− 2
i− 2− s

)
.

An r-space of valuei and Types contains a unique(i− 2)-spaceΠ′ of valuei and
Types by Lemma 5.4. There areU i−2

i (I(s)) ways to chooseΠ′.
Consider then the multisetγ′ := γC ◦ π−1

Π′ obtained by projection throughΠ′.
We know thatγ′ defines an[n− i, k + 1− i] codeC ′. Finding anr-spaceΠ = Π′

of valuei corresponds to finding an(r+1−i)-space of value 0 forγ′. Furthermore
γ′ defines a code with

∆m2−i(C
′) ≤ ∆m2−1(C)− i = m2 + 1− i.

HenceC ′ is (m2− i)-DMDS, and sincer+ 1− i ≤ m2− i, there areVr+1−i
0 (n−

i, k+ 1− i) ways to chooseΠ = Π′. This proves the first equation, and the second
one follows by summing over alls. �

Proposition 5.2
If m1 < j ≤ m2, we have

U j−1
j (II) =

(
n

j

)
− U j−2

j (I)−
j−1∑
s=m1

(s+ 2)U j−1
j+1 (I(s)).

For i > j, we have U j−1
i (II) = 0.

Proof: We consider all the
(
n
j

)
possible ways to chose a setS of j points of

positive value. To findU j−1
j (II), we must subtract the number of cases where

thesej points generate a subspace of type I.
Sincej − 1 < m2, we have three cases:

1. dim〈S〉 = j − 1 andγC(〈S〉) = j. (Type II)

2. dim〈S〉 = j − 2 andγC(〈S〉) = j. (Type I)

3. dim〈S〉 = j − 1 andγC(〈S〉) = j + 1. (Type I)
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The number of setsS giving the first case isU j−1
j (II), while for the second case, it

is U j−2
j (I). The third case is more difficult, becauseS does not contain all points

of positive value in〈S〉. Suppose〈S〉 has types. Then 〈S〉 can be chosen in
U j−1
j+1 (I(s)) different ways. There is one pointx 6∈ S of positive value in〈S〉, and

x must be contained in the uniques-spaceΠs 5 〈S〉 of values + 2. Moreoverx
can be any point of positive value inΠs, hence there ares+ 2 different choices for
S giving the same〈S〉 of the third case. This gives the lemma. �

Let

U(r1, v1, X1; r2, v2, X2) = {(Π1,Π2) | Π1 5 Π2,Πj ∈ U
rj
vj (Xj), j = 1, 2}.

As for V, we will write vj = ∗ resp.Xj = ∗, when we allow any value ofvj resp.
Xj .

Lemma 5.9
If m1 ≤ r < m2 and 0 ≤ j ≤ r, then

U rj (II) =
q − 1

qr+1−j − 1

(
U r−1
j (II)

qk−r − 1
q − 1

−
r+2∑
v=j+1

#U(r − 1, j, II; r, v, ∗)
)
.

Proof: We will count the number of elements ofU(r − 1, j, II; r, j, II) in two
different ways. Consider a pair

(Π′,Π) ∈ U(r − 1, j, II; r, j, II).

There areU rj (II) ways to chooseΠ. For Π′, we can choose any(r − 1)-space
containing the unique(j − 1)-space of valuej in Π. Hence

#U(r − 1, j, II; r, j, II) = U rj (II)
[
r + 1− j
r − j

]
= U rj (II)

qr+1−j − 1
q − 1

. (5.11)

This gives the first of our two expressions.
Now we observe that

#U(r − 1, j, II; r, ∗, ∗) =
r+2∑
v=j

#U(r − 1, j, II; r, v, ∗). (5.12)

This number can equivalently be obtained by counting the number of(r − 1)-
spaces of valuej and Type II, and the number ofr-spaces containing each such
space. This gives

#U(r − 1, j, II; r, ∗, ∗) = U r−1
j (II)

[
k − r

1

]
= U r−1

j (II)
qk−r − 1
q − 1

. (5.13)

Clearly we have that

#U(r − 1, j, II; r, j, I) = 0,
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and if we combine this with with (5.12) and (5.13), we get

#U(r − 1, j, II; r, j, II) = U r−1
j (II)

qk−r − 1
q − 1

−
r+2∑
v=j+1

#U(r − 1, j, II; r, v, ∗),

which is our second expression for#U(r − 1, j, II; r, j, II). Combining this with
(5.11), we get the lemma. �

Lemma 5.10
If j < v − 1, then

#U(r − 1, j, II; r, v, I(s)) = U rv (I(s))F(j, v, s)qr+2−v.

Proof: Consider a pair

(Π′,Π) ∈ U(r − 1, j, II; r, v, I(s)).

There areU rv (I(s)) ways to chooseΠ. There is a unique(v − 2)-spaceΘ 5 Π of
valuev and types. The intersectionΘ′ := Π′ ∩ Θ is a (v − 3)-space of valuej.
There areF(j, v, s) ways to chooseΘ′.

Consider the projectionπΘ′ . FindingΠ′ is the same as finding a hyperplane
in imπΘ′ not meetingπΘ′(Θ), which is a point. There are(qr+3−v − 1)/(q − 1)
hyperplanes inimπΘ′ , of which (qr+2−v − 1)/(q − 1) meetπΘ′(Θ). Hence there
areqr+2−v hyperplanes not meetingπΘ′(Θ). �

Lemma 5.11
If j < v, then

#U(r − 1, j, II; r, v, II) = U rv (II)Vv−2
j (v, v)qr+1−v.

Proof: Consider a pair

(Π′,Π) ∈ U(r − 1, j, II; r, v, II).

There areU rv (II) ways to chooseΠ. There is a unique(v − 1)-spaceΘ 5 Π
of valuev, andγC |Θ defines a[v, v] code. The intersectionΘ′ := Π′ ∩ Θ is a
(v − 2)-space of valuej. There areVv−2

j (v, v) ways to chooseΘ′.
Consider the projectionπΘ′ . FindingΠ′ is the same as finding a hyperplane in

imπΘ′ not meetingπΘ′(Θ), which is a point. There areqr+1−v such hyperplanes.
�

We define for brevity:

F(r, j) :=
r+2∑
v=j+1

#U(r − 1, j, II; r, v, ∗).
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Proposition 5.3
We have

F(r, j) =
r+2∑
v=j+2

qr+2−v
[
U rv−1(II)Vv−3

j (v − 1, v − 1) +
r∑

s=m1

U rv (I(s))F(j, v, s)
]
.

Proof: First note that

#U(r − 1, j, II; r, r + 2, II) = 0,

becauseU rr+2(II) = 0, and that

#U(r − 1, j, II; r, j + 1, I) = 0,

because there is no subspace of valuej in a subspace of valuej + 1 and Type I.
Now the result follows from Lemmata 5.10 and 5.11. �

Proposition 5.4
If m1 ≤ r < m2 and 0 ≤ j ≤ r, then

U rj (II) =
qk−r − 1
qr+1−j − 1

U r−1
j (II)− q − 1

qr+1−j − 1
F(r, j),

where F(r, j) is given by Proposition 5.3.

Proof: This is simply a rephrase of Lemma 5.9. �
If we combine all the results of this chapter, we get the following theorem as a

conclusion.

Theorem 5.2
For k ≥ r > k+2−d2(C⊥), it is possible to computeAri (C) for all i provided we
know the (first) weight enumerator of C⊥. We have for k + 1− d1(C⊥) < r ≤ k,
that

Ari (C) =
(

n

n− i

) k+i−r−n∑
j=0

(−1)n−i
[

k − n+ i− j
k − r − n+ i− j

](
i

j

)
,

and for k + 2− d2(C⊥) < r ≤ k + 1− d1(C⊥), that

Ari (C) = Uk−1−r
n−i (II) + Uk−1−r

n−i (I),

where Uk−1−r
n−i (II) and Uk−1−r

n−i (I) are given by Propositions 5.1, 5.2 and 5.4.

Example 5.1
Employing the theorem above on the binary [24, 12] Golay code, which is self-
dual, with a simple Maple program, gives us the third through the twelveth support
weight enumerator in about 15 seconds.
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Problem 5.1
Simplify the recursion formulæ from Proposition 5.4.

Problem 5.2
Study the r-th support weight distribution for r ≤ k + 2− 2− d2(C⊥).

Problem 5.3
Does there exist a [72, 36, 16] Type II self-dual code?

The latter problem is a popular one [Dou01] and has been studied for quite
some time. For instance, the first and second support weight distributions of such
a code have been uniquely determined [DG01]; and the results of this chapter de-
termine the 15th through the 36th support weight distribution, see Appendix A. If
even more support weight distributions are determined, that might help us towards
an answer to Problem 5.3.





Appendix A

The [72, 36, 16] selfdual code

We present below the support weight distributions for the tentative[72, 36, 16] self-
dual Type II code, as far as we know them. All entries not mentioned are zero. The
weight enumerator is copied from [Dou01], while the second support weight enu-
merator is copied from [DG01].

A
0
0 = 1

A
1
16 = 249849

A
1
20 = 18106704

A
1
24 = 462962955

A
1
28 = 4397342400

A
1
32 = 16602715899

A
1
36 = 25756721120

A
1
40 = 16602715899

A
1
44 = 4397342400

A
1
48 = 462962955

A
1
52 = 18106704

A
1
56 = 249849

A
1
72 = 1

A
2
24 = 96191865

A
2
26 = 4309395552

A
2
28 = 119312891460

A
2
30 = 2379079500864

A
2
32 = 37327599503964

A
2
34 = 466987648992480

A
2
36 = 4687779244903412

A
2
38 = 37810235197002240

A
2
40 = 244777798274765679

A
2
42 = 1269000323938260672

A
2
44 = 5251816390965277320

A
2
46 = 17262594429823645056

A
2
48 = 44763003632389491540

A
2
50 = 90768836016453484224

A
2
52 = 142313871132195291144

A
2
54 = 170060449665123790080
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A
2
56 = 152060783100409784007

A
2
58 = 99349931253373567200

A
2
60 = 45970401654169517364

A
2
62 = 14440224673488398400

A
2
64 = 2900924791551272475

A
2
66 = 340809968304405600

A
2
68 = 20197782231604740

A
2
70 = 451381581930240

A
2
72 = 1617151596337

A
3
i throughA13

i are undetermined.

A
14
48 = 96191865

A
14
49 throughA14

72 are undetermined.

A
15
50 = 8136215755668

A
15
51 = 835119760789303704

A
15
52 = 20695392862851155911308

A
15
53 = 337488222974050367616584880

A
15
54 = 4437610578986313918980616085260

A
15
55 = 50740517953635873912087857906170968

A
15
56 = 520959409608056571069230661760967830704

A
15
57 = 4867575269161335905011089825963182224795968

A
15
58 = 41573154133969089965956554893213195162353269960

A
15
59 = 324505801293722544021315422435073624777366156041520

A
15
60 = 2308334716013902739199118677866796247405721152584958488

A
15
61 = 14893968203696075514117480615392622172247938033503672101664

A
15
62 = 86628304494310959793323245627958517370084055051020281657482648

A
15
63 = 450673256748353559429749774852476667854661123964195396889869033840

A
15
64 = 2076892031101546850443892260521140339911626429772444095683679500936955

A
15
65 = 8376328244723302150121186081915229431227501946784404628530079618046755648

A
15
66 = 29111038655486724663350051448822691581823120122090198330775681371586691001444

A
15
67 = 85423516086539348299055453412621287083086791971673934245233718275777555180260408

A
15
68 = 205815710542321982631446960027809207590898134248774656817597548572093093599846974620

A
15
69 = 390955887552635541236585848892614762863964952845915619050959818230962372587006641925040

A
15
70 = 549020397860648429789443201587269945311522797548469762349426407872640455474846051226742428

A
15
71 = 506754042154015135916241032444295211826500698538596221007902411825622743857192540814883977016

A
15
72 = 230622466665508101211452817597506326599621375196004079893797046073742090590843322302999731529896

A
16
51 = 955318756392

A
16
52 = 324059272405010604

A
16
53 = 15507021624137440467840

A
16
54 = 474561851584824561663788760

A
16
55 = 11623944276671500692050896514520

A
16
56 = 246640448766609422872631592826550472

A
16
57 = 4683361304329775589374273112371482518144

A
16
58 = 80635773988140643861996146466370423309909280

A
16
59 = 1263805770070201211502013880815196449094128891920

A
16
60 = 18015403670949619263428884402772581298962323539986680

A
16
61 = 232711045434432236271252106923163167735800166402446504832

A
16
62 = 2708415090939376443146130682207339409482354901831610456796944

A
16
63 = 28187716077651800977996031264247825047154509950110064644392239920

A
16
64 = 259837403400795815247993702001608422833802173004246279362250513350155

A
16
65 = 2096064138326431421431102911130575786290570655358368733211779984837941120

A
16
66 = 14569963294458664326355487170744990843837617978935772288101581858605054795552





A
16
67 = 85510894526060064479316734488318369938132499492635355684079016542478398862657864

A
16
68 = 412061904138340651838258915451864484939896797157076661122864740989298055974944944860

A
16
69 = 1565488852371982431316111853396983584332969710134675077027530620252550946995296142083840

A
16
70 = 4396915838403660911650398295638009077743887167941233305415838283721851832492505632039216600

A
16
71 = 8116969816624838830801088499939113019151857945741585158878344261113649308345975704397677746552

A
16
72 = 7388140606757652316551184042840864111185122735762129471990462501850454686856236449205248928744000

A
17
52 = 91785145914

A
17
53 = 119568071490464520

A
17
54 = 10876487640570887324220

A
17
55 = 621102090153359698291706760

A
17
56 = 28238160854835833114504984355630

A
17
57 = 1108157813543413273298620857135636384

A
17
58 = 38775184810475101465606055160117405564240

A
17
59 = 1225103937489704214641684550738372081401867040

A
17
60 = 35065204191503035433370193365900354965138410343220

A
17
61 = 907681334214185700293457448447939059762410127375389040

A
17
62 = 21148992310071639157319140376118406012552458647322343552104

A
17
63 = 440433013676879236893987806136656868350246431929409050119051760

A
17
64 = 8121963269773109567799825717572208415238032374371172660779462080935

A
17
65 = 131053992016717789535549409271373358424539240220722655090265729644991520

A
17
66 = 1822065408520163738870424152706593276741607710040279908656389811919195138640

A
17
67 = 21388164637920075231207019666260593943281471778008463404787560606822242957167264

A
17
68 = 206136296922893252992206955250803722581601758817278054057532415849969910288340400530

A
17
69 = 1566313196283169849483675135686582410839308059520962831364429490936069174691076805799880

A
17
70 = 8798562961666445456747404278061261720915854841679239454779813701598944111469025441396899260

A
17
71 = 32485657545476650031612695113466571071302528277208662980584517567048303332047772821412291200200

A
17
72 = 59137996348791480849060255032023289944440456051110588987685446949657888979888248008238833107438014

A
18
53 = 6925814280

A
18
54 = 41633686367645680

A
18
55 = 7110932897974106927880

A
18
56 = 754211539074414108843640980

A
18
57 = 63423329995483370407100946178080

A
18
58 = 4586415483573974202270056789964917760

A
18
59 = 294491637031994357741746928793608969561760

A
18
60 = 16991872114526357377832602307286644766060020160

A
18
61 = 883153875916679200824308045231692663084215252606960

A
18
62 = 41235857517984555417125494178003297994637730835282021600

A
18
63 = 1719181014229697928550610723912656541514431874535650095049840

A
18
64 = 63437583041281769529506728331921094069086081087366311606734599715

A
18
65 = 2047734190087446156226619336717829362574563088117977106772182932353440

A
18
66 = 56947146431648042555284114475173533510040271560465073966856530321990843520

A
18
67 = 1337025481114032804475407227912070643719333896897402714590595228271479469161760

A
18
68 = 25773033739728957466090285585751484952239752000452490075248549223383319255973025920

A
18
69 = 391676899706127013929640460362950859336670545531213587469157046725259559288883299918920

A
18
70 = 4400439592836837299246023837545459158635871405367790475261082954710874322561885273696843440

A
18
71 = 32494457316844752298076258429576263703774764892173813459037207008732793326399448966741347425480

A
18
72 = 118308708473155269143397725363882277259301381884130516531324599186219552091966687573978561521721500

A
19
54 = 384767460

A
19
55 = 13574257257634920

A
19
56 = 4316206916914350046380

A
19
57 = 846886496449285260356087040
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A
19
58 = 131233166977718046462446926047600

A
19
59 = 17414637704801820936631501490357356320

A
19
60 = 2042031288996709121057764826604429828234240

A
19
61 = 213954556825326687015667926161154093640360076160

A
19
62 = 20058455043744581476101383609751327099066200223761880

A
19
63 = 1675813186831380943456808190917907739002715900630197527600

A
19
64 = 123795878807600707307440810319393871453070674355820642453803155

A
19
65 = 7996062460977456467892397150554581634041075528321961532379112284160

A
19
66 = 444847808116364032687377195597980218086416295591279898660806284876131440

A
19
67 = 20891182380925593819234824942951053265676087818348503044342559215487248051360

A
19
68 = 805464144296283149963944417065653745157738116758483751382579578660879181446345600

A
19
69 = 24482327701704645379861600978300646757824190363649601336301075270215315143208155347840

A
19
70 = 550121049456142694540804092824457463039087484159955274973975043170152032668212699144161380

A
19
71 = 8124668030867761175493346519394193672775568892371150395514245480042371731236933254379668840360

A
19
72 = 59162365588290038169002475595445183255308173092215076405922725794471995564584722587245822485012180

A
20
55 = 13991544

A
20
56 = 4116828755139210

A
20
57 = 2423095728924282545760

A
20
58 = 876125201411206748940166800

A
20
59 = 249132645773956065096294312470400

A
20
60 = 60373928711899357166115488370776253864

A
20
61 = 12855466935359326733412979662187747242762720

A
20
62 = 2429558609423662256153967965565013819100016795120

A
20
63 = 407560773638120830432182276682869813750267376837348400

A
20
64 = 60332885353747115256639703916764423504767542486653695702375

A
20
65 = 7801520140136982410773959180903464522826423028907298435900497184

A
20
66 = 868474625815693886589642068437345973569656109416851619631668662596080

A
20
67 = 81591548827415604283291460517070570249601961602450727858618564013861519680

A
20
68 = 6292334521624135504056733679163987077407503895228538269661654631512658991108200

A
20
69 = 382538558559786908366159620988199617590593109278610028977498671506309947031037386400

A
20
70 = 17191922201551296946518243693371987771220599732236378317275013023571410496010973434667664

A
20
71 = 507818871649045277137743892531559339004807871879265361952440021302382025712661148215752870040

A
20
72 = 7395754138992062767165073548024989279036655414231847889717712633092017708102568224224186795595410

A
21
56 = 249849

A
21
57 = 1155454037311920

A
21
58 = 1253342414351456000280

A
21
59 = 831593711629646072913592080

A
21
60 = 431840549770885657380316677169740

A
21
61 = 190034512033664652674144671680143310000

A
21
62 = 72987933430548113778873059230321635511170216

A
21
63 = 24681948601782709462798632222776706930368480508560

A
21
64 = 7336312588942781029178877652684396433834734422473374785

A
21
65 = 1901007774469869451492941803338030657122180265578389984202384

A
21
66 = 423659289812754351626523310378051584332740109457096029436165094824

A
21
67 = 79642923395455817476522802592633904845542678453505245985611012739481776

A
21
68 = 12287119705186101373602247311798665937572373207577164033222701773452990985740

A
21
69 = 1494158707905644163319152654253046264157869423103703516968503414581351822280340240

A
21
70 = 134308241442925257842455305756017932523251311927455723328985345845608694256324607454744

A
21
71 = 7934700134435878836803084652541750287234936131259378422913302029253174371234965973816624560

A
21
72 = 231121835284777594218855048972987718277278310423314110893791759777383698164381844279451258558337

A
22
58 = 298824321028320





A
22
59 = 594810682155739042560

A
22
60 = 720722153715960241404009360

A
22
61 = 679626421233088297530861028154880

A
22
62 = 539460163619348009370967813245123472416

A
22
63 = 370737669218995290083738328766314722100829440

A
22
64 = 222140821896565637575344265656888306297475297705515

A
22
65 = 115576889635959843004105607031405291101815909909094461440

A
22
66 = 51616038165707818604575677452179944869536268129017593003114528

A
22
67 = 19425399673106467616261561281351231423026565802847758813299382546688

A
22
68 = 5996739341801833254394502799238819699716186522429063866167915524084701520

A
22
69 = 1458807474274935694248129189661888570951667979871963305802487494967448601489920

A
22
70 = 262293202477786767915228435310314911360247931388743671982896823329387253859888407776

A
22
71 = 30993562655595250684084192315862416382973105089564202967667861412021536780860502900776704

A
22
72 = 1805615660099799480678377543995155866286673312952856452476682325361880846652010900891809063048

A
23
59 = 70907466006720

A
23
60 = 257752202034594037680

A
23
61 = 567128671469266235025191040

A
23
62 = 964637187271445621561210667564480

A
23
63 = 1370067051623001214368046118674792595520

A
23
64 = 1668331649381212214710316799778759304872697355

A
23
65 = 1749799307595981303431361322399826099996026884768000

A
23
66 = 1569055898022959582391861068325862169487550137176286794880

A
23
67 = 1183326208451856065567822523424297219779222605525102438914123584

A
23
68 = 731314993762926869281687982061476092598790571255070643647455064570160

A
23
69 = 355983235665301246921672306141218063791685737048505127574592174050016282240

A
23
70 = 128042668716808741402719295208229716872299993582219489257739403751835102167739840

A
23
71 = 30263716064760017255210031753637537337305748737891555684390998966529565863207816462272

A
23
72 = 3526408527632137907192496430987527549817601918166775464693608229569926436720097112958762664

A
24
60 = 15363284301456

A
24
61 = 101410883776966458240

A
24
62 = 402479509536933710964001920

A
24
63 = 1224940071724941735103512403145600

A
24
64 = 3082661718337655095313351385199012513995

A
24
65 = 6570684316332491611646511428899742774136285696

A
24
66 = 11877470900891506544000753226591760128252098775089280

A
24
67 = 17985666166434936407014876845922346782352291237739025213440

A
24
68 = 22274464294187982917454699968087160477342780767918297230530727440

A
24
69 = 21706364722734954590825880701863936589013405925361475113864697590252160

A
24
70 = 15622642759603072389961907160242716412744410064104796821287090195243960377856

A
24
71 = 7386830397599179405305844437539147469225746695414990937783319107993006642618002560

A
24
72 = 1721676464793356621161715318290305354795049188795204288082316098435741951465188883835176

A
25
61 = 3022285436352

A
25
62 = 35984539855593385056

A
25
63 = 255542899871141573632061120

A
25
64 = 1378059844639369297327302184026795

A
25
65 = 6070483161742780561969328853572357845248

A
25
66 = 22300546195846170183101713089951783230283831168

A
25
67 = 68073994879855908408998019500164984822904598995587584

A
25
68 = 169277193401243625371989610389769324899893520427783229191040

A
25
69 = 330566630153615798530535038522231019057820395322264414149476418880

A
25
70 = 476300637733489528581152795309074569926757123049671665290624066329698976
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A
25
71 = 450637169770252784461655810642696029489430742230783725703397951289987366234944

A
25
72 = 210114731242900445669191776227735398929809650224403244319102449183461598303399669992

A
26
62 = 536211932256

A
26
63 = 11423668723226439680

A
26
64 = 143742982384058854513351635

A
26
65 = 1356860056204626258313938304992960

A
26
66 = 10301435325549384980023245134493634623456

A
26
67 = 63906103715955245958961737997262837332643204928

A
26
68 = 320348526030712310558843008602968463997834034293357680

A
26
69 = 1256087103712942021279932667433866746008751885481624671670080

A
26
70 = 3626791885255381424209226617138549544452069177675727293829008128768

A
26
71 = 6869469870277425395453042962839815435697833172794724311330204957907261120

A
26
72 = 6409068744122857856120010263013527236791953146280100898021270419908460285743632

A
27
63 = 85113005120

A
27
64 = 3212907582455465895

A
27
65 = 70765801250744192697387360

A
27
66 = 1151275687058983060973498185137360

A
27
67 = 14760272345639051315407932428261666561568

A
27
68 = 150367375577101990878630478403539285621926891240

A
27
69 = 1188540051648965494113817895237600007847921318069702560

A
27
70 = 6890538483621415394685790708206371345765953408784619850326480

A
27
71 = 26153780421491506597795603793530083337777166470215471441231813003936

A
27
72 = 48849589312499574871626141593375345932676699295912895852595530922711656036

A
28
64 = 11969016345

A
28
65 = 790869653037289584

A
28
66 = 30021860528280425439641160

A
28
67 = 824794699514729501324520716996880

A
28
68 = 17365030352313510603336673070018042863380

A
28
69 = 278942446335605189120732454037106056803642900240

A
28
70 = 3259996395109724020118515034055203624965270667207730504

A
28
71 = 24844764904317181905905028952088885958618809694615361611519600

A
28
72 = 92991243776109801330933044962995602584482340533370848828042067783638

A
29
65 = 1473109704

A
29
66 = 167760239587681356

A
29
67 = 10754100285250493678782968

A
29
68 = 485173405635479551900917214591230

A
29
69 = 16106696732104692843724862597286619453560

A
29
70 = 382549688318630339293134860142522838754859526860

A
29
71 = 5877177353957714156300364040693775490298389029001828168

A
29
72 = 44168476736557842173284414737652738964785924854544892650432509

A
30
66 = 156238908

A
30
67 = 30046610998847520

A
30
68 = 3162970820156241228133230

A
30
69 = 225007968705266501624605825024320

A
30
70 = 11044592710252478399955496406370814096668

A
30
71 = 344833543642750346105055568743354072701556509088

A
30
72 = 5224157988006590715514217776937286064546419583814819661

A
31
67 = 13991544

A
31
68 = 4418619333465330

A
31
69 = 733442526440062448961840

A
31
70 = 77145591439271388704096972230920





A
31
71 = 4977844753921999415126317357027735827096

A
31
72 = 153259357638819211161560924059620517872586611225

A
32
68 = 1028790

A
32
69 = 512303694892080

A
32
70 = 125733006047537340149376

A
32
71 = 17384922262407929012308656532080

A
32
72 = 1106187740237242534328800688995825752093

A
33
69 = 59640

A
33
70 = 43911745452828

A
33
71 = 14167099359548493975288

A
33
72 = 1931658043126770604897085373879

A
34
70 = 2556

A
34
71 = 2473901157312

A
34
72 = 787061077970013304047

A
35
71 = 72

A
35
72 = 68719476663

A
36
72 = 1
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