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Abstract

A greedy 1-subcode is a one-dimensional subcode of minimum (support) weight. A
greedy r-subcode is an r-dimensional subcode with minimum support weight under
the constraint that it contain a greedy (r − 1)-subcode. The r-th greedy weight er
is the support weight of a greedy r-subcode. The greedy weights are related to the
weight hierarchy. We use recent results on the weight hierarchy of product codes to
develop a lower bound on the greedy weights of product codes.
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1 Introduction

Generalised Hamming weights have received a lot of attention after Victor
Wei's paper [10] in 1991. Chen and Kløve [1,2] have introduced the greedy
weights, inspired by [3]. The greedy weights coincide with the generalised
Hamming weights if and only if the code satis�es the chain condition [11].

Recent works [7,5,9] have treated the generalised Hamming weights of product
codes. In this paper we build on the technique from [7] to give a lower bound
on the greedy weights of product codes, in terms of the greedy weights of the
component codes. We also give an analogous result for the top-down greedy
weights introduced in [8].

1 Part of the work was done at the ENST, 46 rue Barrault, 75013 Paris, France;
with support from NFR under grant ?
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The layout of the paper is as follows. In this section we will present some basic
notation and the result on weight hiearchies. This result is included to show
how parallel the new result is. In Section 2 we de�ne the greedy weights and
present the new result. Section 3 gives some preliminaries for the proof, which
appears in Section 4.

1.1 Product Codes and Weight Hierarchies

An [n, k] code is a k-dimensional subspace C 5 V of some n-dimensional
vector space V. The support of a vector c = (c1, c2, . . . , cn) ∈ V is the set

χ(c) := {i | ci 6= 0},

and the support of a subset S ⊆ V is the set

χ(S) :=
⋃
c∈S

χ(c).

The weight hierarchy of the code C 5 V is the sequence

(d1(C), d2(C), . . . , dk(C)),

where
dr(C) := min{#χ(D) | D 5 C, dimD = r}.

Clearly d1(C) is the minimum distance, and for convenience we have d0(C) =
0.

Let C1 be an [n1, k1] code and C2 an [n2, k2] code over the same �eld F. The
product code C1⊗C2 is the tensor product of C1 and C2 as vector spaces over
F. In other words

C1 ⊗ C2 = 〈a⊗ b | a ∈ C1, b ∈ C2〉,

where

a⊗ b = (aibj | 1 ≤ i ≤ n1, 1 ≤ j ≤ n2),

a = (a1, a2, . . . , an1),

b = (b1, b2, . . . , bn2).

The product code is an [n1n2, k1k2] code.

De�ne
Mt := {i = (i1, i2, . . . , it−1) | 1 ≤ ij ≤ kj, 1 ≤ j < t}.

De�nition 1 Let π be a mapMt → {0, 1, . . . , kt}. We call π a (k1, k2, . . . , kt)-
partition of r if
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(1)
∑

i∈Mt
π(i) = r.

(2) π is a decreasing function in each coordinate, i.e.

π((i1, . . . , ij, . . . , it−1)) ≤ π((i1, . . . , ij − 1, . . . , it−1)),

for all j where 0 < j < t and 1 < ij.

Wei and Yang [11] introduced an expression d∗r to serve as a bound. This
expression was generalised for products of more than two codes in [5]:

d∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct) := min
{
∇(π) | π ∈ P(k1, k2, . . . , kt; r)

}
,

where

∇(π) =
∑

i∈Mt

t−1∏
j=1

(dij(Cj)− dij−1(Cj))dπ(i)(Ct).

The chain condition says that there exists a sequence of subcodes

{0} = D0 < D1 < . . . < Dk = C,

such that Di has dimension i and weight di(C). Many good codes satisfy the
chain condition, such as the Hamming, Reed-Muller, MDS, and the extended
Golay codes. Nevertheless, most codes do not satisfy this condition [3].

Theorem 2 If C1, C2, . . . , Ct are arbitrary linear codes, then

dr(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≥ d∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct).

Equality holds if all the component codes satisfy the chain condition.

This theorem was �nally proved in [9]. Partial results had appeared in [11,7,5].

2 Greedy weights

2.1 De�nitions

The greedy weights were introduced in [1,2], inspired by some other parameters
from [3]. The greedy weights are motivated by the following problem. Consider
the Wire-Tap Channel of Type II [6] and a `greedy' adversary. That is to say
that the adversary will �rst read bits to get one information bit as soon as
possible. Having obtained i information bits, he will try to get the (i + 1)-st
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bit as soon as possible. The r-th greedy weight is the least number of bits
required to obtain r information bits by this approach.

The top-down greedy weights were introduced in [7], and it was shown that
the greedy weights of C is determined by the top-down greedy weigths of the
dual code.

A (bottom-up) greedy 1-subcode is a minimum 1-subcode. A (bottom-up)
greedy r-subcode, r ≥ 2, is any r-dimensional subcode containing a (bottom-
up) greedy (r − 1)-subcode, such that no other such code has lower weight.
The r-th greedy weight er is the weight of a greedy r-subcode

We have obviously that d1 = e1 and dk = ek, for any k-dimensional code. For
most codes e2 > d2 [3]. The chain condition is satis�ed if and only if er = dr
for all r.

A top-down greedy k-subcode is C. A top-down greedy r-subcode is a subcode
of dimension r, contained in a greedy (r + 1)-space, such that no other such
subscode has lower weight. The rth top-down greedy weight ẽr is the weight
of a top-down greedy r-subcode.

Remark 3 The top-down greedy weights share many properties with the (bot-
tom-up) greedy weights. For all codes ẽr ≥ dr. The chain condition holds if
and only if ẽr = dr for all r. In general, ẽr may be equal to, greater than, or
less than er.

2.2 The result

De�ne the greedy di�erences

εi(C) := ek−i(C)− ek−1−i(C),

ε̃i(C) := ẽk−i(C)− ẽk−1−i(C).

We de�ne the greedy analogues of ∇ as follows.

∇E(π) :=
∑

i∈Mt

eπ(i)(Ct)
t−1∏
j=1

εkj−ij(Cj),

∇̃E(π) :=
∑

i∈Mt

ẽπ(i)(Ct)
t−1∏
j=1

ε̃kj−ij(Cj).
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We also de�ne e∗r and ẽ
∗
r analogously to d∗r.

e∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct) := min
{
∇E(π) | π ∈ P(k1, k2, . . . , kt; r)

}
,

ẽ∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct) := min
{
∇̃E(π) | π ∈ P(k1, k2, . . . , kt; r)

}
.

Theorem 4 We have

er(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≥ e∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct),
ẽr(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≥ ẽ∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct).

Remark 5 The bound in the conjecture may or may not be met with equality.
This is obvious if we consider chained component codes. Then dj(Ci) = ej(Ci),
and dr = e∗r. If the product code is chained, then er = dr = e∗r. Otherwise
er > dr = e∗r for some r. It was shown in [7] that such a product code may or
may not be chained.

3 Preliminaries

3.1 Projective multisets

A projective multiset is a collection of projective points which are not neces-
sarily distinct. We usually de�ne it as a map

γ : Pk−1 → {0, 1, 2, . . .},

where γ(x) is the number of times x occurs in the collection. This is extended
for any S ⊆ Pk−1 such that

γ(S) =
∑
x∈S

γ(x).

We call γ(S) the value of S.

Let C be a linear code and G a generator matrix for C. Codes obtained from
C by permuting columns of G or by replacing some columns with proportional
columns are equivalent to C. The projective multiset γC corresponding to C
is the multiset of columns of G, considered as projective points. The multiset
γC de�nes C up to equivalence.

Helleseth et al. [4] proved that there is a one-to-one correspondence between
subcodes D 5 C and subspaces Π 5 Pk−1 such that

dim Π + dimD = k − 1,

γC(Π) + w(D) = n.
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This implies that

dr(C) = n−max{γC(Π) | Π 5 Pk−1, dim Π = k − 1− r}.

Let D′ 5 D 5 C, and let Π and Π′ be projective subspaces corresponding to
D and D′ respectively. Then it follows by the proof in [4] that Π 5 Π′.

IfD is a (bottom-up) greedy (k−1−r)-subcode, then we call the corresponding
subspace Π a (bottom-up) greedy r-space. A (bottom-up) greedy r-space can be
equivalently de�ned by the following recursion. The only (bottom-up) greedy
(k− 1)-space is Pk−1. A (bottom-up) greedy r-space is r-space contained in a
(bottom-up) greedy (r+ 1)-space such that no other such subspace has higher
value.

Analogously, a top-down greedy r-space correspond to a top-down greedy
(k−1−r)-subcode. The only top-down greedy (−1)-space is the empty set. A
top-down greedy r-space is an r-space containing a top-down greedy (r − 1)-
space such that no other such subspace has higher value.

3.2 The product of Projective Multisets

The map (a, b) 7→ a⊗ b, which was used to de�ne the tensor product, is well-
de�ned also for projective points. It de�nes the injective map known as the
Segre embedding

σ : Pk1−1 × Pk2−1 ↪→ P k1k2−1.

The image under the Segre embedding is called the Segre variety. This em-
bedding is well known in algebraic geometry.

Proposition 6 Let γ1 and γ2 be the projective multisets corresponding to the
codes C1 and C2 respectively. Then γ := σ(γ1, γ2) is the projective multiset
corresponding to C1 ⊗ C2.

We give a precise explanation of σ(γ1, γ2). It means that γ(a⊗b) = γ1(a)γ2(b),
and γ(x) = 0 for all x which is not on the Segre variety. Proposition 6 was
proved in [7], but it should not be to hard to verify it by studying generator
matrices of C1, C2, and C.

3.3 Rede�ning the problem

Analougously to the approach for weight hierarchies we will now reformulate
the problem in terms of projective multisets.
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For every π ∈ P(k1, k2, . . . , kt; r), the dual partition [9] is de�ned as

π∗(i) := kt − π((k1 + 1, k2 + 1, . . . , kt−1 + 1)− i).

Note that π∗ ∈ P(k1, k2, . . . , kt; k − r) where k =
∏t
i=1 ki, and if ψ = π∗, then

π = ψ∗.

We de�ne, analogously to ∆i(C) in [7],

Ei(C) :=
i∑

j=0

εi = ek(C)− ek−1−i(C), (1)

Ẽi(C) :=
i∑

j=0

ε̃i = ẽk(C)− ẽk−1−i(C). (2)

Analougously to ∆(π) in [7] we de�ne

E(π) :=
∑

i∈Mt

Eπ(i)−1(Ct)
t−1∏
j=1

εij−1(Cj), (3)

Ẽ(π) :=
∑

i∈Mt

Ẽπ(i)−1(Ct)
t−1∏
j=1

ε̃ij−1(Cj). (4)

Lemma 7 The above de�nition is equivalent to

E(π) = n−∇E(π∗),

Ẽ(π) = n− ∇̃E(π∗).

PROOF. We prove the �rst statement explicitely. The second statement is
proved similarily by replacing εi(Cj) with ε̃i(Cj).

First note that

∇E(π∗) =
∑

i∈Mt

eπ∗(i)(Ct)
t−1∏
j=1

εkj−ij(Cj) =
∑

i∈Mt

eπ∗(k+1−i)(Ct)
t−1∏
j=1

εij−1(Cj),

where k denotes an all-k vector, and 1 an all-1 vector. Hence

∇E(π∗) =
∑

i∈Mt

ekt−π(i)(Ct)
t−1∏
j=1

εij−1(Cj).
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We combine this with (3) to get

E(π) +∇E(π∗) =
∑

i∈Mt

(Eπ(i)−1(Ct) + ekt−π(i)(Ct))
t−1∏
j=1

εij−1(Cj)

=nt
∑

i∈Mt

t−1∏
j=1

εij−1(Cj).

It only remains to prove that

∑
i∈Mt

t−1∏
j=1

εij−1(Cj) = n1 · n2 · . . . · nt−1. (5)

This is obviously true if t = 2, so we prove it by induction. We have

∑
i∈Mt

t−1∏
j=1

εij−1(Cj) =
kt−1∑
it−1=1

εit−1−1(Ct−1)
∑

i∈Mt−1

t−2∏
j=1

εij−1(Cj)

= nt−1

∑
i∈Mt−1

t−2∏
j=1

εij−1(Cj).

Hence (5) follows by induction, and the lemma is proved. �

Similarily to e∗r and ẽ∗r, we de�ne E∗r and Ẽ∗r , which will give bounds on Er
and Ẽr.

E∗r (C1 ⊗ C2 ⊗ . . .⊗ Ct) := max{E(π) | π ∈ P(k1, k2, . . . , kt; r + 1)},
Ẽ∗r (C1 ⊗ C2 ⊗ . . .⊗ Ct) := max{Ẽ(π) | π ∈ P(k1, k2, . . . , kt; r + 1)}.

Lemma 8 The following two statements are equivalent

er(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≥ e∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct),
Er(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≤ E∗r (C1 ⊗ C2 ⊗ . . .⊗ Ct).

Also the following two equations are equivalent

ẽr(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≥ ẽ∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct),
Ẽr(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≤ Ẽ∗r (C1 ⊗ C2 ⊗ . . .⊗ Ct).

PROOF. By Lemma 7, we get that

E∗r (C1 ⊗ C2 ⊗ . . .⊗ Ct) + e∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct) = n.

By de�nition Er + er = n. Hence the �rst equivalence follows. The second
equivalence is proved in the same way. �
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3.4 The associated partition

Let γi be the projective multiset corresponding to Ci. Let C = C1⊗C2⊗. . .⊗Ct,
where dimC = k, and let C ′ = C2 ⊗ . . . ⊗ Ct with dimC ′ = k′. Let γ and γ′

be the projective multiset corresponding to C and C ′ respectively.

The associated partition was introduced in [9]. We de�ne it �rst in the case
where t = 2.

De�nition 9 Let Π 5 Pk−1. For 0 ≤ i ≤ k1− 1, let θi(Π) be the set of points
p ∈ Pk2−1 such that there is an i-space Φi

Π(p) 5 Pk1−1 with Φi
Π(p) ⊗ p ⊆ Π.

The associated partition of Π is given by

π(Π)(i) = dim〈θi−1(Π)〉+ 1.

Obviously θi(Π) ⊆ θi−1(Π). Hence π(Π) is in deed a partition.

The i-th subpartition π|i of π, is de�ned by

π|i(i2, i3. . . . , it−1) = π(i, i2, i3, . . . , tt−1).

We can no de�ne the associated partition for arbitrary t by recursion.

De�nition 10 Let Π 5 Pk−1. For 0 ≤ i ≤ k1−1, let θi(Π) be the set of points
p ∈ Pk′−1 such that there is an i-space Φi

Π(p) 5 Pk1−1 with Φi
Π(p)⊗p ⊆ Π. We

de�ne the associated partition π(Π) by its subpartitions π(Π)|i = π(〈θi−1(Π)〉).

It is clear that π(Π) ∈ P(k1, k2, . . . , kt; r + 1) for some r where dim Π ≥ r [9].
We de�ne Θi(Π) := 〈θi(Π)〉. For every point p ∈ Pk′−1 we let ΦΠ(p) = Φi

Π(p)
for the largest i for which this is de�ned.

We de�ne a partial ordering on the set of partitions, such that π ≤ π′ if and
only if π(i) ≤ π′(i) for all i ∈Mt.

4 The proof

4.1 The Simple Case

We start with the simple case where t = 2. We proceed by induction on t in
Section 4.2.
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De�nition 11 Let Π 5 Pk−1 and π = π(Π) ∈ P(k1, k2; r + 1). We call Π a
normal subspace associated with π if

(1) all the Θi(Π) are greedy subspaces.
(2) for each i and for all x ∈ Θi\Θi+1 with γ2(x) > 0, ΦΠ(x) is a greedy

i-space.
(3) dim Π = r.

Lemma 12 Let Π be a normal r-space, and let Π′′ < Π. Then, for any par-
tition π′ ∈ P(k1, k2; r) such that π(Π′′) ≤ π′ < π(Π), we have γ(Π′′) ≤ E(π′).
Equality holds if and only if Π′′ is a normal subspace associated with π′.

PROOF. We write Θ′′i = Θi(Π
′′) and Θi = Θi(Π). Observe that

γ(Π′′) =
k1−1∑
i=0

∑
x∈Θ′′i \Θ

′′
i+1

γ2(x)γ1(ΦΠ′′(x)). (6)

We choose a partition π′ according to the lemma. There is a unique s such
that π′(s+ 1) = π(s+ 1)− 1. Let Θ′s be an arbitrary subspace such that

Θ′′s 5 Θ′s < Θs,

dim Θ′s = dim Θs − 1 = π′(s+ 1)− 1.

Since Θs is a greedy subspace, we get that γ(Θ′s) ≤ Eπ′(s+1)−1(C2). Write
Θ′i = Θi for all i 6= s. Thus we get, for all i,

Θ′′i ⊂ Θ′i, (7)

γ2(Θ′′i ) ≤ γ2(Θ′i) ≤ Eπ′(i+1)−1(C2). (8)

If y ∈ Θs\Θ′s, then ΦΠ′′(y) < ΦΠ(y). Since ΦΠ(y) is a greedy s-space, we get
that

γ1(ΦΠ′′(y)) ≤ Es−1(C1).

Clearly ΦΠ′′(x) 5 ΦΠ(x) for all x ∈ Pk2−1. Furthermore, we have

γ1(ΦΠ(x)) ≤ Ei(C1), ∀x ∈ Θi\Θi+1.

Hence we get for any i that

γ1(ΦΠ′′(x)) ≤ Ei(C1), ∀x ∈ Θ′i\Θ′i+1. (9)
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Thus we get from (6) that

γ(Π′′) ≤
k1−1∑
i=0

∑
x∈Θ′′i \Θ

′′
i+1

γ2(x)Ei(C1). (10)

This may be simpli�ed further to

γ(Π′′) ≤
k1−1∑
i=0

Ei(C1)γ2(Θ′′i \Θ′′i+1)

=
k1−1∑
i=0

Ei(C1)(γ2(Θ′′i )− γ2(Θ′′i+1))

=
k1−1∑
i=0

Ei(C1)γ2(Θ′′i )−
k1∑
i=1

Ei−1(C1)γ2(Θ′′i ).

Now observe that Θ′′k1
is the empty set, and ε0(C1) = E0(C1). Hence

γ(Π′′) ≤
k1−1∑
i=0

εi(C1)γ2(Θ′′i ) ≤
k1∑
i=1

εi−1(C1)Eπ′(i)−1(C2) = E(π′),

by (8). This proves the bound in the lemma.

It remains to prove that equality depends on Π′′ being a normal subspace
associated with π′. Assume therefore that γ(Π′′) = E(π′). Then we must have
equality in (8), which requires equality in (7). It follows that π(Π′′) = π′.
Another necessary condition for equality in (8), is that all the Θ′i are greedy
subspaces.

We must also have equality in (10), which in turn depends on equality in (9).
Hence ΦΠ′′(x) must be a greedy subspace for any x ∈ Pk2−1.

Finally we observe that dim Π′′ ≤ r − 1 since it is a proper subspace of Π.
Also dim Π′′ ≥ Σπ′ − 1 = r − 1. Hence dim Π′′ = r − 1. Thus we have proved
the three conditions for Π′′ to be a normal subspace associated with π′, and
the lemma follows by induction. �

De�nition 13 A greedy basis of Pki−1 is a basis p0, p1, . . . , pk1−1 such that
〈p0, p1, . . . , pr〉 is a greedy r-space.

Lemma 14 Given a �xed greedy basis for each space Pk1−1 and Pk2−1, there
is a well-de�ned normal subspace Ππ associated with every partition π, such
that if π′ ≤ π, then Ππ′ 5 Ππ.
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PROOF. Let b0, b1, . . . , bk2−1 be the greedy basis for Pk2−1. Write

Ψi = 〈b0, b1, . . . , bi〉.

Let p0, p1, . . . , pk1−1 be the greedy basis for Pk1−1. We de�ne Ππ by the follow-
ing formula,

Πr = 〈pi ⊗Ψπr(i+1)−1 | 0 ≤ i < k1〉.
It is straight forward to verify the properties of Πr. �

Proposition 15 If Π 5 Pk−1 is a greedy subspace of dimension r, then Π is
a normal subspace and γ(Π) = E(π) where π = π(Π) ∈ P(k1, k2; r + 1)

We omit the proof, which is exactly identical to that of Proposition 20.

Corollary 16 For all codes C1 and C2, we have

Er(C1 ⊗ C2) ≤ max{E(π) | π ∈ P(k1, k2; r + 1)}.

4.2 The General Case

We generalise the results from the last section by induction on t. We de�ne
normal subspaces recursively as follows.

De�nition 17 Let Π 5 Pk−1 and π = π(Π) ∈ P(k1, k2, . . . , kt; r+ 1). We call
Π a normal subspace associated with π if

(1) for each i, Θi(Π) is a normal subspace associated with π|i+1.
(2) for each i and for all x ∈ Θi\Θi+1 with γ′(x) > 0, ΦΠ(x) is a greedy

i-space.
(3) dim Π = r.

Lemma 18 Let Π be a normal r-space, and let Π′′ < Π be a subspace. Then
for any partition π′ ∈ P(k1, k2, . . . , kt; r) such that π(Π′′) ≤ π′ ≤ π(Π), we
have γ(Π′′) ≤ E(π′). Equality holds if and only if Π′′ is a normal subspace
associated with π′.

PROOF. This was proved for t = 2 in Lemma 12. We assume that it holds
for t− 1 and prove it for t.

We write Θ′′i = Θi(Π
′′) and Θi = Θi(Π). Observe that

γ(Π′′) =
k1−1∑
i=0

∑
x∈Θ′′i \Θ

′′
i+1

γ′(x)γ1(ΦΠ′′(x)). (11)
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We choose a partition π′ according to the lemma. We write ui := Σπ|i+1 − 1
and u′i := Σπ′|i+1−1 for brevity. There is a unique s such that u′s+1 = us+1−1.
Let Θ′s be an arbitrary subspace such that

Θ′′s 5 Θ′s < Θs,

dim Θ′s = dim Θs − 1 = u′s+1.

Since Θs is a normal subspace, we get that γ(Θ′s) ≤ Eu′s+1
(C ′), by the induction

hypothesis. Write Θ′i = Θi for all i 6= s. Thus we get, for all i,

Θ′′i ⊂ Θ′i, (12)

γ′(Θ′′i ) ≤ γ′(Θ′i) ≤ Eu′i+1
(C ′). (13)

If y ∈ Θs\Θ′s, then ΦΠ′′(y) < ΦΠ(y). Since ΦΠ(y) is a greedy subspace of
dimension s, we get that

γ1(ΦΠ′′(y)) ≤ Es−1(C1).

Clearly ΦΠ′′(x) 5 ΦΠ(x) for all x ∈ Pk′−1. Furthermore, we have

γ1(ΦΠ(x)) ≤ Ei(C1), ∀x ∈ Θi\Θi+1.

Hence we get for any i that

γ1(ΦΠ′′(x)) ≤ Ei(C1), ∀x ∈ Θ′i\Θ′i+1. (14)

From (11) we �nd that

γ(Π′′) ≤
k1−1∑
i=0

∑
x∈Θ′′i \Θ

′′
i+1

γ′(x)Ei(C1). (15)

This may be simpli�ed further to

γ(Π′′) ≤
k1−1∑
i=0

Ei(C1)γ′(Θ′′i \Θ′′i+1)

=
k1−1∑
i=0

Ei(C1)(γ′(Θ′′i )− γ′(Θ′′i+1))

=
k1−1∑
i=0

Ei(C1)γ′(Θ′′i )−
k1∑
i=1

Ei−1(C1)γ′(Θ′′i ).

Now observe that Θ′′k1
is the empty set, and ε0(C1) = E0(C1). Hence

γ(Π′′) ≤
k1−1∑
i=0

εi(C1)γ′(Θ′′i ) ≤
k1∑
i=1

εi−1(C1)Eu′i(C
′) = E(π′),

13



by (13) and the induction hypothesis. This proves the bound in the lemma.

It remains to prove that equality depends on Π′′ being a normal subspace
associated with π′. Assume therefore that γ(Π′′) = E(π′). Then we must have
equality in (13), which requires equality in (12). It follows that π(Π′′) = π′.
Another necessary condition for equality in (13), is that all the Θ′i are greedy
subspaces. By the induction hypothesis it follows that Θi is a normal subspace
associated with π′|i+1.

We must also have equality in (15), which in turn depends on equality in (14).
Hence ΦΠ′′(x) must be a greedy subspace for any x ∈ Pk′−1.

Finally we observe that dim Π′′ ≤ r − 1 since it is a proper subspace of Π.
Also dim Π′′ ≥ Σπ′ − 1 = r − 1. Hence dim Π′′ = r − 1. Thus we have proved
the three conditions for Π′′ to be a normal subspace associated with π′, and
the lemma follows by induction. �

Lemma 19 Given a �xed greedy basis for each space Pki−1, there is a well-
de�ned normal subspace Ππ associated with every partition π, such that if
π′ ≤ π, then Ππ′ 5 Ππ.

PROOF. This holds for t = 2 by Lemma 14. We prove it for all t by induction.
Therefore we assume that for every πr ∈ P(k2, k3, . . . , kt; r+1), there is a well-
de�ned normal subspace Ψπr 5 P

k′−1 associated with πr. Let p0, p1, . . . , pk1−1

be a greedy basis for Pk1−1.

The Ππ may be given by the following formula,

Ππ = 〈pi−1 ⊗Ψπ|i | 1 ≤ i ≤ k1〉.

It is straight forward to verify the properties of this subspace. �

Proposition 20 If Π 5 Pk−1 is a greedy subspace of dimension r, then Π is a
normal subspace and γ(Π) = E(π) where π = π(Π) ∈ P(k1, k2, . . . , kt; r + 1).

PROOF. Note that Pk−1 is a normal subspace associated with π where π(i) =
kt for all i ∈Mt. Also P

k−1 is the unique greedy (k−1)-space. Hence the lemma
holds for r = k − 1. Assume that the lemma holds for r. We will prove that
then it also holds for r − 1.

Let Π and Π′ be greedy subspaces of dimensions r and r−1 respectively, such
that Π′ < Π. By the inductive hypothesis, Π is a normal subspace associated
with some partition π. Also write π′ = π(Π′). By Lemma 12, γ(Π′) ≤ E(π′′)
for every partition π′′ ∈ P(k1, k2, . . . , kt; r) with π

′ ≤ π′′ < π.

14



By Lemma 14, there exists, for every such partition π′′, a normal subspace Ππ′′

associated with π′′, and γ(Ππ′′) = E(π′′), such that Ππ′′ < Π′′ for some greedy
r-space Π′′. Since Π′ is a greedy subspace, we must thus have γ(Π′) = E(π′)
and Σπ′ = r. The lemma follows by induction. �

Corollary 21 For any family codes C1, C2, . . . , Ct, we have

Er(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≤ max{E(π) | π ∈ P(k1, k2, . . . , kt; r + 1)}.

This proves the �rst bound of Theorem 4.

4.3 Top-down Greedy Weights

The proof for top-down greedy weights is very similar to that for bottom-up
greedy weights (and just as long). We will only list the de�nitions and the
main lemmata for the induction step. The proofs can be �lled in by following
the pattern of the preceeding sections.

De�nition 22 Let Π 5 Pk−1 and π = π(Π) ∈ P(k1, k2, . . . , kt; r+ 1). We call
Π a top-down normal subspace associated with π if

(1) for each i, Θi(Π) is a top-down normal subspace associated with π|i+1 (or
if t = 2, a top-down greedy i-space).

(2) for each i and for all x ∈ Θi\Θ′i with γ′(x) > 0, ΦΠ(x) is a top-down
greedy i-space.

(3) dim Π = r.

Lemma 23 Let Π be a top-down normal r-space, and let Π′′ > Π. Then for
any partition π′ ∈ P(k1, k2, . . . , kt; r + 2) such that π(Π′′) ≥ π′ ≥ π(Π), we
have γ(Π′′) ≤ E(π′). Equality holds if and only if Π′′ is a top-down normal
subspace associated with π′.

De�nition 24 A top-down greedy basis Pki−1 is a basis p0, p1, . . . , pk1−1 such
that 〈pi | 0 ≤ i ≤ r〉 is a top-down greedy r-space.

Lemma 25 Given a �xed top-down greedy basis for each space Pki−1, there is
a well-de�ned top-down normal subspace Ππ associated with every partition π,
such that if π′ ≤ π, then Ππ′ 5 Ππ.

Proposition 26 If Π 5 Pk−1 is a top-down greedy subspace of dimension r,
then Π is a normal subspace and γ(Π) = Ẽ(π) where

π = π(Π) ∈ P(k1, k2, . . . , kt; r + 1).

15



Corollary 27 For any family codes C1, C2, . . . , Ct, we have

Ẽr(C1 ⊗ C2 ⊗ . . .⊗ Ct) ≤ max{Ẽ(π) | π ∈ P(k1, k2, . . . , kt; r + 1)}.

This proves the second bound of Theorem 4.
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