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Abstract A pirate is a person who buys a legal copy of a copyrighted
work and who reproduces it to sell illegal copies. Artists and authors
are worried as they do not get the income which is legally theirs. It has
been suggested to mark every copy sold with a unique �ngerprint, so
that any unauthorised copy may be traced back to the source and the
pirate who bought it. The �ngerprint must be embedded in such a way
that it cannot be destroyed. Two pirates who cooperate, can compare
their copies and they will �nd some bits which di�er. These bits must be
part of the �ngerprint, and when the pirates can see and change these
bits, they get an illegal copy with neither of their �ngerprints. Collusion-
secure �ngerprinting schemes are designed to trace at least one of the
pirates in such a collusion.
In this paper we prove that socalled (2, 2)-separating codes often are
collusion-secure against two pirates. In particular, we consider the best
known explicit asumptotic construction of such codes, and prove that it
is collusion-secure with better rate than any previously known construc-
tions.

1 Fingerprinting

Once upon a time, when computing logarithms was time consuming and tables
of logarithms expensive, publishers found they had to protect the tables against
illegal copying. They introduced tiny errors in the least signi�cant digits to make
every copy of the tables unique. In this way an illegal copy could be traced back
to one legal original, and the customer who had bought this copy could be
prosecuted.

This technique, known as �ngerprinting, has been suggested for digital data.
Research is going on within several �elds to solve the various challenges involved.
One problem is the embedding. How can the copy be marked without distorting
the data, and without the users being able to change the �ngerprint? We are not
going to address this problem any further, just state some assumptions about
its solution. The problem we are going to address is how to make the system
resistant against a coalition of pirates.

A vendor holds the copyright to some work, it may be a sound recording, a
digital image, a literary text, or something else. A copy is a digital �le which
resembles the work and has the same practical (and artistic) value. A user is a



legal owner of a copy, presumably bought from the vendor. A pirate is a user
who makes and distributes illegal copies of the work.

A �ngerprint is a word (tuple) of symbols uniquely identifying a user. The set
of �ngerprints is called an (n, M) code C, where n is the length of each word and
M is the number of users (or �ngerprints). We let d and m denote respectively
the minimum and maximum Hamming distance between two codewords, and
δ = d/n is the normalised minimum distance.

The �ngerprint is supposed to be embedded into the copy in order to identify
its owner. The embedding of one symbol of the �ngerprint is called a mark. We
assume that a user investigating a single copy is unable to locate or identify any
mark, and therefore cannot change any mark. A coalition of users however, can
compare their copies, and any di�erence between their copies must be a mark.
The pirates can produce copies with a false �ngerprint, but every mark has to
match at least one of the legal copies held by the pirates. This is known as the
marking assumption.

Let P be a coalition of pirates. Since each pirate is associated to a �ngerprint,
we write P ⊂ C. A position i is undetectable for P if all the elements of P match
in position i. The feasible set F (P ) is the set of false �ngerprint which may be
produced by P , in other words

F (P ) = {(c1, . . . , cn) : ∀i = 1, . . . , n,∃(x1, . . . , xn) ∈ P, st. ci = xi}.

Note that P ⊂ F (P ). The elements of F (P ) are often called descendants of P .
The �ngerprinting code C is assumed to be publicly known, however, the

vendor uses a secret code C ′ chosen uniformly at random from the ensemble
of codes equivalent to C. The codeword embedded in the copy is the codeword
from C ′ corresponding to the codeword from C associated with the user. In
this way, it is impossible for the pirates two know which coordinate position is
corresponding to a given detectable mark, and which code symbol corresponds
to a given value of the mark.

2 The identi�able parent property

The goal in collusion-secure �ngerprinting is to identify at least one pirate when
discovering a false �ngerprint produced by a coalition of at most t pirates. If this
is possible, we say that the code has the t-identi�able parent property (t-IPP).

Let Pt(C) be the family of sets P ⊂ C of cardinality at most t. Let Pt(x) ⊂
Pt(C) be the family of coalitions which could have produced x, i.e.

Pt(x) = {P ∈ Pt(C) : x ∈ F (P )}.

If the elements of Pt(x) has a non-empty intersection for any x, then C is t-IPP.
The following de�nition is equivalent, and standard.

De�nition 1 (Identi�able parent property). A code C is said to have the
t-identi�able parent property (t-IPP) if there is an algorithm A such that for
every P ∈ Pt(C) and every vector x ∈ F (P ), A(x) returns a member of P .



The algorithmic issues are beyond the scope of this paper, so as far as we are
conserned, the algorithm A may be an exhaustive search through Pt(C).

Observe that t-IPP implies (t − 1)-IPP. It is well-known that binary codes
cannot be even 2-IPP; more generally the following proposition was proved in [].

Proposition 1. Let t and q be integers. If t < q, then there exist asymptotic
families of q-ary codes with t-IPP. If t ≥ q, there exists no q-ary code with t-IPP
and more than t codewords.

In order to get collusion-secure codes with more pirates, we use probabilistic
�ngerprinting schemes. We allow A to have a certain error probability ε. There
are two types of error: we call it a failure if A returns void and a mistake if A
returns a word which is not a member of P . Mistakes is a threat to justice, as
it causes innocent users to be accused. If there is no probability of mistakes, the
output of A is always reliable, but occasionally there is no output at all.

A t-IPP code with ε-error (or (t, ε)-IPP) is de�ned as a code where the
probability of error is ε. Failures may be turned into mistakes by picking a
random codeword whenever a failure should occur, and thus past literature rarely
distinguish between failure and mistake.

We de�ne (t, ε)-UPP (undisputable parent property) to be a code where the
algorithm A has no risk of mistake and a probability ε of failure. Obviously,
(t, ε)-UPP is stronger than (t, ε)-IPP.

We say that a word x is t-identi�able if it can be traced back to one undis-
putable parent, that is if ⋂

P∈Pt(x)

P 6= ∅.

The set of identi�able words is denoted It(C).
When the pirates compare their copies, they �nd d′ detectable bits. This

number d′ is the Hamming distance between their two �ngerprints. As long as
the embedding is kept secret by the vendor, it is impossible for the pirates to
tell which detected mark corresponds to which coordinate position in the code.

When they construct a false �ngerprint x, they can only choose the dis-
tance s = d(a,x). Clearly d(b,x) = d′ − d(a,x). The two pirates cannot be
distinguished, so we can assume that s ≤ d′/2. We call s the pirate strategy,
and de�ne σ := s/n to be the normalised strategy, where n is the length of a
�ngerprint.

Once the strategy is chosen, a �ngerprint is produced uniformly at random
from a set of 2

(
s
d′

)
feasible words. (If d′ is even and s = d′/2, there are

(
s
d

)
feasible words.) There is a certain probability ps(P ) that the produced false
�ngerprint is identi�able. The pirates will obviously choose s to minimise ps(P ).
The probability that the pirates gets away with their forgery is 1− p(P ), where
p(P ) = mins ps(P ).

For simplicity, we assume that the pirates know which two codewords they
posess. This allows them to make a perfect minimisation of ps(P ), which might
not be possible in reality. Hence the p(P ) de�ned here is a lower bound on the
true probability.



Proposition 2. If t > q, there exist no q-ary code with t-UPP and t codewords
or more.

Proof. Let P be a coalition of q+1 pirates. We shall construct a false �ngerprint
x ∈ F (P ). Since there are q symbols and q + 1 codewords, at least one symbol
occurs more than once in position i. Choose for xi, any symbol which occurs
more than once. Now x ∈ F (P ′) for any q-set P ′ ⊂ P . Consequently x has no
undisputable parent, and any coalition of q+1 or more pirates can produce such
a false �ngerprint.

Conjecture 1. There is an asymptotic family of q-ary codes with non-zero rate
and (q, ε)-UPP where ε tends to zero.

3 Separating codes

Much of the �ngerprinting literature has focused on properties which are re-
lated to, but weaker than, t-IPP. The most important one of these properties is
(t, t′)-separation. Resently it was proved that (t, t)-separating codes can be used
for constructing (t, ε)-IPP codes [BBK01]. We shall see that some good (2, 2)-
separating codes are actually good (2, ε)-IPP codes in themselves with better
rates than the codes from [BBK01].

De�nition 2 (Separating code). Let t = (t1, . . . , tz) be a tuple of natural
numbers. A sequence (T1, . . . , Tz) of pairwise disjoint vector sets is called a t-
con�guration if #Tj = tj for all j. Such a con�guration is separated if there is a
position i, such that for all l 6= l′ every vector of Tl is di�erent from every vector
of Tl′ on position i.

A code is t-separating (a t-SS) if every t-con�guration is separated.

If ti = 1 for all i, then t-separation is equivalent to z-hashing. For z = 2
there is a vast literature, in particular on (2, 1)- and (2, 2)-SS, it dates back at
least to '69 [FGU69]. See [Sag94] for a survey.

If a code C is not (t, 1)-separating, there is a pirate coalition T1 of t users
who are able to forge a �ngerprint x which belongs to a user not member of T1.
To see this, just let (T1, {x}) be a (t, 1)-con�guration which is not separated. We
say that x is framed by T1, and (t, 1)-SS are often called t-frameproof codes in
the �ngerprinting literature.

If a code is (t, t)-separating, it means in �ngerprinting terms, that two dis-
joint coalitions T1, T2 ∈ Pt(C) cannot produce the same false �ngerprint, i.e.
F (T1) ∩ F (T2) = ∅. These codes where called t-secure frameproof in some early
�ngerprinting literature.

De�nition 3 (Separating weights). Let (T1, . . . , Tz) be a t-con�guration.
The separating weight θt(T1; . . . ;Tz) is the number of positions where the con-
�guration is separated.

If C is an (n, M) code, its minimum separating weight θt is the least sepa-
rating weight for any t-con�guration from C. The normalised separating weight
is τt := θt/n.



Obviously, a code is t-separating if and only if θt > 0.

Proposition 3. For a binary code, we have θ2,1 ≥ d−m/2.

This result was found by Sagalovich [Sag65], but we include a proof for the
reader's convenience.

Proof. Let (c′, c,a) be any three codewords. Since separating weights are invari-
ant over the ensemble of equivalent codes, we can by translation assume that
c′ = 0. We shall �nd a lower bound on the separating weights θ(0, c;a).

First we take (2, 1)-separation. Let 0, c, and a be rows of a matrix. There are
three types of columns; Type R is (001)T which are the ones giving separation,
Type 0 is (000)T, and Type I is (010)T and (011)T. Let vi be the number of
columns of Type i. We have that θ(0, c;a) = vR and w(c) = vI.

De�ne

Σ := d(0,a) + d(c,a) = 2vR + vI = 2θ(0, c;a) + w(c).

Since Σ is the sum of two distances, we have

2d ≤ Σ ≤ 2m,

so

2θ(0, c;a) = Σ − w(c) ≥ 2d−m.

It has also be shown that θ2,2 ≥ 2d − 3m/2 in a similar way. A corollary is
that if δ > 3

4 , then θ2,2 is non-zero, and the code is (2, 2)-separating.

Proposition 4. Let t be a tuple of natural numbers. If C1 is a M ′-ary [n1,M ]
code with separating weight θ′t, and C2 is a q-ary [n2,M

′] code with separating
weight θ′′t , then the concatenation C of the two codes is a [n, M ] code with n =
n1n2 and separating weight θt ≥ θ′tθ

′′
t .

Proof. Let (T1, . . . , Tz) be any t-con�guration from C. Then there is a corre-
sponding t-con�guration (T ′

1, . . . , T
′
z) in C1, which is separated in at least θ′t

positions.
Now consider a single position i, where (T ′

1, . . . , T
′
z) is separated. Each symbol

in this position corresponds to a word in C2, so (T ′
1, . . . , T

′
z) corresponds to a

collection of subsets (T ′′
1 , . . . , T ′′

z ) in C2. Since (T ′
1, . . . , T

′
z) is a separated t-

con�guration, (T ′′
1 , . . . , T ′′

z ) must also be a separated t-con�guration, and sinde
C2 has separating weight θ′′t , it follows that (T ′′

1 , . . . , T ′′
z ) is separated in at least

θ′′t positions.
We conclude that (T1, . . . , Tz) is separated in at least θ′tθ

′′
t positions, and

since this holds for any t-con�guration, the proposition follows.

Corollary 1. The concatenation of two t-SS is a t-SS.



The current best constructible rate for asymptotic (2, 2)-SS is 0.026. This was
constructed in [CELS01], by concatenating an asymptotic code with δ ≥ 3

4 with
a small inner code which had been explicitely con�rmed to be (2, 2)-separating.
However, Sagalovich [Sag94] had already given a di�erent construction of (2, 2)-
SS with this rate.

The outer code used in the construction is one due to Tsfasman. He showed
in [Tsf91], that there is an asymptotic class of q-ary codes with rate R and
minimum distance δ whenever

R + δ < 1− (
√

q − 1)−1.

The inner code is the punctured dual C ′ of a two-error-correcting BCH code
with parameters [126, 14, 55]. This code was proven to be 3-wise intersecting in
[CZ94], a property which is equivalent to (2, 2)-separation [BR80]. To see that
C ′ is (2, 2)-separating, we recall that the dual of 2-BCH has only two weights,
22t−2t and 22t +2t. Consequently C ′ has d ≥ 22t−2t−1 and m ≤ 22t +2t, and

4d− 3m ≥ 22t − 7 · 2t − 4,

which is greater than zero whenever t ≥ 3. Our code C ′, has m = 72, so θ2,1 ≥
55− 72/2 = 19.

The speci�c outer code shall have q = 214, and since we require δ ≈ 0.75,
we get R ≈ 1 − 127−1 − 0.75 ≈ 0.2421. The (2, 1)-separating weight is τ2,1 ≥
0.75− 1

2 = 0.25. The concatenated code C will have R ≈ 0.026, δ ≈ 0.3274, and
τ2,1 ≥ 0.03770.

4 Binary separating codes for �ngerprinting

In the sequel, we assume a binary code. Let m(a,b, c) be the word obtained by
majority voting of the three vectors a, b, and c. That is, in each position i in
m(a,b, c) contains the symbol which occurs in position i of at least two of the
three vectors a, b, and c.

Lemma 1. If C is an (n, M) (2, 2)-SS, then for any P = {a,b} ⊂ C, we have

F (P )\I2(C) = {m(a,b, c) : c ∈ C\P},

and
#(F (P )\I2(C)) = M − 2.

This result was pointed out in [Löf01].

Proof. Let x be a vector which is not identi�able. Because C is (2, 2)-separating,
the possible parent sets of x must form a triangle, i.e. {a,b}, {a, c}, and {b, c}.
The only vector x which is feasible for any of the three sets is m(a,b, c).

Given a pirate coalition P = {a,b}, there are M − 2 possible triangles, for
c ∈ C\P . For each triangle there is one word which is not identi�able.



Lemma 2. For any strategy s < θ2,1 we get ps(P ) = 1.

Proof. Let a and b be a pirate. If the pirates manage to forge a �ngerprint x
forming a triangle with a third codeword c, then c must match a in s out of the
d(a,b) detectible marks and match b on the others. These positions are exactly
the ones where (P, {c}) is separated, so if s < θ2,1, then no such c can exist.

Theorem 1. Let C be a (2, 2)-SS, and let P ⊂ C be any pirate coalition of size
at most t = 2. For any strategy s, the probability that P escapes detection is

1− ps(P ) ≤ (M − 2)min
{

1
2

(
nδ

nτ−1
2,1

)−1

,

(
nδ

nδ/2

)−1}
.

Proof. Let κ(s) be the probability of chosing a particular �ngerprint given a
strategy s. By Lemma 2, we can assume s ≥ θ2,1. We have

κ(d(a,b)/2) =
(

d(a,b)
d(a,b)/2

)−1

≤
(

nδ

nδ/2

)−1

. (1)

If s 6= d(a,b)/2, we get

κ(s) =
1
2

(
d(a,b)

s

)−1

≤ 1
2

(
nδ

nτ2,1

)−1

, (2)

The number of non-identi�able words is µ = M − 2, so there cannot be more
than µ feasible false �ngerprints allowing the pirates to escape. Multiplying µ
with κ(s) we get the theorem.

If we take assymptotic values for increasing n, we arrive at the following
corollary, where H is the natural entropy function.

Corollary 2. Any (2, 2)-SS is a (2, ε)-UPP with

ε ≤ eλn,

where
λ = R ln 2−H(τ2,1/δ)δ.

Considering our (2, 2)-SS C with R ≈ 0.026 and τ2,1 ≥ 0.03770, we get the
following values:

λ ≈ −0.09891,

p(P ) ≤ 0.9058n,

which leads to the following theorem.

Theorem 2. There is a constructible asymptotic binary code with (2, ε)-UPP
with rate R ≈ 0.026 and failure rate ε ≤ 0.9058n.



The code C has better rate than any (2, ε)-IPP known from past literature.
Though the code has been known, it is a new result that it has UPP, or even
IPP. Unfortunately, the results does not extend very well. We cannot hope to
make binary (t, ε)-UPP codes for t > 2, as the following theorem shows.

Theorem 3. A q-ary code cannot have (t, ε)-UPP for any t > q and ε < 1.

Proof. Consider a code and a coalition of q + 1 pirates. For each coordinate
position, there is at least one symbol which appears in at least two of the pirate
codewords. Thus the pirates has a feasible word which matches at least two
pirates in each coordinate position. Since this false �ngerprint is feasible for any
subset of q pirates, none of the pirates is an undisputable parent.

5 Discussion

We have introduced a probabilistic 2-IPP code with a rate better than anything
we have managed to locate in the literature. Furthermore, with this code, there
is no risk of accusing an innocent user. It remains to construct an e�cient tracing
algorithm usable with the present code.

Another open question is whether the present techniques can be used to
construct (t, ε)-IPP codes with t > q.
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