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Fighting Three Pirates with Scattering Codes

Hans Georg Schaathun

20th January 2004

Abstract

With a digital fingerprinting scheme a vendor of digital copies of copyrighted
material marks each individual copy with a unique fingerprint. If an illegal copy
appears, it can be traced back to one or more guilty pirates, due to this fingerprint.

A coallition of pirates may be able to produce copies with a false, hybrid finger-
print, but if the fingerprints are taken from a collusion-secure code, then at least one
pirate can be traced with probablitity at least 4.

Scattering codes were recently introduced by Sebé and Domingo-Ferrer, and used
to contstruct a family of codes allegedly collusion-secure against three pirates. In
this paper we prove that their codes are insecure against optimal pirate strategies,
and we show how to build secure schemes using scattering codes. The new con-
structions have extremely good rates for reasonable numbers of users.
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1. Introduction

1.1. Background

The problem of digital fingerprinting was introduced|in [Wag83], and have received
quite some attention following [BS95, BS98]. A vendor selling digital copies of
copyrighted material wants to prevent illegal copying. Digital fingerprinting is sup-
posed to make it possible to trace the guilty user (pirate) when an illegal copy is
found. This is done by embedding a secret identification mark, called a fingerprint,
in each copy, making every copy unique.

The fingerprint must be embedded in such a way that it does not disturb the infor-
mation in the data file. It must also be impossible for the user to remove or damage
the fingerprint, without damaging the information contents beyond any practical
use. In particular, the fingerprint must survive any change of file format (e.g. gif to
tiff) and any reasonable compression including lossy compression. This embedding
problem is essentially the same as the problem of watermarking.

If a single pirate distributes unauthorised copies, they will carry his fingerprint.

If the vendor discovers the illegal copies he can trace them back to the pirate and
prosecute him. If several pirates collude, they can to some extent tamper with the
fingerprint. When they compare their copies they see some bits (or symbols) which
differ and thus must be part of the fingerprint. Identified bits may be changed, and
thus the pirates create a hybrid copy with a false fingerprint. A collusion-secure

code is a set of fingerprints which enables the vendor to trace pirates even when
they collude, given that there are no more thairates for some threshotd

Collusion-secure coding is also employed in traitor tracing [CFIN94, CENPOQ].
Whereas fingerprinting protects the digital data in themselves, traitor tracing pro-
tects broadcast encryption keys. The fingerprinting literature is most often inter-
ested in probabilistically collusion-secure coding, where the vendor shall be able
to trace a pirate with probability at least-k for some small error rate. In the
traitor tracing literature, combinatorially collusion-secure codes is the norm, where
the tracing is required to succeed with probaility 1. Still, in principle, there is no
reason not to use combinatorial codes for fingerprinting and probabilistic ones for
traitor tracing. Other important variants of the problems are dynamic traitor tracing
(e.g. [SNWOO0]) and anonymous fingerprinting [PW97].
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1.2. The fingerprinting problem

We use notation and terminology from coding theory. The set of fingerprints is an
(n, M), code, which provides for up td/ buyers, uses an alphabetpfymbols,
and requires such symbols embedded in the digital file. The Hamming distance
between two wordg andy is denotedi(Xx, y).

To understand the fingerprinting problem, we must know what the pirates are
allowed to do. This is defined by the Marking Assumption.

Definition 1 (The Marking Assumption)
Let P C C be the set of fingerprints held by a coallition of pirates. The pirates can
produce a copy with a false fingerprinfor anyx € F¢(P), where

Fc(P) = {(c1,..., cn) Vi, A(xy, ..., Xp) € P.x; =c¢i}.

We call F¢(P) the feasible set of with respect taC.

The Marking Assumption defines the requirements from the embedding of the
fingerprint in the digital data. Constructing appropriate embeddings is non-trivial,
though it is not theoretically impossible [BS98]. Alternative assumptions have been
proposed, and some overview of this can be found in [BEKO3]. Defirlifion 1 defines
the socalled narrow-case fingerprinting problém [BBKO03], which is the only one
we will consider.

A tracing algorithmfor the codeC is any algorithmA which takes a vector
X as input and outputs a sé&tC C. If x € F-(P) for some pirate coallitionP,
then A is successful ifL is a hon-empty subset d?. A code is said to be said
to be combinatoriallyr-secure if it has a tracing algorithm which succeeds with
probability 1 when there are at magtirates. It is said to besecure withe-error if
A succeeds with probability at least-¥ when there are at mospirates.

In most fingerprinting schemes, and in particular in the schemes we consider, the
columns are randomly permuted, and the pirates have no information about their
ordering. Also the alphabet is randomly permuted for each position. This heavily
randomises the false fingerprint, as the pirates cannot mékeeatit decisions on a
column by column basis.

A group of three pirates can see threffetient column types, for each ugehere
is a column Type where that user is the minority. Thus the pirates can choose a
strategy for each of the three column types. We describe a pirate pure strategy as
(p1, p2, p3), Wherep; is the probability that the pirates choose the majority bit when
useri is the minority.

These are not the most general pirate strategies. They could opt to take the ma-
jority bit in a certain fractionf; of the columns of Type, thus making various bits
stochastically dependent. However, if we havéisiently many columns of each
type, then the dference between these two strategies is insignificant.

It is well known that any code with > 1—~2 is a socalled-traceability code,
which is combinatorially-secure using closest neighbour decoding. Unfortunately,
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this large minimum distance is only possible when the alphabet is large. A binary
code cannot be combinatorially collusion-secure.

General schemes can be found.in [BS95, BS98], with improvemerits in [Sch03a],
in [BBKO3], and in [LBHO3].

Simplex codes were proved to be 2-secure wigrror in [HIDFOO0]. Small sim-
plex codes are very good, and closest neighbour decoding can be used. However, the
asymptotic rate of these codes is zero. A similar idea was employéd in [Sch03Db],
where an asymptotically good family of ,@)-separating codes was proven to be
2-secure withe-error, wheree tends to zero with increasing code size.

1.3. Report outline

This report features two new results. There is the insecurity of the original scattering
code scheme in Chapfef 3, and the new construction in CHgpter 5. The remaining
chapters contain preliminary results which have been published before. Since this
is a technical report, we have permitted ourself a more verbose form than what is
customary for journal papers.

Chaptef R presents the scattering codes with the error analysis. The presentation
is slightly simplified compared to_[SDF02], but nothing is really new. Chéggter 4
defines intersecting and separating codes and presents a way to construct them.
These results have been assembled from various articles.
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2. Scattering codes (SC)

The scattering code SE€¢) is a probabilistic encoding of a single bit. Each bit
value is encoded as one outrgbossible words, chosen uniformly at random. The
code has 2+ 1 distinct columns replicatedtimes. We divide the columns in three
zones. Zone A hasidentical columns where a word has one if and only if it encodes
one. Zone B hasdistinct columns of weight one replicatedimes, and all words
encoding zero are zero. Zone C is similar, witttistinct columns of weight 1, and
words encoding one are zero.

The scattering codes were designed [SDFO02] in order to fight three pirates. It
is used as an inner code for concatenation to reveal the most frequent bit value
among the pirates, regardless of the pirate strategy. E.g. if the pirates see two ones
and a zero, then inner decoding outputs one with probability. 1 The following
decoding algorithm is simplified from [SDF02], but does give the same output.

Algorithm 1 (Descattering)
The decoding algorithm for scattering codelegcatteringuses the first applicable
rule in the following list. One block is one set efdentical columns.

1. Ifthere are at least two blocks of Zone B with at least one one-bit, then decode
as 1.

2. Ifthere are at least two blocks of Zone C with at least one one-bit, then decode
as 0.

3. If there are more ones than zeroes in Zone A, then decode as 1.
4. If there are more zeroes than ones in Zone A, then decode as 0.
5. With the same number of zeroes and ones in Zone A, decode as unreadable.

Encodes| Zone A Zone B Zone C
1111 | 111100000000 000000000000

1 1111 | 00001111000Q 000000000000
1111 | 000000001111 000000000000
0000 | 000000000000 111100000000

0 0000 | 00000000000Q 000011110000
0000 | 000000000000 000000001111

Table 2.1.: The scattering code SC3A
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A B; B, X1 C X,
r bits | r bits | r bits | (t—2)r bits | r bits | (r— 1)r bits
1..1]1..1/0.0] 0.0 |0.0| 0.0
1..1]0..0/1..1| 0..0 |o0.0| 0..0
0..0/0.0/0.0| 0.0 |1..1] o0..0

Table 2.2.: Three pirate codewords.

Clearly, if P is three words encoding the same bit value, then Zone A and either
Zone B or Zone C are not detectable, and consequentlyxany (P) is always
decoded correctly.

We are going to determine the probability of correct decodingef (b1, by, b3)
where the pirate wordls; encode two distinct bits. Due to the symmetries in the
scattering code, we can assume without loss of generalitybihadb, encode 1
while bz encodes 0.

Theorem 1
The probability of correctly decoding one bit produced by three scattering code-
words encoding two dferent bits is

_ r__ n2r Lr/2] r\ . )
o) =1 1+(=-1)(2" -p”) Y <i>p1(1_p)r—l,
i=0

t

when the pirates pick the majority bit with probabiljiyin each column type.

This is only a special case of the following lemma which we prove specifically.

Lemma 1l

Suppose the pirates pick the majority bit with probabilitywvhereever useris the
minority. Then the probability of decoding to the majority bit in a block where user
i has the minority bit is

ri =

e Ut YLl \ VL) lﬁj <r.>pf(l—pf)r'j-

t
j=0

Proof: We consider first the case whee # b,. Suppose the pirate codewords
are as depicted in Talle 2.2. There are four blocks concerning, i, Bo, andC.

Let x1 denote the event that there are only ones in Blocindx0 the event that
there are only zeroes. Ldt" denote the event that there are more ones than zeroes
in Block A. Likewise we have Everd~ if there are more zeroes than ones in Block
A. Obviously, two events are correlated if and only if they concern the same block.



Let R; denote the event that decoding rule happlies, and letM denote the
event of decoding error. We have that

Ry =-B10A-B>0,

Ry, =90,

Rz = A" A(B10V B0),

R4 = A" A(B10V B0),
Rs=-A" A=A A(B10V B,0).

If correct decoding is 1, we get the event of not decoding to 1 to be
M = R4V Rs = (—|A+) A (B10V B»0).
We have the following basic probabilities,

P(B,O) = p:, i= 1, 2,
P(=A*)=bc(|r/2];r.1-ps3).

Due to symmetry, the probability of erroneous decoding is independent of which bit
is correct, and we get

P(M) = bc(lr/2];r, p3) (p]+ 15— p1p5).

If b1 = by, we have only three detectable blocks. There is only one detectable
block, sayB1, in Zone B, where botlb; andb, are one. This implies thak.0 is
always true, and consequenfyj vV Rs = =A™,

For each bit, one of the codewords is chosen uniformly at random. Hence
P(b1 =by) =1/t, and we get the following total probability.

(t—1)(py+p5—p1py) +1

P(M) =bc(r/2];r, p3) .

which is equivalent to the formula in the theorem. Note théM) increases imp;
andp,, whereas it decreasespp. ad

Define p*(r,t) := min,r(p), which is the worst-case probabilty of successful
descattering as majoroity choice. In Taple| 2.3, we calculate this number for some
choices ofr andr.

Problem 2.1 In [SDEOZ], the worst case success probability is giverD#s8 for
SQ3,4). Is this a misprint?
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| r | ¢ |length] p |
1 2 5 0.4557
1 3 7 0.5286
1 4 9 0.5556
1 7 15 0.5843
3 3 21 0.6667
3 4 27 0.75
3 5 33 0.8
51 10 105 | 0.9
31| 100| 6231 | 0.99

Table 2.3.: Worst case probabiligyof correct majority decoding for scattering codes 56)(
for certain parameters.

10



3. Concatenated fingerprinting codes

Concatenation is a standard technique from coding, and it has proven extremely
useful in fingerprinting.

Definition 2 (Concatenation)
Let C1 be a(n1, Q), and letC, be an(n, M), code. Then the concatenated code
C10C; is the (n1n2, M), code obtained by taking the words 65 and mapping
every symbol on a word frora.

Each set ofi; symbols corresponding to one word of the inner code will be called
a block

Sebé and Domingo-Ferrer suggested a scheme with scattering inner codes and
simplex codes as outer codes. The tracing algorithm first descatters each inner code
block to obtain a vectax, and then decodes the outer code using closest neighbour
to return the codeworld € C minimisingd(b, x).

The pirates choose a strategy= (p1, p2, p3) with respect to the concatenated
code. After descattering there is a probabilityof majority choice in column of
the outer code of Type Thus we é&ectively get a pirate strategyi(r,, r3) with
respect to the outer code, given by Lenjma 1.

Theorem 2

A fingerprinting scheme with scattering inner codes and simplex codes with any
decoding algorithm for the outer code has error rate at l@ksif the pirates use an
optimal strategy.

Proof: We propose that the pirates choose a pure strategy- p3) uniformly
at random from (11, 1), (1 0,0), (0 1,0), and (00,1). Observe that for these four
strategies we get{, 2, r3) = (p1, p2, p3). Consider four codewords, .. ., a4 where
a4 = a1 + a2 + ag. Any coallition of three out of these four codewords will produce
the same four false fingerprints with our proposed strategy. Hence when one of
these false fingerprints is detected, there are four users which are equally likely to
be guilty, and one of them is innocent. O

By the same proof, we also get the following more general corollary.

Corollary 1
Any binary, linear code which i8-secure withe-error has > 1/4.

11
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4. Intersection and separation

4.1. Intersecting Codes

We say that a binary codgis t-wise intersecting if anylinearly independent code-
words have at least one position where they are all 1. The number of such positions
is the intersection weight of thetuple, and the intersection weightgs(#3) of C

are the lower and upper bounds of intersections weights of anysiughe from

the code.

Lemma 2
Let C be a binary code. Considetinearly independent codewords. The number
N of positions where these words intersect is bounded as

dl—ml(l—zl_t) <N <m—-di(1- 21_t).

Proof: Let P = {X1,...,X:} bet linearly independent codewords. The following
formula holds[[CZ94],

2t—1

()2

XeP

= ¥ 0Sw( X x). (4.1)

SCP XeS

Each term on the right hand side is the weight of a codeword. Theréam&ghts
with positive sign, and 2! — 1 with negative sign. Since each weight is bounded
by d; andms, the lemma follows. O

The duals of BCH codes often have high intersection weights [SHO3, |CZ94].
Particularly for the simplex codes, and for the duals of BCH(2) and BCH(3), the
exact values ofn; andd; are known. The [2— 1, k] simplex code hag; = 2k~
when 0< i < k. For the duals of BCH(2) we have

2= 2m—2_3'2[m/2j—1’ Q_Z — 2m—2+3.2Lm/2J—l’

@z=2m3_7.2m2A-2 . —pm=34 7. olm/21-2
and for duals of BCH(3) we get

9, =2m"2_3.2[m/21-1 5, _ om=24 3. plm/2]-1
03 = 2m_3 -7 2[}?1/2]—2’ % — 2m—3+ 7- 2[m/2]—2.

In Table[4.], we present some BCH-duals which we will use in the sequel. Due
to the floor and ceiling expressions in the weight formulee, BCH(2) works best for

13
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[kl [ (dim) | (@202 | (0383 |

7 1 [127.14] (56,72) (20,44) (2 30)

9 | [51118] | (240272) | (104152) | (3692)
11| [204722] | (9921056) | (464560) | (200312)
13| [213-1,26] | (40324160) | (19522144)| (912 1136)
15 | [215-1,30] | (1625616512)| (80008384) | (38724320)

8 | [25624] (112 144) (40,88) (4,60)
10| [102330] | (480544) | (208304) | (72.184)
12 | [409536] | (19842112) | (9281120) | (400 624)
14| [213-142] | (80648320) | (39044288) | (18242272)

3

W WWWNDNDNDNDN|®

Table 4.1.: Some instances of BEW).

evenm and BCH(3) best for odgh. The minimum values ok required for a-wise
intersecting code can be found in [SHO03]. We néedelatively large, so we need
m somewhat larger than the minimum values.

4.2. Separating Codes

Let T,U C C be two disjoint sets of codewords. We say tifiat {ay, ..., a} and
U={by,..., b,} are separated on a positionf any word of T is different from

any word ofU on this position. The number of such positions is the separating
weight and denoted(ay, ..., a; by, ..., b,). We say thatC is (f,u)-separating if
f(ay,..., a; by, ..., b,) > 0 for anyr +u distinct codewordsy; andb;. Separating
codes can be constructed from intersecting codes [CELS03]. The following lem-
mata give the special cases needed in this paper.

Lemma 3 _
Let C be a code with 3-wise intersection weidl#t, ¢3), and consider four distinct
codewordsy, a, ag, andc. We have

0(cia;,ap,a3) =0, ifc=aj+ax+ags,
d3<0(c,a1,ap,a3) < ¥¢3, oOtherwise

Proof: If c=a;+az+as, then, in every bit position where all tlzg are equal¢
will have the same value and thus it cannot be separated from.the

If cis not the sum of they, thenc+ a; are three linearly independent words for
i=123. Hence

0(c,a1,a2,a3) =0(0;a1+C,ax+C az+c),

which is bounded by the intersection weights. ad



4.2. Separating Codes

Lemma 4 B
Let C be a code with 3-wise intersection weidl#s, ¢3), and consider four distinct
codewordsy, ay, by, andb,. We have

021 <0(ay ap;b1, ) <br1, if ax+ap=bri+by,
23 < 0(aq,a0;b1,bp) < @3, otherwise
Proof:  Consider first the case when the four words sum to zero. Viewing the

words as rows of a matrix, all the columns have even weight. Henteseparated
from {a;,a,} if and only if b, is. Consequently

9(&1, a, bl, b2) = 9(&1, ao,; bl),

which is bounded as given.
If the four words have non-zero sum, thep=a; — by, &, = a;— b, andb =
b1 — b, are linearly independent, and the separating weight to be bounded is

0(ar, a; b1, by) = 0(a,.a,; b, 0), (4.2)
which is equal to the number of positions whefea,, andb — &, intersect. Since
these three words are also linearly independent, we get the bounds. O
Lemma 5

Given an[n, 2k] code, there is a non-lineé, 2¢) subcode where any four non-zero
codewords are linearly independent.

Proof: LetC’ be the [ —1,2F —1—2r,5] BCH code. The columns of the parity

check matrix ofC’ make a sefl” of 2F — 1 vectors fromGF(2)%, such that no four

of them are linearly independent. Now there is an isomorplisnGF (2)%* — C,

so letl’ = ¢(I") U {0}. O
From the lemmata, we can deduce the following proposition.

Proposition 1 _

If there is an[n, 2k] codeC with 3-wise intersection weight&?s, ¢3), then there
is a non-lineat(n, 2¥) codel’ C C with minimum and maximung2, 2)- and (3, 1)-
separating weights in the intervas, ¢s].

15
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5. Separating codes against three pirates

We propose a new scheme of concatenated fingerprinting codes, where the inner
code is SC{ ). Tracing consists of descattering and closest neighbour decoding
just like in the scheme by Sebé and Domingo-Ferrer.

The outer cod€p must be both (2)- and (31)-separating, with relatively large
separating weights. Lef; and ¢3 be integers such that for any four codewords
ai, ..., a4 € Cp, we have

03 < 6(ay; 8, 83, &) < 3,
23<6(ay,a2;a3,84) < 3.

If Co is constructed as a non-linear subcode of a 3-wise intersecting code, then
(¢3, ¢3) are the intersection weights.

Consider an arbitrary pirate coallitiah = {a1,ap, a3} C Co. The pirates use a
strategy p1, p2, p3) With respect to the concatenated codes. Due to the scattering
inner code, this corresponds to a strategy b, r3) with respect toaCp. We name
the pirates such thag < p» < p1, that is such thaas is statistically closest tg.

Let c e C\ P be some innocent user, and Bte a matrix with rowsag, ap, a1,
andc, in this order. We writer(c) for the probability that is returned by the tracing
algorithm. The error probability for the fingerprinting scheme will be bounded as

ean(C)SM-a,
cgP

wherea is any upper bound on(c).

Define D = d(x,a3) — d(x,c). Clearly we get that(c) < P(D > 0). The matrix
B has essentially eight types of columns. In Tablg 5.1 we present the column types,
and their contribution to the two distances and tHéedeénceD per column.

Let N1, N2, and N3 be the number of columns of Types 2B, 3B, and 4A re-
spectively. Observe tha < N; < ¢3. The columns of Types 1A, 2A, 3A, and 4B
make no contribution t@. Type 1B gives a fixed contribution of at masts. The
contributions from each of the types 2B, 3B, and 4A are as follows:

N1-2Y1, whereY; ~ B(N1;p1).
No—2Y>, whereYs ~ B(Na; p).
N3—2Y3, WhereY3~ B(N3;1—p3),

17
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Column Majority choice Minority choice

type d(x.a3s) | d(c,x) | D [ d(x.as) | d(c,x) | D
1A: (1111) (0000) 0 0 0 0 0 0
1B: (1110)(0001) 0 1 -1 0 1 -1
2A: (1101) (0010) 0 0 0 1 1 0
2B: (1100)(0011) 0 0 0 1 1 0
3A: (1011) (0100) 1 0 1 0 1 -1
3B: (1010)(0101) 0 1 -1 1 0 1
4A: (0111) (1000) 0 1 -1 1 0 1
4B: (0110) (1001) 0 0 0 1 1 0

Table 5.1.: Distance contributions from a single column.

where B(n; p) denotes the binomial distribution with trials and probabilityp.
Write

Y=Y1+Y>+Y53
N = N1+ N2+ Nas.

HenceD < N —2Y — &3, and it follows that

z(c) < max P(Y < (N —¥3)/2).
p1,p2,p3

Lemma 6
If the pirates choose a stratey, p2, p3) wherepy > p> > p3 minimising P(Y <
(N —@3)/2), thenp, = p3 (and consequentlyy = r3).

Proof:  The higherr;s is, the more often columns of Type 4A make a positive
contribution, and the lower, andr; are, the more often columns of Types 2B and
3B make a positive contribution. Therefore the pirates will seek to maxirgiaed
minimiser, andr;. We know thatrs is growing inps, whereas-, andr, decrease

in p3. Hence the pirates will maximigg, and since we have assumed thak po,
this impliesps = p». O

Define
m=E(Y)=riN1+r2N2+(1—r3)N3,

and
N —-&3

=1-
€ 2m

Lemma 7 _
For any optimal pirate stratedyi, p2, p3), if €3 < 203 andp*(r,t) > 1/2, we get
O<e<l



Proof: Thate < 1 follows from N > ¢3. Recall thatp, = p3, and thus-, = r3 for
any optimal pirate strategy by Leminja 6. That O, is equivalent to

L= N1(1/2—r1)+N2(1/2—r2)+N3(r2—1/2)—03/2 <0.
We prove that this holds whehis maximised. We have
L <Ni1(1/2-r1)+(1/2=r2)(N3— N2)—€3/2
< N1(1/2—r1) + |1/2—r2| -93—03/2 < N1(1/2—r1).

If r1 >1/2, then this is clearly negative. Now observe thas decreasing ip, and

p3, and increasing ipy, and sinces < p» < p1, r1 IS minimised wherp; = p, = ps.

It follows thatry > p*(r.1) > 1/2. O
For the error bound, we will use the following well-known theorem.

Theorem 3 (Cherndf)
LetXy,..., X, be independent stochastic variables taking the values 0 and 1, and let
X be their sum. Writen = E(X). Then for any0 < e < 1, we have

t
P(Z X; < (1—€)m> < e_ez’"/z.

i=1

Lemma 8
The probability of accusing an innocent usas bounded as
1/, N-&\°
z(c)<A:=ef whereE==(1- ) m
2 2m

Proof: We haver(c) < P(Y < (1—¢)m), where O< e <1 by Lemm4dJ. Thus the
lemma follows from Theoreim 3. ad
The worst case is whe# is maximised, which happens whéhis minimised.

Lemma9
If Eis minimised,r is odd, and?s < N; < 2¢5fori=1,2,3, then we can assume
eitherpy = 1 or p; = py.

Proof: By differentiation, we have for= 1, 2 that
2
a_E= 1_N_03 mi 1_N_€3 +E 1_N_€3 om
or; 2m or; 2m 2 2m or;
2

N —-23 N-¢3 1 N —23 om

= 1— .m- —(1- -

[( 2m )m 2m2 +2< 2m )]()rj

1 N —83 N -85
—=. (1= (1 "N
2< 2m > <+ 2m ) J

=CO‘Nj,

19
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where

2
1 N -85
Co==|1- ,
0 2( ( 2m ))

is independent of. Similarly, we have

oE
— =—Cp- N3.
or3

By LemmdT, we ge€o > 0. Differentiating with respect to;, we have

oE
— =Cp- | Ni=—+N>—=—-N3z— ).
op; pj ~

By Lemmd 6, we have, = r3, and thus we get
oE orq oro
— =Co-| Ni=—+(N2—N3)— )| =Co-u,
op1 op1 op1

where

oro

d
u.= N1£+(N2—N3)—.
op1 op1

We have

D@+ dbe(lr/2] i)
! t dp1

—Lrp M (1- 1
_ (N NV )”11 Q=2 (1205 p)

_ r__ . 2r
Nl(t 1)(2P2t P2)+1,r.b(Lr/2J;r—l,p1)

(t—)rpy (- ph)
t

— (N2—N3) be(lr/2]:r. p2).

by using Lemma 12. Writing’ = uz/r, we get that

W =N1[(t = 1)(205 = p5) + 1] b(1r/2) ;r =1, p1)
— (N2 = N3)(t = 1)p; (L= ppbc(Lr/21 ;7. p2)
We use the assumption thabe odd, to get
r—1

o =Nal(1=1)(20— p2) + 1] < o >p1_ (1-pp) 2

— (N2 = N3)(t - 1)p; (1 - py)be(Lr/2) ;7. p2)

20
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Recall tha E /op1 andu’ have the same sign. if = 0, then eithep; =0 or

r=1

(1_1,1)7 _ (N2= Na)(t =) (A= p)bc(1r/2] 7. p2)
n Nil(=1)@p =) +10- (o)

(5.2)

If N3 > N>, then this equation has no solution onIPandu’ > O for all p1. In this
caseE is minimised whem; = p,. If N3 < No andr > 1, givenp,, there is a unique
valuep; of p; €[0,1] solving (5.2). Ifp1 > p], we get’ <0, and if 0< p; < p7, then
u' > 0. It follows that if p; solvesy’ = 0, thenE is maximised. IfE is minimised,
then eithep; = 1 or p; = po. In the case where= 1, the left hand side of (5.2) is 1,
so the equation either has no solution or eyarg [0, 1] is a solution and minimises
E. O

Lemma 10
If Eis minimised angy, = 1, then eithep, = p3=0, pp=p3=1,0r N = N3. In
the latter case, any value pf = p3 minimiseskE.

Proof: We know thatp, = p3, SO writer, = r3 = rg, where

ro=1-bc(lr/2];r p2).
Also note that; = 1 whenevep; = 1. From [5.1), we get

= = Co (N2~ No)-rb(lr/2)i7 = Lp2).

p2

If N> = N3, thisis zero, makinge constant. It is negative fa¥3 > N, and positive

for N> > N3. Hence, ifN3 # No and E is minimised, therp, = p3 must be either

maximised or minimised. d
Observe thatif g1, p2, p3) is either (10,0) or (1 1,1), then €1, r2, r3) = (p1, p2, p3)-

We can also see that for aiNy, E has the same evalution fasy( po, p3) = (1,1, 1),

N, =a,andN3 = b, as it has for g1, p2, p3) = (1,0,0), N2 = b, and N3 = a. It fol-

lows that the minimum value df with p; = p» = p3 is not larger than the minimum

value of E under strategy (D, 0).

Lemma 11 _
If p1 =p2=p3, (r.7) are such thap*(r,t) > 1/2, andi = &3/05 < 2, then

N (142(2p*(r.1) = L)V} 5 — (207 (r.1) = 1)4)°
- 8(2vy pp*(r.1) + (1— p*(r.1))A))

3

where

A, if p=1/2 orvizzﬂ,
vig=14 1, if V;Z <1,
Vi, Otherwise
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and

. _ p+(5p—2p°—2)A

o 2@-p)
Proof: We write
o = N1+ N> a = &
12 2@3 ’ 3 &3

We have I< vi,v3 < 4. The proof is made through three claims, conserning the
worst-case values of respectivglyvs, andvy ».

Claim 1. In the worst case we haye= p*(r,1).

Forry =r, =r3=p, Lemmg 8 gives

E =

1 < 2vio+vz—1

2
2 _2(2PV1,2+(1—p)\/3)) (2pv12+(1-p)vs)¥s. (5.3)

If &5 < 205, then this expression is clearly increasingjrand thus minimised for
p=p*(r.1).

Claim 2. In the worst case we haug = 4.

Differentiating with respect ta;, we get

2
OE _1 (1_ N‘%) (1—p)a3+m<1_ N“%) (‘93+N‘g3(1—p)e3>

dvs 2 2m 2m om 2m2
3 N-¢
=ﬁ<l_ 2m3>.F3’
where
1-p 1-p

2 2
= (20" +1-p)vi2+(p* - p+(1-p)/2vz— (1-p)/2.
<—4p?+2-2p+2p°—2p+1-p—(1-p)/2
=-2p°+3-5p—(1-p)/2<-1/2+3-5/2—(1-p)/2=—(1-p)/2<0.

= —2v12p* —v3(1—p)p+va12(1—p) +v3

ThusE decreases inz and is minimised foxz = A.
Question 3.The worst case value of ».
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By differentiatingE as given in Lemmp|8 with respecttg,, we have

0E 1 N —23\2 N—-03\ 0 &3—N
—-(1- 3) (2p€3)+m<1— 3) 3

o0v12 T2 2m 2m oviz2 2m
2
N —-&; N —23 —203 N -—¢3
=(1- 0 1- 2p@
< 2m ) P 3+m< 2m )( 2m 2m?2 (2p 3)>
2
N-¢ o N-¢
= (1= pos+ = (12 ) (=m+(N - 3)p)
2m m 2m
_ o2
- <1_N_g3)._3.1:12
2m m '
where
Fio= m N-—&3 m N-—&3
2=\ o~ 20, 2" o

_ ﬁ+N_03 m
%" 20, )P0
= (2p° +p—2p)vi2+((1=p)p+p/2—(1-p))va—p/2

= (2p* = p)vi2+(5p/2—p*—1))A—p/2.

Forp =1/2, this is clearly negative, which makes, = 4 the worst case value. If
p>1/2, F15 <0 for small values of; » and positive for big values. Hence in the
worst case, we havE; » =0, or

_ p+(5p—2p*-2)A

V12

2(2p*~p)
If this is outside the permissible bounds f], vi12 clearly takes one of the end
values in the worst case. Substituting irfto [5.3) gives the lemma. O

The following theorem is an immediate consequence of the lemma.

Theorem 4 _
Let Co be a code with(2, 2)- and (3, 1)-separating weights in the intervias, £3],
where 4 = ¢3/83 < 2, and concatenate it with §£7). Supposer is odd and
p*(r,t) > 1/2. Then the concatenated code3isecure withe-error where

e<M-e %%,
and

(142(2p* (r.1) = L)V} 5 — (20* (r.1) = 1)4)°
8(2vy pp*(r. 1) + (1= p*(r,1)) 4)) '

a=
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BCH! | Co SC(1,4) SC(3,3) SC(3,4)
(e;m) | (n, M) p=05556 | p=06667 | p=0.75
(2,13) | (213-1,21%) [ 0.63-102° [ 0.37-10% [ 0.12-10%
(2,15) | (2¥5-1,2'% || 0.32-107148 | 0.74-107292 | 0.58-10724
(3.12) | (409528 | 0.13-10® | 0.10-10° |o021-10%
(3.14) | (2-1,2%Y) | 0.12-10%° | 0.43-10% | 0.44-10°%7
(5.16) | (216—1,2%0) || 0.94-10°173 | 0.39-1072?2 | 0.30-10724°

Table 5.2.: Upper bounds erfor some dual BCH codes.

| BCH(e,m) | SC(.1) | SClength]  (n,M) |e< |

(2,13) (1.3) 71 (5733721 [ 10°%
(2,15) (1,3) 7| (2293692%) | 10°7°
(3.12) (3.4) 27 | (11056528) | 10711

%(3,12) | (L3)
(3.14) (1,3)
(5.16) (1.3)

(5733021%) | 10716
(114681221) | 10733
(4587452%0) | 107148

~N N~

Table 5.3.: Some codes with< 10710, For the outer code marked each column in the outer
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code is replicated twice, essentially doublifigandn.

Observe that largefs improves the error rate. By replicating the colunars 2
times in the outer code, we can easily obtain codes with vastly better error rate and
only twice the length. In Table 5.3, we can see how this gives shorter length and
better error rate than using a larger scattering code. Also observé shatuld be
made as small as possible, apidr,t) as big as possible in order to minimise the
error rate.

In Table/5.2, we show the parameters of some separating codes, and ih Thable 5.3
some of the best concatenated codes. A previous record code was a (XR0DEB
code with error rate 163° from [LBHO3]. We observe that several of our codes beat
this code in all parameters.

We can also note that Taljle p.3 is easily extrapolated. Increasimgtwo will
roughly increase the length by a factor of four, and increase the size by a factor of
2°. The error rate drops exponentially. For bigger codes it is better to inceease
thanm, even though the bounds o#s(¥¢3) are less accurate for these codes. The
tables include one example with BELb).



A. Auxiliary lemmata

Lemma 12
Letbe(x;r,p) = P(X < x) for X ~ B(r, p). Then we have

dbc(x;r, -1 ——
C(;C rp) =_r<r )px(l—p)r X 1=—r-b(x;r—l,p).
ip X

Proof:

db (xr ) d - i r—i
Cdp £ _d_2< >P(1—P)

1

X

) nsa- =3 () e-ora-

i=0

=Z< >(’P’ YA-p)~ = (r=i)p'(1-p)~"

(r=x)p*(1-p) "

)
(1 1) (i+1)- (:) (r- i)) p(L-p)y =
()
(

(r—x)p*(1-p)y ™t

2 H’;l)(i+1)—(f)(r—t))p'{l—p)’-f-l
(D)=

:_r( )y
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Appendix A. Auxiliary lemmata
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