
Computing Approximate Weighted
Matchings in Parallel

Fredrik Manne, University of Bergen

with

Rob Bisseling, Utrecht University
Alicia Permell, Michigan Tech. University

The Edge Weighted Matching Problem

Given an edge weighted graph G(V,E).
Select an independent set S of edges of maximum weight.

7

6
6

2

9

510
81 W(opt) = 18

Best known algorithm has running time O(|V||E|+|V|2log|V|)

Often too expensive for real applications

Fast Approximation Algorithms

While there are edges left
Add most expensive remaining edge (v,w) to S
Remove (v,w) and all edges incident on v and w.

7

6
6

2

9

510
81 W(S) � ½W(opt)

Running time O(|E| log |V|) (due to sorting)

Parallelization: Difficult to sort distributed weights

The Greedy Approach

Fast Approximation Algorithms

Path growing [Drake and Hougardy]

Grow non-intersecting path along heaviest edge
while coloring edges alternatively green or blue.

Return heaviest of green and blue.

7

6
6

2

9

510
81

W(G) + W(B) � W(opt)

Max{W(G),W(B)} � ½W(opt)

Running time O(|V| + |E|)

Also inherently sequential

A Parallel Path Growing Algorithm

Idea: Grow multiple paths at the same time

Assumes shared memory model

P1 P2

8 77

6

A potential problem

5 Cannot guarantee that we get 0.5 approximation

Experiments using UPC on random graphs indicate
that this does not affect quality too much.

A New Sequential Algorithm

7

6
6

2

9

510
81

From the analysis of the Greedy algorithm:
A chosen edge must dominate its remaining neighborhood

Local Domination Algorithm
D = all dominating edges in G
While D is not empty

Remove (v,w) from D and add to S
Remove all edges incident on v and w from G
Add any new dominating edges to D

Observation
If the weights are unique, then the algorithm will produce the same matching
as the Greedy algorithm.

Implementation Details
Selecting initial dominating edges take time O(|V| + |E|)

When a dominating edge is removed only its distance-2 neighbors can become dominating

7

810
2

5

v

w

Only the heaviest edge incident on v
is a candidate

How to find candidates: Total time

1. Presort edges incident on each vertex, can test candidate in O(1) time, O(|V| d log d + |V| + |E|)

2. Perform linear search for new candidate incident on v O(|V|d2 + |V| + |E|)

Maintain a pointer for each vertex to
the remaining heaviest edge

Linear Search for Candidates

Observation
If every edge has the same probability of being removed, then the expected
time to maintain the pointer for v is O(dv) (and not O(d2)).

4 6 8 3 7 9 3
v

Heaviest

Only compress list when heaviest edge is removed

Another View of the Algorithm

7

6
6

2

9

510
81

7

2

1

10

9 6

8

5

6

But this is just Luby’s algorithm for finding a maximal independent set of vertices but
now run on the edges!

c c

Replace edges with vertices

The Parallel Local Domination Algorithm

The Algorithm

Partition vertices (and edges) into p subsets
Find initial dominant edges
While some processor has edges left

Run algorithm locally
Update neighbor processors

P1 P2

Data distribution

c

c c

x y

yx’x y’

Initial Experiments

Experiments using MPI on IBM Regatta computer

bcsstk36

0
10
20
30
40
50
60
70
80

 1 2 4 8 16

Number of processors

Ti
m

e

Communication

Computation

Initialization

Complete graph on 1000 vertices with random
weights

0

10

20

30

40

50

60

 1 2 4 8 16

Number of processors
Ti

m
e

Communication

Computation

Initialization

Conclusion

Contributions
• New fast sequential 0.5 approximation algorithm suitable for parallelization
• Parallel implementation showing that it actually scales

Still to do
• Optimize the code
• More experiments
• More rigorous analysis
• Extend algorithm with short augmenting paths

Data

Bcsstk35, n=30237, m = 1450163
P Total time Initialization Computation Communication
1 74 20 54 0
2 43 11 25 6
4 24 6 13 5
8 16 5 8 3
16 19 6 4 8

Complete random graph on 1000 vertices and 1000000 vertices
1 52 18 33 0
2 45 14 22 9
4 35 11 9 13
8 25 7 4 13
16 24 4 2 16

