Computing Approximate Weighted Matchings in Parallel

Fredrik Manne, University of Bergen

with

Rob Bisseling, Utrecht University
Alicia Permell, Michigan Tech. University
The Edge Weighted Matching Problem

Given an edge weighted graph $G(V,E)$. Select an independent set S of edges of maximum weight.

$$W(\text{opt}) = 18$$

Best known algorithm has running time $O(|V||E|+|V|^2\log|V|)$

Often too expensive for real applications
Fast Approximation Algorithms

The Greedy Approach

While there are edges left
 Add most expensive remaining edge \((v, w)\) to \(S\)
 Remove \((v, w)\) and all edges incident on \(v\) and \(w\).

\[W(S) \geq \frac{1}{2}W(\text{opt}) \]

Running time \(O(|E| \log |V|)\) (due to sorting)

Parallelization: Difficult to sort distributed weights
Fast Approximation Algorithms

Path growing [Drake and Hougardy]

Grow non-intersecting path along heaviest edge while coloring edges alternatively green or blue.

Return heaviest of green and blue.

\[
\begin{align*}
W(G) + W(B) & \geq W(\text{opt}) \\
\text{Max}\{W(G),W(B)\} & \geq \frac{1}{2}W(\text{opt})
\end{align*}
\]

Running time \(O(|V| + |E|)\)

Also inherently sequential
A Parallel Path Growing Algorithm

Idea: Grow multiple paths at the same time

Assumes shared memory model

A potential problem

Cannot guarantee that we get 0.5 approximation

Experiments using UPC on random graphs indicate that this does not affect quality too much.
A New Sequential Algorithm

From the analysis of the Greedy algorithm:
A chosen edge must dominate its remaining neighborhood

Local Domination Algorithm
\[D = \text{all dominating edges in } G \]
While \(D \) is not empty
 Remove \((v,w)\) from \(D \) and add to \(S \)
 Remove all edges incident on \(v \) and \(w \) from \(G \)
 Add any new dominating edges to \(D \)

Observation
If the weights are unique, then the algorithm will produce the same matching as the Greedy algorithm.
Implementation Details

Selecting initial dominating edges take time $O(|V| + |E|)$

When a dominating edge is removed only its distance-2 neighbors can become dominating.

Only the heaviest edge incident on v is a candidate.

Maintain a pointer for each vertex to the remaining heaviest edge.

How to find candidates:

1. Presort edges incident on each vertex, can test candidate in $O(1)$ time, $O(|V| d \log d + |V| + |E|)$
2. Perform linear search for new candidate incident on v $O(|V|d^2 + |V| + |E|)$
Linear Search for Candidates

Observation
If every edge has the same probability of being removed, then the expected time to maintain the pointer for \(v \) is \(O(d_v) \) (and not \(O(d^2) \)).
Another View of the Algorithm

But this is just Luby’s algorithm for finding a maximal independent set of vertices but now run on the edges!
The Parallel Local Domination Algorithm

The Algorithm

Partition vertices (and edges) into p subsets
Find initial dominant edges
While some processor has edges left
 Run algorithm locally
 Update neighbor processors
Initial Experiments

Experiments using MPI on IBM Regatta computer

bcsstk36

Complete graph on 1000 vertices with random weights
Conclusion

Contributions
- New fast sequential 0.5 approximation algorithm suitable for parallelization
- Parallel implementation showing that it actually scales

Still to do
- Optimize the code
- More experiments
- More rigorous analysis
- Extend algorithm with short augmenting paths
Data

Bcsstk35, n=30237, m = 1450163

<table>
<thead>
<tr>
<th>P</th>
<th>Total time</th>
<th>Initialization</th>
<th>Computation</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74</td>
<td>20</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>11</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>6</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>5</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>6</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Complete random graph on 1000 vertices and 1000000 vertices

<table>
<thead>
<tr>
<th>P</th>
<th>Total time</th>
<th>Initialization</th>
<th>Computation</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52</td>
<td>18</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>14</td>
<td>22</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>11</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>7</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>4</td>
<td>2</td>
<td>16</td>
</tr>
</tbody>
</table>