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leaves are the ars and inner nodes orrespond to \bloks" (a train formsa blok, a �nal destination in a train forms a blok). In some bloks,the subbloks may be permuted in any order (orresponding to P-nodes),whereas in other bloks, the sequene of immediate subbloks is �xed(Q-nodes). The problem is to minimize the number of hains, given anordering requirement and the initial positions of the ars. In general,the problem is NP-omplete [4℄. We disuss eÆient speial ases andapproximative solutions.1 IntrodutionThe general problem of train marshalling is to reate new trains from a set ofarriving trains. In our model, the \lassi�ation yard" onsists of a hump and aset of parallel \lassi�ation traks" that are joined by a ommon trak with thehump. Any ar an roll down from the hump to a lassi�ation trak without apush of the engine.There are ertain riteria of optimality. Examples are the number of swithes,the number of ouplings and deouplings, and the number of bak and forthmovements of the engine. Exat solutions of ertain optimization problems areexpeted to be NP-omplete. But there are ertain shemes that are disussedin the literature [3, 8℄. The problems with these shemes are that they either re-quire additional traks (sorting by trains, sorting by blok numbers) or that thetraks are oupied quite unsymetrially (triangular sorting, geometri sorting).It is quite natural to take over some ideas from sorting algorithms to �nda new sheme that needs only logarithmially many bak and forth movementsof the engine and that works even if there are no additional traks. The mostappropriate approah is radix sort (see for example [2℄) . It omes out thatthe number of bak and forth movements of the engine through the hump islogarithmially bounded by the number of ars.We are also interested in an appropriate parameter from whih the numberof bak and forth movements an be determined as this an be signi�antlysmaller than the logarithm of the number of ars. In ase of merge sort, thenumber of merge steps is the logarithm of the number of olors of the assoiatedpermutation graph [5℄. In ase of radix sort, an appropriate parameter is thenumber of \hains", i.e. the number of traks that are needed if we wouldlike to get all ars in the right position in one bak and forth movement step.Contrary to merge sort, we have to assume that the numbers of items (�nalposition numbers of ars) are f1; : : : ; ng and not any set of numbers. One anall it onseutive integers adaptive radix sort. This kind of adaptive sortingproedure is not an interesting approah for sorting unknown items but aninteresting one to put known items onto the right plae.Next we would like to mention that it is not neessary that all ars are in a�xed position. It might be suÆient that ars of a ertain destination appearonseutively. We say that ars of the same destination or ars that shouldbelong to the same train form a \blok". Two bloks are either disjoint or oneblok is a subset of the other blok. It might be possible that ars or subbloks2



hump

classification tracksFigure 1: The Struture of a Hump Yardof a ertain blok have to appear in a ertain sequene (due to timetable restri-tions) or not (the subbloks only have to appear onseutively). The partitionof the ar set into bloks and subbloks together with the requirements whetherthe subbloks have to appear in a ertain sequene or not is alled the blokingsheme. We are interested, given for eah ar its initial position and a blokingsheme, in �nding an ordering of the ars that satis�es the bloking sheme,suh that the number of bak and forth movements, i.e. the number of hains,is minimized.The general problem and even a ertain speial ase is NP-omplete [4℄. Wewill disuss two ases that an be solved eÆiently. One ase is a generalizationof the approah of [9℄. A seond eÆient ase an be redued to a generalizationof interval graph oloring.2 The Yard Model and one Humping StepThe type of yard we would like to onsider onsists of, say k, parallel lassi-�ation traks that are joined by one long humping trak on whih there is ahump.In general a humping step is de�ned as follows. Let Si be the sequene ofars on trak i. We selet a �nal segment S0i of Si that has to be reordered,i.e. Si = S00i S0i. We onatenate the sequenes S0i to a sequene T 0 = S01; : : : ; S0k(and draw the ars of T 0 behind the hump). For eah ar t of T 0, we selet atrak it, on whih it has to be pushed, i.e. T 0 is split into k subsequenes T 0ionsisting of eah ar t with it = i. The new on�guration onsists therefore ofthe sequenes Ti = S00i T 0i .In our paper, we onsider only humping steps where eah S00i is empty. Thatmeans, in one humping step, we transform S into a sequene T as follows. Wesplit S into subsequenes S01; : : : ; S0k and T is the onatenation of S01 : : : S0k.The goal is to transform an initial sequene Sin = S1 : : : Sk into a �nalsequene Sfin = T1 : : : Tk. The �nal position of a ar  is i if  is the ith elementof Sfin, and the initial position of  is the j, suh that  is the jth elementof Sin. The �nal position of  is denoted by i and the initial position of  isdenoted by j.Throughout the whole paper, we all the ith ar in the �nal position simplythe ith ar or ar i
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Figure 2: One Sorting Step3 Logarithmi Sorting Sheme3.1 Basi IdeaThe basi idea is radix sort (see for example [2℄). Although the sheme is quitewell known, we will give a desription to explain the idea of the adaptive sheme.We assume that the storage yard has k lassi�ation traks. We also assumethat the length of the traks is not bounded.We denote by p�i the position of the ith ar in step �. We take are that afterthe �th step, the sequenes P �� = (p�i : i = k�(��1)+1; : : : ; k��) are inreasing(and of length k�), i.e. the urrent positions of ars k�(��1)+1; : : : ; k��) forman inreasing sequene. Note that after logk n many steps, there is only onesequene P �� that is inreasing and all ars are therefore in �nal position.One step of transformation an be done as follows. We assume that allP ��1� = (piji = k��1(�� 1) + 1; : : : ; k��1�) are inreasing sequenes (of lengthk��1), i.e. the atual positions of ars k��1(��1)+1; : : : ; k��1�) are inreasing.If � = (�0 � 1)k + l, l = 1; : : : ; k (i.e. l = �mod k), then we put ars of thesequene P ��1� into trak l and therefore, with l1 < k, �1 = (�0 � 1)k + l1,and �2 = (�0 � 1)k + l2, the ars of P ��1�1 have smaller positions than the arsof P ��1�2 . The sequenes P ��0 , i.e. the positions of the ars of �nal positionk�(�0 � 1) + 1; : : : ; k��0) beome inreasing.3.2 An Adaptive Radix Sorting ShemeWe again onsider the sequene P = (piji = 1; : : : n) of the positions of the ars(pi is the atual position of ar i). We divide the sequene P into maximal4



inreasing subsequenes (pi; : : : ; pj), we also all hains. We assume that P isthe onatenation of the hains P1; : : : ; PN . If � = �0k + l with l = 1; : : : ; k, weput ars belonging to hain P� into trak l. The onatenation of the hainsP�0+l, l = 1; : : : ; k, beomes an inreasing sequene, i.e. it beomes a hain.Therefore the number of hains is redued by a fator of k in one step.Theorem 1 Let N be the number of hains of P . Then it is possible to trans-form the ars of P into their �nal positions in logk N steps.This means the number of hains N is an important parameter of \presort-edness".It is worth mentioning that our adaptive radix sorting sheme is signi�antlydi�erent from the adaptive sheme in [6℄. In our sheme it is essential that thenumbers of the items form an initial segment of the natural numbers. Theproblem thus beomes to put the items into the right plae in as few steps aspossible and not to �nd a sorting.We did not yet disuss how to behave if the lengths of traks are bounded.In the �nal version of this paper we will demonstrate how to proeed in ase ofbounded trak lengths and show that we still get a logarithmi bound on thenumber of hains.4 Requirement Spei�ation by Blok Shemes( P-Q Trees )Here we disuss the question \How should the order requirement be spei�ed?".It is not neessary that the ars are rearranged into a �xed order. The orderinghas only to satisfy that ars of the same outbound train have to appear onse-utively or that ars of the same destination have to appear onseutively. Wenow disuss in more detail how to speify order requirements.4.1 Order Requirement Spei�ation by TreesIn general, the set of ars is divided into bloks, and eah blok might be reur-sively divided into subbloks. (Bloks subbloks orrespond to outbound trainsor or outbound trains in the next lassi�ation yard or destinations). The im-mediate subbloks of a blok have to appear in a �xed sequene (e.g. due totime table restritions) or they an be permuted. Essentially ars of the sameblok have to appear onseutively.That means that we an speify an ordering requirement by a tree strutureT , also alled blok tree.1. The leaves are the ars.2. The inner nodes orrespond to the bloks, i.e. the blok bt orrespondingto the node t is the the set of ars that are desendents of t in T .5



3. A node t is marked as a P-node if the hildren of t (immediate subbloksof t) may appear in any order.4. A node t is marked as a Q-node if the hildren of t have to appear in a�xed sequene.In general, one an show the following.Theorem 2 Minimizing the number of hains is NP-hard.[4℄ have shown that minimizing the number of hains is NP-omplete if thegiven P-Q-tree onsists of a P-node as root that has only P-nodes as hildrenand their hildren are leaves.5 EÆient Speial Cases for Chain Minimiza-tion5.1 The Case of a Q-node with P-Children and General-izationsWe are given a Q-node q with P-node hildren p1; : : : ; pk. For eah P-node pi,let wi;j be the jth hild of pi where the hildren of pi appear in the same orderas in the initial ordering of the ars. Let ni be the number of hildren of pi. Analgorithm that determines a �nal ordering with a minimum number of hainsworks as follows.Througout the algorithm r is the initial position of the last ar that has beenonsidered,  is the number of known hains, and f is the last �nal position thathas been onsidered. We identify the ar wi;j with its initial position.1. Initially, r = 0, f = 0, and  = 1.2. For i = 1; : : : ; k, we proeed as follows.� (Determine the �rst ar that is a hild of pi) We determine the small-est j, suh that the initial wi;j > r. If suh a wi;j does not exist, weinrease  by one and we selet wi;j with j = 1 start with the �rstar).� (Determine the �nal positions of the hildren of pi) Let j be de�nedas in previous step. The �nal position fi;� of ar wi;� is f +�� j+1,for � = j; : : : ; ni and f + ni � j + 1 + �, for � = 1; : : : ; j � 1.� (Update , r, and f) If j = 1 then r := wi;ni and  does not hange.If j 6= 1 then r := wi;j�1 and  is inreased by one.f is updated by f + ni.Theorem 3 The number of hains  omputed by this algorithm is minimum.The number r is the minimum possible initial position of the last ar of the lasthain of an ordering ompatible with the given P-Q-tree T with a Q-node rootand P-node hildren. 6



5.1.1 Relaxed Q-NodesConsider an enumeration q1; : : : ; qk of the hildren of q. The enumerationq1; : : : ; qk satis�es the l-relaxed Q-node ondition if with qi = pj , jj � ij � l.An ordering of the ars (leaves) of the P-Q-tree T with a Q-node q with P-nodehildren p1; : : : ; pk satis�es the l-relaxed Q-node ondition with respet to T if1. the hildren of eah pi appear onseutively (that means the ordering ofthe ars indues an ordering of the hildren of q in a natural way).2. the ordering of the hildren of q indued by the ordering of the ars satis�esthe l-relaxed Q-node ondition.One an interpret this model in the sense that there is some tolerane asto when eah train an depart. For example let l = 1. Train i an departbefore train i+ 1, but not before train i+ 2. Zhu and Zhu [9℄ have shown howto minimize the number of hains for �nal orderings that satisfy the 1-relaxedQ-node ondition, provided a Q-node q with P-node hildren is given and theP-nodes have only leaves as hildren. They developed an algorithm with a timebound of n2 where n is the number of ars.We get an extended result.Theorem 4 Let l be �xed. Given a P-Q-tree T with a Q-node q as root, suhthat all hildren of q are P-nodes and all grandhildren of q are leaves, and givenany initial ordering v1; : : : ; vn of the ars (leaves) of T , an ordering w1; : : : ; wnthat satis�es the l-relaxed Q-node ondition with respet to T and that has aminimum number of hains an be determined in linear time.Sketh of Proof: Consider any enumeration q1; : : : ; qk of the hildren of q thatsatis�es the l-relaxed Q-node ondition. Then fq1; : : : ; qig = fq1; : : : ; qi�lg [ Siwhere1. Si is an l size subset of fqi�l+1; : : : ; qi+1g if i = l; : : : ; k � l2. Si is an i size subset of fq1; : : : ; qi+lg if i < l and3. Si is a k � i+ 1 size subset of fqi�l+1; : : : ; qkg if i > k � l.The sets Si are alled i-states. We onsider the state graph de�ned as follows.1. the nodes are the i-states, i = 1; : : : ; k,2. there is a direted edge from an i-state Si to an (i + 1)-state Si+1 if andonly if Si+1 = Si [ fqjg n fqi�l+1g.Lemma 1 The direted paths of the state graph from any 1-state S1 to thek-state Sk and the sequenes q1; : : : ; qk meeting the l-relaxed Q-node onditionorrespond eah other.An optimal solution an be obtained in a similar way as single soure shortestpath.End of sketh of proof (Theorem) 7



5.2 The Case of a P-node with Q-ChildrenReall that given the initial and the �nal positions of the ars of a set C, thepermutation � maps the �nal position i of eah ar  into its initial positionj = �(i). Apart from minimizing the number of hains, we also an minimizethe number of jumps, i.e. onseutive plaes (i; i+1), suh that �(i) > �(i+1).Now we are given a P-node p with Q-node hildren q1; : : : ; qk. The hil-dren of eah qi are leaves (or single ars). The hildren of eah qi are someri;1; : : : ; ri;ni . Note that the �nal position iri;j+1 = iri;j + 1. Therefore thenumber of jumps in qi, i.e. the number of jumps (iri;j ; iri;j+1) is independent ofthe sequene q1; : : : ; qk of the hildren of q that we hoose. Only the number ofjumps (iri;ni ; iri+1;1) might be dependent on the partiular sequene q1; : : : ; qk.We all these jumps external jumps. They take only the initial position of the�rst ar of a Q-node and the initial position of the last ar of another Q-nodeinto aount.The minimization of the number of external jumps is therefore equivalent tothe following problem.Sequening of Ordered PairsInput: A set P of ordered pairs of natural numbers (in the speial ase, foreah qi, the initial position of the �rst and of the last ar that is a hildof qi)Output: A partition of P into sequenes P1; : : : ; Pk, suh that1. eah Pi is loally inreasing, i.e. if (x; y) and (z; w) are onseutivein Pi then y < z,2. eah (x; y) appears in exatly one sequene Pi, and3. the number k of sequenes Pi is minimum.Note that if for all (x; y) 2 P , x < y then this problem is equivalent tointerval graph oloring.Theorem 5 Sequening of Ordered Pairs an be solved in linear time.Sketh of Proof: First we disuss a lower bound for the number of sequenesP1; : : : ; Pk, we also all olor sequenes. We proeed in a similar way as ininterval graphs [5℄.We all a pair (x; y) positive if x < y and negative if x > y.For any real number r, Posr is the number of positive (x; y) 2 P withx � r � y and Negr is the number of negative (x; y) 2 P with y < r < x. Thelique size of r in P is CPr := Posr �Negr.Lemma 2 Let P1; : : : ; Pk be a partition of P into olor sequenes. Then k �CPr , for any real number r. 8



The lique number !(P ) of P is the maximum lique size of a real numberr in P .Lemma 3 There is an eÆient algorithm that omputes a partition of P intoolor sequenes P1; : : : ; Pk with k � !(P ) + 1.Proof: We proeed in a similar fashion to the interval graph oloring. Wesort the numbers x and y appearing in some (x; y) 2 P in inreasing order.Now we may assume that the numbers appearing in P are 1; : : : ; n.For eah olor sequene s = d1; : : : ; dq, the �rst element is the �rst ompo-nent of d1 and the last element is the seond omponent of dq .Initially the set of olor sequenes onsists of the one element sequenes ofthe elements of P .For eah i = 1; : : : ; n, we onatenate olor sequenes with last element< i with olor sequenes with �rst element = i as muh as possible. As muhas possible, we avoid onatenating a olor sequene with itself. If a olorsequene onatenates with itself, we delare it as \yli" (meaning that anyyli permutation of the sequene is a olor sequene).We �nally have !(P ) non yli olor sequenes and some yli olor se-quenes. It is possible to onatenate the yli olor sequenes to one sequene.Q.E.D.The number of olor sequenes we just omputed is at most one more thanthe minimum number of olor sequenes. To get the minimum, we still keeptrak of the remaining yli olor sequenes and integrate them into the nonyli olor sequenes as long as possible, i.e. we have a yli olor sequenes and a nonyli olor sequene s0 and reate a olor sequene s01s0s02where s01 is an initial segment of s0, s0 is a yli permutation of s, ands02 onsists of the remaining elements of s0.We will show in the full paper, how to determine the minimum number ofolor sequenes in linear time, provided we sorted the numbers appearing in Pin advane, i.e. the appearing numbers are 1; : : : ; n.End of sketh of proof (Theorem)6 ConlusionsFirst it should be mentioned that for the ase of a P-node root with P-nodehildren and only leaves as grandhildren, one an get a 2-approximate solutionapplying interval graph oloring. In general, one gets a more ompliated al-gorithm that approximates the number of jumps up to a onstant fator. Thiswill be presented in the �nal version of the paper. Here we have minimized thenumber of essential sorting steps that an be onsidered as a parameter to min-imize the energy of the engine (the number of passing of the hump times two).Another problem is to try to minimize the number of ouplings and deouplingsof ars. In the European network, oupling and deoupling of ars is very timeonsuming, beause the old fashioned ouplers of last entury are still in use.Automati oupling has not been introdued yet.9
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