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tWe dis
uss a train marshalling prin
iple on a hump yard based on radixsort. Initially we show that the number of sorting steps is dependent onthe number of \
hains" in the permutation � that maps the �nal positionof ea
h 
ar to its initial position. A 
hain is here a maximal interval I =[i; j℄, su
h that � is monotoni
ally in
reasing. This adaptive radix sortings
heme requires that the numbers of the items form an initial segmentf1; : : : ; ng of the natural numbers. We also dis
uss the problem how tobehave if the �nal position is not �xed but only has to satisfy 
ertainrequirements, e.g. 
ars of the same train have to appear 
onse
utively.In general, we spe
ify an ordering requirement by a P-Q-tree where the



leaves are the 
ars and inner nodes 
orrespond to \blo
ks" (a train formsa blo
k, a �nal destination in a train forms a blo
k). In some blo
ks,the subblo
ks may be permuted in any order (
orresponding to P-nodes),whereas in other blo
ks, the sequen
e of immediate subblo
ks is �xed(Q-nodes). The problem is to minimize the number of 
hains, given anordering requirement and the initial positions of the 
ars. In general,the problem is NP-
omplete [4℄. We dis
uss eÆ
ient spe
ial 
ases andapproximative solutions.1 Introdu
tionThe general problem of train marshalling is to 
reate new trains from a set ofarriving trains. In our model, the \
lassi�
ation yard" 
onsists of a hump and aset of parallel \
lassi�
ation tra
ks" that are joined by a 
ommon tra
k with thehump. Any 
ar 
an roll down from the hump to a 
lassi�
ation tra
k without apush of the engine.There are 
ertain 
riteria of optimality. Examples are the number of swit
hes,the number of 
ouplings and de
ouplings, and the number of ba
k and forthmovements of the engine. Exa
t solutions of 
ertain optimization problems areexpe
ted to be NP-
omplete. But there are 
ertain s
hemes that are dis
ussedin the literature [3, 8℄. The problems with these s
hemes are that they either re-quire additional tra
ks (sorting by trains, sorting by blo
k numbers) or that thetra
ks are o

upied quite unsymetri
ally (triangular sorting, geometri
 sorting).It is quite natural to take over some ideas from sorting algorithms to �nda new s
heme that needs only logarithmi
ally many ba
k and forth movementsof the engine and that works even if there are no additional tra
ks. The mostappropriate approa
h is radix sort (see for example [2℄) . It 
omes out thatthe number of ba
k and forth movements of the engine through the hump islogarithmi
ally bounded by the number of 
ars.We are also interested in an appropriate parameter from whi
h the numberof ba
k and forth movements 
an be determined as this 
an be signi�
antlysmaller than the logarithm of the number of 
ars. In 
ase of merge sort, thenumber of merge steps is the logarithm of the number of 
olors of the asso
iatedpermutation graph [5℄. In 
ase of radix sort, an appropriate parameter is thenumber of \
hains", i.e. the number of tra
ks that are needed if we wouldlike to get all 
ars in the right position in one ba
k and forth movement step.Contrary to merge sort, we have to assume that the numbers of items (�nalposition numbers of 
ars) are f1; : : : ; ng and not any set of numbers. One 
an
all it 
onse
utive integers adaptive radix sort. This kind of adaptive sortingpro
edure is not an interesting approa
h for sorting unknown items but aninteresting one to put known items onto the right pla
e.Next we would like to mention that it is not ne
essary that all 
ars are in a�xed position. It might be suÆ
ient that 
ars of a 
ertain destination appear
onse
utively. We say that 
ars of the same destination or 
ars that shouldbelong to the same train form a \blo
k". Two blo
ks are either disjoint or oneblo
k is a subset of the other blo
k. It might be possible that 
ars or subblo
ks2



hump

classification tracksFigure 1: The Stru
ture of a Hump Yardof a 
ertain blo
k have to appear in a 
ertain sequen
e (due to timetable restri
-tions) or not (the subblo
ks only have to appear 
onse
utively). The partitionof the 
ar set into blo
ks and subblo
ks together with the requirements whetherthe subblo
ks have to appear in a 
ertain sequen
e or not is 
alled the blo
kings
heme. We are interested, given for ea
h 
ar its initial position and a blo
kings
heme, in �nding an ordering of the 
ars that satis�es the blo
king s
heme,su
h that the number of ba
k and forth movements, i.e. the number of 
hains,is minimized.The general problem and even a 
ertain spe
ial 
ase is NP-
omplete [4℄. Wewill dis
uss two 
ases that 
an be solved eÆ
iently. One 
ase is a generalizationof the approa
h of [9℄. A se
ond eÆ
ient 
ase 
an be redu
ed to a generalizationof interval graph 
oloring.2 The Yard Model and one Humping StepThe type of yard we would like to 
onsider 
onsists of, say k, parallel 
lassi-�
ation tra
ks that are joined by one long humping tra
k on whi
h there is ahump.In general a humping step is de�ned as follows. Let Si be the sequen
e of
ars on tra
k i. We sele
t a �nal segment S0i of Si that has to be reordered,i.e. Si = S00i S0i. We 
on
atenate the sequen
es S0i to a sequen
e T 0 = S01; : : : ; S0k(and draw the 
ars of T 0 behind the hump). For ea
h 
ar t of T 0, we sele
t atra
k it, on whi
h it has to be pushed, i.e. T 0 is split into k subsequen
es T 0i
onsisting of ea
h 
ar t with it = i. The new 
on�guration 
onsists therefore ofthe sequen
es Ti = S00i T 0i .In our paper, we 
onsider only humping steps where ea
h S00i is empty. Thatmeans, in one humping step, we transform S into a sequen
e T as follows. Wesplit S into subsequen
es S01; : : : ; S0k and T is the 
on
atenation of S01 : : : S0k.The goal is to transform an initial sequen
e Sin = S1 : : : Sk into a �nalsequen
e Sfin = T1 : : : Tk. The �nal position of a 
ar 
 is i if 
 is the ith elementof Sfin, and the initial position of 
 is the j, su
h that 
 is the jth elementof Sin. The �nal position of 
 is denoted by i
 and the initial position of 
 isdenoted by j
.Throughout the whole paper, we 
all the ith 
ar in the �nal position simplythe ith 
ar or 
ar i
3
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Figure 2: One Sorting Step3 Logarithmi
 Sorting S
heme3.1 Basi
 IdeaThe basi
 idea is radix sort (see for example [2℄). Although the s
heme is quitewell known, we will give a des
ription to explain the idea of the adaptive s
heme.We assume that the storage yard has k 
lassi�
ation tra
ks. We also assumethat the length of the tra
ks is not bounded.We denote by p�i the position of the ith 
ar in step �. We take 
are that afterthe �th step, the sequen
es P �� = (p�i : i = k�(��1)+1; : : : ; k��) are in
reasing(and of length k�), i.e. the 
urrent positions of 
ars k�(��1)+1; : : : ; k��) forman in
reasing sequen
e. Note that after logk n many steps, there is only onesequen
e P �� that is in
reasing and all 
ars are therefore in �nal position.One step of transformation 
an be done as follows. We assume that allP ��1� = (piji = k��1(�� 1) + 1; : : : ; k��1�) are in
reasing sequen
es (of lengthk��1), i.e. the a
tual positions of 
ars k��1(��1)+1; : : : ; k��1�) are in
reasing.If � = (�0 � 1)k + l, l = 1; : : : ; k (i.e. l = �mod k), then we put 
ars of thesequen
e P ��1� into tra
k l and therefore, with l1 < k, �1 = (�0 � 1)k + l1,and �2 = (�0 � 1)k + l2, the 
ars of P ��1�1 have smaller positions than the 
arsof P ��1�2 . The sequen
es P ��0 , i.e. the positions of the 
ars of �nal positionk�(�0 � 1) + 1; : : : ; k��0) be
ome in
reasing.3.2 An Adaptive Radix Sorting S
hemeWe again 
onsider the sequen
e P = (piji = 1; : : : n) of the positions of the 
ars(pi is the a
tual position of 
ar i). We divide the sequen
e P into maximal4



in
reasing subsequen
es (pi; : : : ; pj), we also 
all 
hains. We assume that P isthe 
on
atenation of the 
hains P1; : : : ; PN . If � = �0k + l with l = 1; : : : ; k, weput 
ars belonging to 
hain P� into tra
k l. The 
on
atenation of the 
hainsP�0+l, l = 1; : : : ; k, be
omes an in
reasing sequen
e, i.e. it be
omes a 
hain.Therefore the number of 
hains is redu
ed by a fa
tor of k in one step.Theorem 1 Let N be the number of 
hains of P . Then it is possible to trans-form the 
ars of P into their �nal positions in logk N steps.This means the number of 
hains N is an important parameter of \presort-edness".It is worth mentioning that our adaptive radix sorting s
heme is signi�
antlydi�erent from the adaptive s
heme in [6℄. In our s
heme it is essential that thenumbers of the items form an initial segment of the natural numbers. Theproblem thus be
omes to put the items into the right pla
e in as few steps aspossible and not to �nd a sorting.We did not yet dis
uss how to behave if the lengths of tra
ks are bounded.In the �nal version of this paper we will demonstrate how to pro
eed in 
ase ofbounded tra
k lengths and show that we still get a logarithmi
 bound on thenumber of 
hains.4 Requirement Spe
i�
ation by Blo
k S
hemes( P-Q Trees )Here we dis
uss the question \How should the order requirement be spe
i�ed?".It is not ne
essary that the 
ars are rearranged into a �xed order. The orderinghas only to satisfy that 
ars of the same outbound train have to appear 
onse
-utively or that 
ars of the same destination have to appear 
onse
utively. Wenow dis
uss in more detail how to spe
ify order requirements.4.1 Order Requirement Spe
i�
ation by TreesIn general, the set of 
ars is divided into blo
ks, and ea
h blo
k might be re
ur-sively divided into subblo
ks. (Blo
ks subblo
ks 
orrespond to outbound trainsor or outbound trains in the next 
lassi�
ation yard or destinations). The im-mediate subblo
ks of a blo
k have to appear in a �xed sequen
e (e.g. due totime table restri
tions) or they 
an be permuted. Essentially 
ars of the sameblo
k have to appear 
onse
utively.That means that we 
an spe
ify an ordering requirement by a tree stru
tureT , also 
alled blo
k tree.1. The leaves are the 
ars.2. The inner nodes 
orrespond to the blo
ks, i.e. the blo
k bt 
orrespondingto the node t is the the set of 
ars that are des
endents of t in T .5



3. A node t is marked as a P-node if the 
hildren of t (immediate subblo
ksof t) may appear in any order.4. A node t is marked as a Q-node if the 
hildren of t have to appear in a�xed sequen
e.In general, one 
an show the following.Theorem 2 Minimizing the number of 
hains is NP-hard.[4℄ have shown that minimizing the number of 
hains is NP-
omplete if thegiven P-Q-tree 
onsists of a P-node as root that has only P-nodes as 
hildrenand their 
hildren are leaves.5 EÆ
ient Spe
ial Cases for Chain Minimiza-tion5.1 The Case of a Q-node with P-Children and General-izationsWe are given a Q-node q with P-node 
hildren p1; : : : ; pk. For ea
h P-node pi,let wi;j be the jth 
hild of pi where the 
hildren of pi appear in the same orderas in the initial ordering of the 
ars. Let ni be the number of 
hildren of pi. Analgorithm that determines a �nal ordering with a minimum number of 
hainsworks as follows.Througout the algorithm r is the initial position of the last 
ar that has been
onsidered, 
 is the number of known 
hains, and f is the last �nal position thathas been 
onsidered. We identify the 
ar wi;j with its initial position.1. Initially, r = 0, f = 0, and 
 = 1.2. For i = 1; : : : ; k, we pro
eed as follows.� (Determine the �rst 
ar that is a 
hild of pi) We determine the small-est j, su
h that the initial wi;j > r. If su
h a wi;j does not exist, wein
rease 
 by one and we sele
t wi;j with j = 1 start with the �rst
ar).� (Determine the �nal positions of the 
hildren of pi) Let j be de�nedas in previous step. The �nal position fi;� of 
ar wi;� is f +�� j+1,for � = j; : : : ; ni and f + ni � j + 1 + �, for � = 1; : : : ; j � 1.� (Update 
, r, and f) If j = 1 then r := wi;ni and 
 does not 
hange.If j 6= 1 then r := wi;j�1 and 
 is in
reased by one.f is updated by f + ni.Theorem 3 The number of 
hains 
 
omputed by this algorithm is minimum.The number r is the minimum possible initial position of the last 
ar of the last
hain of an ordering 
ompatible with the given P-Q-tree T with a Q-node rootand P-node 
hildren. 6



5.1.1 Relaxed Q-NodesConsider an enumeration q1; : : : ; qk of the 
hildren of q. The enumerationq1; : : : ; qk satis�es the l-relaxed Q-node 
ondition if with qi = pj , jj � ij � l.An ordering of the 
ars (leaves) of the P-Q-tree T with a Q-node q with P-node
hildren p1; : : : ; pk satis�es the l-relaxed Q-node 
ondition with respe
t to T if1. the 
hildren of ea
h pi appear 
onse
utively (that means the ordering ofthe 
ars indu
es an ordering of the 
hildren of q in a natural way).2. the ordering of the 
hildren of q indu
ed by the ordering of the 
ars satis�esthe l-relaxed Q-node 
ondition.One 
an interpret this model in the sense that there is some toleran
e asto when ea
h train 
an depart. For example let l = 1. Train i 
an departbefore train i+ 1, but not before train i+ 2. Zhu and Zhu [9℄ have shown howto minimize the number of 
hains for �nal orderings that satisfy the 1-relaxedQ-node 
ondition, provided a Q-node q with P-node 
hildren is given and theP-nodes have only leaves as 
hildren. They developed an algorithm with a timebound of n2 where n is the number of 
ars.We get an extended result.Theorem 4 Let l be �xed. Given a P-Q-tree T with a Q-node q as root, su
hthat all 
hildren of q are P-nodes and all grand
hildren of q are leaves, and givenany initial ordering v1; : : : ; vn of the 
ars (leaves) of T , an ordering w1; : : : ; wnthat satis�es the l-relaxed Q-node 
ondition with respe
t to T and that has aminimum number of 
hains 
an be determined in linear time.Sket
h of Proof: Consider any enumeration q1; : : : ; qk of the 
hildren of q thatsatis�es the l-relaxed Q-node 
ondition. Then fq1; : : : ; qig = fq1; : : : ; qi�lg [ Siwhere1. Si is an l size subset of fqi�l+1; : : : ; qi+1g if i = l; : : : ; k � l2. Si is an i size subset of fq1; : : : ; qi+lg if i < l and3. Si is a k � i+ 1 size subset of fqi�l+1; : : : ; qkg if i > k � l.The sets Si are 
alled i-states. We 
onsider the state graph de�ned as follows.1. the nodes are the i-states, i = 1; : : : ; k,2. there is a dire
ted edge from an i-state Si to an (i + 1)-state Si+1 if andonly if Si+1 = Si [ fqjg n fqi�l+1g.Lemma 1 The dire
ted paths of the state graph from any 1-state S1 to thek-state Sk and the sequen
es q1; : : : ; qk meeting the l-relaxed Q-node 
ondition
orrespond ea
h other.An optimal solution 
an be obtained in a similar way as single sour
e shortestpath.End of sket
h of proof (Theorem) 7



5.2 The Case of a P-node with Q-ChildrenRe
all that given the initial and the �nal positions of the 
ars of a set C, thepermutation � maps the �nal position i
 of ea
h 
ar 
 into its initial positionj
 = �(i
). Apart from minimizing the number of 
hains, we also 
an minimizethe number of jumps, i.e. 
onse
utive pla
es (i; i+1), su
h that �(i) > �(i+1).Now we are given a P-node p with Q-node 
hildren q1; : : : ; qk. The 
hil-dren of ea
h qi are leaves (or single 
ars). The 
hildren of ea
h qi are someri;1; : : : ; ri;ni . Note that the �nal position iri;j+1 = iri;j + 1. Therefore thenumber of jumps in qi, i.e. the number of jumps (iri;j ; iri;j+1) is independent ofthe sequen
e q1; : : : ; qk of the 
hildren of q that we 
hoose. Only the number ofjumps (iri;ni ; iri+1;1) might be dependent on the parti
ular sequen
e q1; : : : ; qk.We 
all these jumps external jumps. They take only the initial position of the�rst 
ar of a Q-node and the initial position of the last 
ar of another Q-nodeinto a

ount.The minimization of the number of external jumps is therefore equivalent tothe following problem.Sequen
ing of Ordered PairsInput: A set P of ordered pairs of natural numbers (in the spe
ial 
ase, forea
h qi, the initial position of the �rst and of the last 
ar that is a 
hildof qi)Output: A partition of P into sequen
es P1; : : : ; Pk, su
h that1. ea
h Pi is lo
ally in
reasing, i.e. if (x; y) and (z; w) are 
onse
utivein Pi then y < z,2. ea
h (x; y) appears in exa
tly one sequen
e Pi, and3. the number k of sequen
es Pi is minimum.Note that if for all (x; y) 2 P , x < y then this problem is equivalent tointerval graph 
oloring.Theorem 5 Sequen
ing of Ordered Pairs 
an be solved in linear time.Sket
h of Proof: First we dis
uss a lower bound for the number of sequen
esP1; : : : ; Pk, we also 
all 
olor sequen
es. We pro
eed in a similar way as ininterval graphs [5℄.We 
all a pair (x; y) positive if x < y and negative if x > y.For any real number r, Posr is the number of positive (x; y) 2 P withx � r � y and Negr is the number of negative (x; y) 2 P with y < r < x. The
lique size of r in P is CPr := Posr �Negr.Lemma 2 Let P1; : : : ; Pk be a partition of P into 
olor sequen
es. Then k �CPr , for any real number r. 8



The 
lique number !(P ) of P is the maximum 
lique size of a real numberr in P .Lemma 3 There is an eÆ
ient algorithm that 
omputes a partition of P into
olor sequen
es P1; : : : ; Pk with k � !(P ) + 1.Proof: We pro
eed in a similar fashion to the interval graph 
oloring. Wesort the numbers x and y appearing in some (x; y) 2 P in in
reasing order.Now we may assume that the numbers appearing in P are 1; : : : ; n.For ea
h 
olor sequen
e 
s = d1; : : : ; dq, the �rst element is the �rst 
ompo-nent of d1 and the last element is the se
ond 
omponent of dq .Initially the set of 
olor sequen
es 
onsists of the one element sequen
es ofthe elements of P .For ea
h i = 1; : : : ; n, we 
on
atenate 
olor sequen
es with last element< i with 
olor sequen
es with �rst element = i as mu
h as possible. As mu
has possible, we avoid 
on
atenating a 
olor sequen
e with itself. If a 
olorsequen
e 
on
atenates with itself, we de
lare it as \
y
li
" (meaning that any
y
li
 permutation of the sequen
e is a 
olor sequen
e).We �nally have !(P ) non 
y
li
 
olor sequen
es and some 
y
li
 
olor se-quen
es. It is possible to 
on
atenate the 
y
li
 
olor sequen
es to one sequen
e.Q.E.D.The number of 
olor sequen
es we just 
omputed is at most one more thanthe minimum number of 
olor sequen
es. To get the minimum, we still keeptra
k of the remaining 
y
li
 
olor sequen
es and integrate them into the non
y
li
 
olor sequen
es as long as possible, i.e. we have a 
y
li
 
olor sequen
e

s and a non
y
li
 
olor sequen
e 
s0 and 
reate a 
olor sequen
e 
s01

s0
s02where 
s01 is an initial segment of 
s0, 

s0 is a 
y
li
 permutation of 

s, and
s02 
onsists of the remaining elements of 
s0.We will show in the full paper, how to determine the minimum number of
olor sequen
es in linear time, provided we sorted the numbers appearing in Pin advan
e, i.e. the appearing numbers are 1; : : : ; n.End of sket
h of proof (Theorem)6 Con
lusionsFirst it should be mentioned that for the 
ase of a P-node root with P-node
hildren and only leaves as grand
hildren, one 
an get a 2-approximate solutionapplying interval graph 
oloring. In general, one gets a more 
ompli
ated al-gorithm that approximates the number of jumps up to a 
onstant fa
tor. Thiswill be presented in the �nal version of the paper. Here we have minimized thenumber of essential sorting steps that 
an be 
onsidered as a parameter to min-imize the energy of the engine (the number of passing of the hump times two).Another problem is to try to minimize the number of 
ouplings and de
ouplingsof 
ars. In the European network, 
oupling and de
oupling of 
ars is very time
onsuming, be
ause the old fashioned 
ouplers of last 
entury are still in use.Automati
 
oupling has not been introdu
ed yet.9
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