Algorithms for Combinatorial Problems Related
to Train Marshalling

Elias Dahlhaus
Dept. of Computer Computer Graphics,
Algorithms and Data Structures Group
Vienna University of Technology
Austria
e-mail: dahlhaus@cs.uni-bonn.de and dahlhaus@math.tu-berlin.de
phone: +49-30-8033917,

Fredrik Manne
Department of Informatics
University of Bergen
Norway,

Mirka Miller
Department of Computer Science and Software Engineering
University of Newcastle
Australia

Joe Ryan
School of Management
University of Newcastle

Australia

Abstract

We discuss a train marshalling principle on a hump yard based on radix
sort. Initially we show that the number of sorting steps is dependent on
the number of “chains” in the permutation 7w that maps the final position
of each car to its initial position. A chain is here a maximal interval I =
[, 7], such that 7 is monotonically increasing. This adaptive radix sorting
scheme requires that the numbers of the items form an initial segment
{1,...,n} of the natural numbers. We also discuss the problem how to
behave if the final position is not fixed but only has to satisfy certain
requirements, e.g. cars of the same train have to appear consecutively.
In general, we specify an ordering requirement by a P-Q-tree where the

leaves are the cars and inner nodes correspond to “blocks” (a train forms
a block, a final destination in a train forms a block). In some blocks,
the subblocks may be permuted in any order (corresponding to P-nodes),
whereas in other blocks, the sequence of immediate subblocks is fixed
(Q-nodes). The problem is to minimize the number of chains, given an
ordering requirement and the initial positions of the cars. In general,
the problem is NP-complete [4]. We discuss efficient special cases and
approximative solutions.

1 Introduction

The general problem of train marshalling is to create new trains from a set of
arriving trains. In our model, the “classification yard” consists of a hump and a
set of parallel “classification tracks” that are joined by a common track with the
hump. Any car can roll down from the hump to a classification track without a
push of the engine.

There are certain criteria of optimality. Examples are the number of switches,
the number of couplings and decouplings, and the number of back and forth
movements of the engine. Exact solutions of certain optimization problems are
expected to be NP-complete. But there are certain schemes that are discussed
in the literature [3, 8]. The problems with these schemes are that they either re-
quire additional tracks (sorting by trains, sorting by block numbers) or that the
tracks are occupied quite unsymetrically (triangular sorting, geometric sorting).

It is quite natural to take over some ideas from sorting algorithms to find
a new scheme that needs only logarithmically many back and forth movements
of the engine and that works even if there are no additional tracks. The most
appropriate approach is radix sort (see for example [2]) . It comes out that
the number of back and forth movements of the engine through the hump is
logarithmically bounded by the number of cars.

We are also interested in an appropriate parameter from which the number
of back and forth movements can be determined as this can be significantly
smaller than the logarithm of the number of cars. In case of merge sort, the
number of merge steps is the logarithm of the number of colors of the associated
permutation graph [5]. In case of radix sort, an appropriate parameter is the
number of “chains”, i.e. the number of tracks that are needed if we would
like to get all cars in the right position in one back and forth movement step.
Contrary to merge sort, we have to assume that the numbers of items (final
position numbers of cars) are {1,...,n} and not any set of numbers. One can
call it consecutive integers adaptive radix sort. This kind of adaptive sorting
procedure is not an interesting approach for sorting unknown items but an
interesting one to put known items onto the right place.

Next we would like to mention that it is not necessary that all cars are in a
fixed position. It might be sufficient that cars of a certain destination appear
consecutively. We say that cars of the same destination or cars that should
belong to the same train form a “block”. Two blocks are either disjoint or one
block is a subset of the other block. It might be possible that cars or subblocks

classification tracks

hump

Figure 1: The Structure of a Hump Yard

of a certain block have to appear in a certain sequence (due to timetable restric-
tions) or not (the subblocks only have to appear consecutively). The partition
of the car set into blocks and subblocks together with the requirements whether
the subblocks have to appear in a certain sequence or not is called the blocking
scheme. We are interested, given for each car its initial position and a blocking
scheme, in finding an ordering of the cars that satisfies the blocking scheme,
such that the number of back and forth movements, i.e. the number of chains,
is minimized.

The general problem and even a certain special case is NP-complete [4]. We
will discuss two cases that can be solved efficiently. One case is a generalization
of the approach of [9]. A second efficient case can be reduced to a generalization
of interval graph coloring.

2 The Yard Model and one Humping Step

The type of yard we would like to consider consists of, say k, parallel classi-
fication tracks that are joined by one long humping track on which there is a
hump.

In general a humping step is defined as follows. Let S; be the sequence of
cars on track i. We select a final segment S} of S; that has to be reordered,
ie. S; = S]'S.. We concatenate the sequences S} to a sequence T' = S7,..., S,
(and draw the cars of T' behind the hump). For each car ¢ of T', we select a
track 4;, on which it has to be pushed, i.e. T" is split into k subsequences T}
consisting of each car ¢ with i; = i. The new configuration consists therefore of
the sequences T; = S}'T}.

In our paper, we consider only humping steps where each S/’ is empty. That
means, in one humping step, we transform S into a sequence T as follows. We
split S into subsequences S7,...,S) and T is the concatenation of Sy ...S].

The goal is to transform an initial sequence S;, = Si...Si into a final
sequence Sy, = T1 ...T}. The final position of a car cis i if c is the ith element
of Sfin, and the initial position of c is the j, such that c is the jth element
of Si,. The final position of ¢ is denoted by i. and the initial position of ¢ is
denoted by j..

Throughout the whole paper, we call the ith car in the final position simply
the ith car or car i

Sy
S)

S
3
s~ — S 'S, S,S,S,

s,

Concatenation

Sg

Splitinto
k sequences

Figure 2: One Sorting Step

3 Logarithmic Sorting Scheme

3.1 Basic Idea

The basic idea is radiz sort (see for example [2]). Although the scheme is quite
well known, we will give a description to explain the idea of the adaptive scheme.
We assume that the storage yard has k classification tracks. We also assume
that the length of the tracks is not bounded.

We denote by p? the position of the ith car in step v. We take care that after
the vth step, the sequences Py = (pf :i = k"(up—1)+1,...,k"p) are increasing
(and of length k), i.e. the current positions of cars k”(u—1)+1,..., k" u) form
an increasing sequence. Note that after log;, n many steps, there is only one
sequence P} that is increasing and all cars are therefore in final position.

One step of transformation can be done as follows. We assume that all
Pyt = (pili = k""" (u—1) + 1,...,k" ') are increasing sequences (of length
k¥~1), i.e. the actual positions of cars k* ! (u—1)+1,...,k” 'u) are increasing.
fpu=@@ -Dk+1,1=1,...,k (i.e. | = umodk), then we put cars of the
sequence PY~" into track [and therefore, with Iy < k, p1 = (p' — 1)k + Iy,
and ps = (u' — 1)k + I2, the cars of P;lffl have smaller positions than the cars
of P;;l. The sequences P}, i.e. the positions of the cars of final position
E"(u' —1)+1,...,k"u") become increasing.

3.2 An Adaptive Radix Sorting Scheme

We again consider the sequence P = (p;|i = 1,...n) of the positions of the cars
(p; is the actual position of car i). We divide the sequence P into maximal

increasing subsequences (p;,...,p;), we also call chains. We assume that P is
the concatenation of the chains Py,...,Py. If u = p'k+1 withl=1,...,k, we
put cars belonging to chain P, into track [. The concatenation of the chains
Py, 1 =1,...,k, becomes an increasing sequence, i.e. it becomes a chain.
Therefore the number of chains is reduced by a factor of k£ in one step.

Theorem 1 Let N be the number of chains of P. Then it is possible to trans-
form the cars of P into their final positions in log;, N steps.

This means the number of chains N is an important parameter of “presort-
edness”.

It is worth mentioning that our adaptive radix sorting scheme is significantly
different from the adaptive scheme in [6]. In our scheme it is essential that the
numbers of the items form an initial segment of the natural numbers. The
problem thus becomes to put the items into the right place in as few steps as
possible and not to find a sorting.

We did not yet discuss how to behave if the lengths of tracks are bounded.
In the final version of this paper we will demonstrate how to proceed in case of
bounded track lengths and show that we still get a logarithmic bound on the
number of chains.

4 Requirement Specification by Block Schemes
(P-Q Trees)

Here we discuss the question “How should the order requirement be specified?”.
It is not necessary that the cars are rearranged into a fixed order. The ordering
has only to satisfy that cars of the same outbound train have to appear consec-
utively or that cars of the same destination have to appear consecutively. We
now discuss in more detail how to specify order requirements.

4.1 Order Requirement Specification by Trees

In general, the set of cars is divided into blocks, and each block might be recur-
sively divided into subblocks. (Blocks subblocks correspond to outbound trains
or or outbound trains in the next classification yard or destinations). The im-
mediate subblocks of a block have to appear in a fixed sequence (e.g. due to
time table restrictions) or they can be permuted. Essentially cars of the same
block have to appear consecutively.

That means that we can specify an ordering requirement by a tree structure
T, also called block tree.

1. The leaves are the cars.

2. The inner nodes correspond to the blocks, i.e. the block b; corresponding
to the node t is the the set of cars that are descendents of ¢ in T'.

3. A node t is marked as a P-node if the children of ¢ (immediate subblocks
of t) may appear in any order.

4. A node t is marked as a Q-node if the children of ¢ have to appear in a
fixed sequence.

In general, one can show the following.
Theorem 2 Minimizing the number of chains is NP-hard.

[4] have shown that minimizing the number of chains is NP-complete if the
given P-Q-tree consists of a P-node as root that has only P-nodes as children
and their children are leaves.

5 Efficient Special Cases for Chain Minimiza-
tion

5.1 The Case of a Q-node with P-Children and General-
izations

We are given a Q-node ¢ with P-node children pq,...,p;. For each P-node p;,
let w; ; be the jth child of p; where the children of p; appear in the same order
as in the initial ordering of the cars. Let n; be the number of children of p;. An
algorithm that determines a final ordering with a minimum number of chains
works as follows.

Througout the algorithm r is the initial position of the last car that has been
considered, ¢ is the number of known chains, and f is the last final position that
has been considered. We identify the car w; ; with its initial position.

1. Initially, r =0, f =0, and ¢ = 1.
2. Fori =1,...,k, we proceed as follows.

e (Determine the first car that is a child of p;) We determine the small-
est 7, such that the initial w; ; > r. If such a w; ; does not exist, we
increase ¢ by one and we select w; ; with j = 1 start with the first
car).

¢ (Determine the final positions of the children of p;) Let j be defined
as in previous step. The final position f; , of car w;, is f+v—j+1,
forv=j,...,n;and f+n;—j+1+4+v,forv=1,...,5—1.

e (Update ¢, r, and f) If j = 1 then r := w;,, and ¢ does not change.
If j # 1 then r := w; ;1 and c is increased by one.

f is updated by f + n;.

Theorem 3 The number of chains ¢ computed by this algorithm is minimum.
The number r is the minimum possible initial position of the last car of the last
chain of an ordering compatible with the given P-Q-tree T with a Q-node root
and P-node children.

5.1.1 Relaxed Q-Nodes

Consider an enumeration ¢q,...,q; of the children of ¢q. The enumeration
qi,---,qr satisfies the [-relazed Q-node condition if with ¢; = p;, |7 — | < I.
An ordering of the cars (leaves) of the P-Q-tree T with a Q-node ¢ with P-node
children pq,...,p; satisfies the I-relaxed Q-node condition with respect to T if

1. the children of each p; appear consecutively (that means the ordering of
the cars induces an ordering of the children of ¢ in a natural way).

2. the ordering of the children of ¢ induced by the ordering of the cars satisfies
the [-relaxed Q-node condition.

One can interpret this model in the sense that there is some tolerance as
to when each train can depart. For example let [= 1. Train i can depart
before train ¢ + 1, but not before train ¢ + 2. Zhu and Zhu [9] have shown how
to minimize the number of chains for final orderings that satisfy the 1-relaxed
Q-node condition, provided a Q-node g with P-node children is given and the
P-nodes have only leaves as children. They developed an algorithm with a time
bound of n? where n is the number of cars.

We get an extended result.

Theorem 4 Let | be fized. Given a P-Q-tree T with a @Q-node q as root, such
that all children of q are P-nodes and all grandchildren of q are leaves, and given
any initial ordering v1,...,v, of the cars (leaves) of T, an ordering wy,. .., wy
that satisfies the l-relaxed Q-node condition with respect to T and that has a
minimum number of chains can be determined in linear time.

Sketch of Proof: Consider any enumeration ¢, - . ., g of the children of ¢ that
satisfies the [-relaxed Q-node condition. Then {q1,...,¢} ={q1,...,¢;=1} US;
where

1. S; is an [size subset of {gi—i41,...,qir1}ifi=1,...,k —1

2. S; is an i size subset of {q1,...,¢q;+1} if i <! and

3. S;isak—i+1 size subset of {g;—141,-..,qr} if i >k—1.

The sets S; are called i-states. We consider the state graph defined as follows.
1. the nodes are the i-states, i = 1,...,k,

2. there is a directed edge from an i-state S; to an (i + 1)-state S;11 if and
only if Siv1 =5 U{gj} \ {¢i—t+1}-

Lemma 1 The directed paths of the state graph from any 1-state Si to the
k-state Sy and the sequences qi,...,qr meeting the l-relazed Q-node condition
correspond each other.

An optimal solution can be obtained in a similar way as single source shortest
path.
End of sketch of proof (Theorem)

5.2 The Case of a P-node with Q-Children

Recall that given the initial and the final positions of the cars of a set C, the
permutation m maps the final position i, of each car ¢ into its initial position
Jje = m(i.). Apart from minimizing the number of chains, we also can minimize
the number of jumps, i.e. consecutive places (i, + 1), such that 7 (i) > 7(i +1).

Now we are given a P-node p with Q-node children g¢q,...,qx. The chil-
dren of each ¢; are leaves (or single cars). The children of each ¢; are some
Til,--->Tin;- Note that the final position ép, .., = iy, + 1. Therefore the
number of jumps in ¢;, i.e. the number of jumps (ir, ;,ir, ;,,) is independent of
the sequence ¢, ..., qx of the children of ¢ that we choose. Only the number of
jumps (z',,l.‘ni yiri41,) Might be dependent on the particular sequence g, ..., gx.
We call these jumps ezternal jumps. They take only the initial position of the
first car of a Q-node and the initial position of the last car of another Q-node
into account.

The minimization of the number of external jumps is therefore equivalent to
the following problem.

Sequencing of Ordered Pairs

Input: A set P of ordered pairs of natural numbers (in the special case, for
each g¢;, the initial position of the first and of the last car that is a child
of q;)

Output: A partition of P into sequences Py, ..., P, such that

1. each P; is locally increasing, i.e. if (z,y) and (z,w) are consecutive
in P; then y < z,

2. each (z,y) appears in exactly one sequence P;, and

3. the number k of sequences P; is minimum.

Note that if for all (z,y) € P, ¢ < y then this problem is equivalent to
interval graph coloring.

Theorem 5 Sequencing of Ordered Pairs can be solved in linear time.

Sketch of Proof First we discuss a lower bound for the number of sequences
Py, ..., Py, we also call color sequences. We proceed in a similar way as in
interval graphs [5].

We call a pair (z,y) positive if x < y and negative if z > y.

For any real number r, Pos, is the number of positive (z,y) € P with
x <r <y and Neg, is the number of negative (z,y) € P with y < r < z. The
clique size of r in P is CF := Pos, — Neg,..

Lemma 2 Let Pi,..., P, be a partition of P into color sequences. Then k >
CF, for any real number .

The cligue number w(P) of P is the maximum clique size of a real number
rin P.

Lemma 3 There is an efficient algorithm that computes a partition of P into
color sequences Py, ..., Py with k < w(P) + 1.

Proof: We proceed in a similar fashion to the interval graph coloring. We
sort the numbers z and y appearing in some (x,y) € P in increasing order.

Now we may assume that the numbers appearing in P are 1,...,n.

For each color sequence cs = dy, ..., d,, the first element is the first compo-
nent of d; and the last element is the second component of d,.

Initially the set of color sequences consists of the one element sequences of
the elements of P.

For each ¢ = 1,...,n, we concatenate color sequences with last element
< 1 with color sequences with first element = ¢ as much as possible. As much
as possible, we avoid concatenating a color sequence with itself. If a color
sequence concatenates with itself, we declare it as “cyclic” (meaning that any
cyclic permutation of the sequence is a color sequence).

We finally have w(P) non cyclic color sequences and some cyclic color se-
quences. It is possible to concatenate the cyclic color sequences to one sequence.

Q.E.D.

The number of color sequences we just computed is at most one more than
the minimum number of color sequences. To get the minimum, we still keep
track of the remaining cyclic color sequences and integrate them into the non
cyclic color sequences as long as possible, i.e. we have a cyclic color sequence
ccs and a noncyclic color sequence ¢s’ and create a color sequence csfccs’cs)
where cs is an initial segment of ¢s’, ces’ is a cyclic permutation of ccs, and
cs’, consists of the remaining elements of cs’.

We will show in the full paper, how to determine the minimum number of
color sequences in linear time, provided we sorted the numbers appearing in P
in advance, i.e. the appearing numbers are 1,...,n.

End of sketch of proof (Theorem)

6 Conclusions

First it should be mentioned that for the case of a P-node root with P-node
children and only leaves as grandchildren, one can get a 2-approximate solution
applying interval graph coloring. In general, one gets a more complicated al-
gorithm that approximates the number of jumps up to a constant factor. This
will be presented in the final version of the paper. Here we have minimized the
number of essential sorting steps that can be considered as a parameter to min-
imize the energy of the engine (the number of passing of the hump times two).
Another problem is to try to minimize the number of couplings and decouplings
of cars. In the European network, coupling and decoupling of cars is very time
consuming, because the old fashioned couplers of last century are still in use.
Automatic coupling has not been introduced yet.

References

[1] K. Booth, G. Lueker, Testing for the Consecutive Ones Property, Inter-
val Graphs, and Graph Planarity Using PQ-Tree Algorithms, Journal of
Computer and Systems Sciences 13(1976), S. 335-379.

[2] T. Cormen, C. leiserson, R. Rivest, Introduction to Algorithms, MIT Press,
Cambridge MA, McGraw Hill Book Company, New York.

[3] C. Daganzo, Static Blocking at Railyards: Sorting Implications and Track
Requirements, Transportation Science 20 (1986), pp. 189-199.

[4] E. Dahlhaus, P.Horak, M. Miller, J. Ryan, The Train Marshalling problem,
accepted for Discrete Applied Mathematics.

[5] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York, 1980.

[6] S. Nilsson, Radiz Sorting and Searching, Ph.D. Thesis, Department of Com-
puter Science, Lund University.

[7] E. Petersen, Railyard Modeling: Part II, The Effect of Yard Facilities on
Congestion, Transportation Science 11 (1977), pp. 51-59.

[8] M. Sidiqee, Investigation of Sorting and Train Formation Schemes for a
Railroad Hump Yard, in Traffic Flow and Transportation, G. Newell ed.
(1972), pp. 377-388.

[9] Zhu, Y. and Zhu, R, Sequence reconstruction under some order-type con-
straints, Scientia Sinica, Series A, Vol. 26, No.7, pp.702-713, 1983.

10

