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Abstract. This paper presents new efficient parallel algorithms for finding ap-
proximate solutions to graph coloring problems. We consider an existing shared
memory parallel graph coloring algorithm and suggest several enhancements both
in terms of ordering the vertices so as to minimize cache misses, and performing
vertex-to-processor assignments based on graph partitioning instead of random
allocation.
We report experimental results that demonstrate the performance of our algorithms
on an IBM Regatta supercomputer when up to 12 processors are used. Our imple-
mentations use OpenMP for parallelization and Metis for graph partitioning. The
experiments show that we get up to a 70 % reduction in runtime compared to the
previous algorithm.

1 Introduction

A graph coloring asks for an assignment of as few colors (or positive integers) as possible
to the vertices V of a graph G = (V, E) so that no two adjacent vertices receive the same
color. This is often a crucial stage in the development of efficient, parallel algorithms
for many scientific and engineering applications, see [8] and the references therein for
examples. As a graph coloring is often needed to perform some later task concurrently,
it is natural to consider performing the coloring itself in parallel. In the current paper,
we consider how to parallelize fast and greedy coloring algorithms where vertices are
colored one at a time and each vertex is assigned the smallest possible color.

Several papers have appeared in the literature over the last couple of years dealing
with this issue [5,7,8,11]. We consider the algorithm in [8] and show how its performance
can be enhanced both by paying attention to its sequential memory access pattern, and
by employing graph partitioning to assign vertices to processors.

The rest of the paper is organized as follows: In Section 2 we present relevant back-
ground information on parallel graph coloring, in Section 3 we motivate our methods,
in Section 4 we report on experimental results, before we conclude in Section 5.

2 Parallel Graph Coloring

The problem of finding a legal coloring using the minimum number of colors is known to
be NP-hard for general graphs [6]. Moreover, it is a difficult problem to approximate [3].
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However, in practice greedy sequential coloring heuristics have been found to be quite
effective [2].

Previous efforts in designing fast efficient parallel graph coloring algorithms have
been centered around various ways of computing an independent set in parallel. This
research direction was initiated by Luby’s algorithm for computing a maximal indepen-
dent set in parallel [10,15]. The first algorithms proposed along this line enforce that one
makes exactly one choice for the color of any vertex (i.e. no backtracking). To achieve
this, while coloring a vertex v, the colors of already colored neighbors of v must be
known, and none of the uncolored neighbors of v can be colored at the same time as
v. The work of Jones and Plassmann [12], Gjertsen et al. [9], and Allwright et al. [1]
follow this approach.

All of these algorithms are based on the distributed memory model where the vertices
of a graph are partitioned into the same number of components as there are processors.
Each component including information about its inter- and intra-processor edges is
assigned to and colored by one processor.

To overcome the restriction that two adjacent vertices on different processors cannot
be colored at the same time, Johansson [11] proposed a parallel algorithm where each
processor is assigned exactly one vertex. The vertices are then colored simultaneously
by randomly choosing a color from the interval [1, ∆ + 1], where ∆ is the maximum
vertex degree in the graph. This may lead to an inconsistent coloring, and hence one may
have to repeat the process recursively for the vertices that did not obtain legal colors.
This algorithm was further investigated by Finocchi et al. [5] who performed extensive
sequential simulations both of this algorithm and a variant where the upper-bound on
the range of legal colors is initially set to be smaller than ∆ + 1 and then increases only
when needed.

Gebremedhin and Manne [8] developed a parallel graph coloring algorithm suitable
for shared memory computers. Here it is assumed that the number of processors p is
substantially less than the number of vertices n and each processor is assigned n/p
vertices. Each processor colors its vertices sequentially, at each step assigning a vertex
the smallest color not used by any of its neighbors (both on and off-processor). An
inconsistent coloring arises only when a pair of adjacent vertices that reside on different
processors are colored simultaneously. Inconsistencies are then detected in a subsequent
phase and resolved in a final sequential phase. Figure 1 outlines this scheme as presented
in [8]. This algorithm was later extended to various coloring problems in numerical
optimization including distance-2 (d2) coloring, a case in which a vertex v is required
to receive a color distinct from the colors of vertices within distance 2 edges from v [7].
This shared memory approach is the only algorithm that we know of that has been shown
through parallel implementations to actually give lower running time as more processors
are applied. In the current work we look at various ways in which this algorithm can be
enhanced to run even faster.

In [8] it is shown that the expected number of conflicts in most cases is small and
the resulting running time is bounded by O(∆n/p). Although Phase 0 states that the
vertices be randomly distributed among the processors, practical experiments showed
that the best running time was obtained by keeping the original ordering of the vertices
of the graph.
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GM-Algorithm(G = (V, E))
Phase 0 : Partition

Randomly partition V into p equal blocks V1, . . . , Vp. Processor Pi is
responsible for coloring the vertices in block Vi.

Phase 1 : Pseudo-color
for i = 1 to p do in parallel

for each v ∈ Vi do
assign a legal color to v, paying attention
to already colored vertices (both on and off-processor).

Phase 2 : Detect conflicts
for i = 1 to p do in parallel

for each v ∈ Vi do
if ∃(v, w) ∈ E s.t. color(v) = color(w) and v ≤ w

Li ← Li ∪ {v}
Phase 3 : Resolve conflicts

Color the vertices in the conflict list L = ∪Li sequentially.

Fig. 1. The GM-algorithm as presented in [8]

3 Speeding up the Algorithm

In the following we describe the various enhancements we have considered in order
to speed up the GM-algorithm. Sections 3.1 and 3.2 deal with issues related to the
partitioning of the graph onto the processors and the subsequent internal ordering, while
Section 3.3 deals with algorithmic issues.

In a parallel application the graph is usually already distributed among the processors
in a reasonable way. This also includes distinguishing between interior and boundary
vertices since the communication volume typically grows as a function of the number
of boundary vertices while the amount of computation grows as a function of the total
number of vertices assigned to a processor. This is true both for shared and distributed
memory parallel computers. Thus it is not unreasonable to make the initial assumption
that the graph is already partitioned in a reasonable way, with the vertices on each
processor classified as either interior or boundary, and with an internal ordering of the
vertices such that traversing the graph should be efficient.

3.1 Sequential Optimization

It is a well known fact that sequential optimization can in many cases yield speedups
comparable to those obtained by parallelization. The main objective here is to make the
code more cache friendly by reusing data elements already in the cache.

The GM-algorithm uses a compressed adjacency list representation of a graph. Each
vertex has a pointer into this list that shows where its neighbors are located. The actual
color values are stored in a separate vertex-indexed array.

When accessing the list of neighbors of a vertex, the information will be in consec-
utive memory locations. However, accessing the colors of neighboring vertices might
lead to sporadic memory access patterns with ensuing cache misses. This is particularly
true if the neighbors are scattered rather than being clustered.
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In light of this, if the vertex set is randomly permuted as was suggested in Phase
0 of the GM-algorithm, one would expect the neighbors of a vertex to be randomly
distributed throughout the set and thus cause a large number of cache misses. This could
be one explanation why this scheme performed worse than keeping the natural order of
the vertices.

To reduce the number of cache misses, one would order the vertices in such a way
that the neighbors of each vertex span as few cache lines as possible. One way this can be
solved approximately is by employing a bandwidth or envelope size reducing ordering
on the graph such as the reverse Cuthill-McKee ordering [4]. For an adjacency matrix
representation this would have the effect of clustering the non-zero elements close to the
diagonal.

3.2 Graph Partitioning

There exist several graph partitioning packages that can be used for partitioning the
vertices of a graph into a predefined number of components in such a way that the
number of vertices in each component is nearly the same and the number of cross-edges
(edges with endpoints in different components) is as small as possible. In a parallel
application this can be used to partition the graph into the same number of components
as there are processors and then assign one component to each processor.

Graph partitioning is also exploited in the parallel coloring algorithms presented
in [12] and [9] where one takes advantage of the fact that boundary vertices (vertices
incident on inter-processor edges) are the only vertices that call for communication,
and interior vertices (vertices incident only on intra-processor edges) can be colored
concurrently.

The use of graph-partitioning software can help lower the run-time of the GM-
algorithm in three different ways.

i) Cross-processor memory accesses. In Phase 1 and 2 of the GM-algorithm, part of
the run-time associated with the coloring of a vertex v can be divided into two separate
parts: the time required to obtain the color of an adjacent on-processor vertex, and the time
required to obtain the color of an adjacent off-processor vertex. For most architectures,
the latter will be larger since it most likely involves accessing memory that is associated
with another processor. For this reason, one would like to maximize the number of
neighbors of v that are allocated to the same processor as v itself. Thus an assignment
of the vertices to processors that keeps the number of cross-edges low will also reduce
the time spent on off-processor memory accesses.

ii) Number of conflicts. In the context of the GM-algorithm, minimizing the number
of cross-edges also reduces the number of conflicts since cross-edges are the only edges
that can give rise to conflicts. This is because vertices in the same component will be
colored (sequentially) by the same processor. Reducing the number of conflicts will
subsequently reduce the time needed by Phase 3 of the algorithm. In fact, the bound
of O(δp) on the number of expected conflicts shown in [8] can easily be improved to
O(δpm′/m). Here, δ̄ is the average vertex degree, m′ is the number of cross-edges, and
m is the total number of edges in the graph.

iii) Vertices that need to be checked for conflicts. As we have already seen, any
conflict that arises in Phase 1 of the GM-algorithm will involve at least one boundary
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vertex. Thus by distinguishing between interior and boundary vertices, it is possible
to avoid checking the interior vertices for conflicts in Phase 2. This should save up to
half the processing time spent on the interior vertices. Although reducing the number
of boundary vertices is not the main objective of graph-partitioning software, we expect
this number to correlate with the number of cross-edges.

Finally we note that in the case where a d2-coloring is desired, any conflict will
still include at least one boundary vertex. This is because the d2-neighbors of an interior
vertex v will either be in the same component as v or a boundary vertex of some adjacent
component. Thus even in this case it is sufficient to check the boundary vertices to detect
all possible conflicts. For distance-k coloring, k > 2 this is no longer true as the distance
relationship then stretches further into each component.

3.3 Conflict Reduction

In [7] it was shown that for dense graphs the number of conflicts could become sufficiently
high that the final sequential conflict resolution step starts to dominate the overall run-
time. Also for dense graphs the effect of graph partitioning is less pronounced.

One solution for reducing the number of conflicts suggested in [11] is to assign a
vertex a random color from the interval [1, ∆ + 1]. However, with this scheme one is
very likely to end up using close to ∆ + 1 colors while the actual number of colors
needed is much smaller.

To reduce the number of colors used, one would like each processor to choose a
small legal color when coloring a vertex. If each processor always chooses the lowest
possible color, the number of conflicts is likely to increase. This is particularly true during
the early steps of the coloring process where there are relatively few forbidden colors.
Thus one would like different processors to choose different low-numbered colors. In
the following paragraphs we describe two solutions that have been suggested to this
problem. Both are based on randomization.

Gebremedhin et al. [7] suggested that one use a geometrically distributed random
variable to determine which of the available legal colors to use. This was implemented
by processing the available legal colors in increasing order, each time choosing a color
with probability q. The process terminates as soon as a successful color choice is made.
The disadvantages of this method is that it requires some fine-tuning of the parameter q
and for small values of q, one might need to generate a large number of random numbers
for each vertex. We note that the latter shortcoming can be alleviated by an inverse
transformation method to simulate the required random variable and hence require only
one random number generation [16].

Finocchi et al. [5] recently suggested the “Trivially Hungarian” (TH) method where
the color of a vertex v is initially restricted to be chosen from the range [1, r], where
r = deg(v)/s, deg(v) is the degree of v, and s is an a priori determined shrink factor of
the algorithm. Only when there are no legal colors in the given range can the bound r be
increased to 1 + min{c, deg(v)}, where c is the largest color used in the neighborhood
of v. Again, this algorithm requires that a suitable value of s be found. The TH-method
has not previously been implemented in an actual working parallel code.
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Table 1. Structural properties of graphs (left) and run-times for d1 and d2 coloring using various
vertex orderings (right)

Name |V | |E| density ∆ δ̄ Natural Random RCM

mrng4 7,533,224 14,991,280 5.3 × 10−7 4 3.98 3.6/17.2 10.5/73.9 2.5/10.4

auto 448,695 3,314,611 3.3 × 10−5 37 14.77 0.5/8.0 0.8/12.1 0.4/5.0

4 Experiments

In the following we report on experiments performed on an IBM p690 Regatta super-
computer using up to 12 Power4 1.3 Ghz processors. Our objective is to show how the
various strategies described in Section 3 can be used to speed up the GM-algorithm. The
algorithms have been implemented in Fortran 90 and parallelized using OpenMP. Metis
[14] was used for graph partitioning.

4.1 Vertex Ordering

Here we present experimental results that demonstrate the effect of vertex ordering on
the practical run-time of the coloring algorithms.

Due to space limitations, we only provide results for two representative graphs from
our testbed, both of which are from finite element methods [13]. The left part of Table 1
lists relevant structural properties of these graphs. The column labeled density shows
the quantity 2|E|

|V |×(|V |−1) . The column marked ∆ gives the maximum vertex degree

while column δ̄ gives the average vertex degree in the graph. In the right part of Table
1, the columns labeled Natural, Random, and RCM show the time (in seconds) used
by a sequential greedy coloring algorithm when the vertices are visited in their natural
order, in a random order, and in the reverse Cuthill-McKee order, respectively. For each
ordering, run-times for a d1-coloring and a d2-coloring are provided.

Table 1 shows that a random vertex ordering destroys any available locality and
hence increases the running time by a factor of nearly three for d1-coloring and by a
factor of four for d2-coloring. The RCM ordering reduces the running time by 31% and
20% for the d1-coloring and by 40% and 37% for the d2-coloring.

4.2 Vertex to Processor Mapping

Figure 2 shows the parallel running times of our algorithms for d1-coloring as the number
of processors is increased from 2 to 12. A substantial speedup was observed in going
from one to two processors even if the parallel algorithm performs nearly twice as many
operations as the sequential algorithm. (We believe this is due to access to more cache
when using more than one processor.) We do not show this as it would disrupt the figures.

The line labeled Original refers to the basic GM-algorithm as described in Section 2
run on the graph with the vertices in their natural order and partitioned into contiguous
blocks of equal size (block-partition). The line labeled RCM corresponds to an RCM
ordering of the vertices prior to a block-partition. The line RCM+Metis shows the case
where the vertices are ordered using RCM and the graph partitioned using Metis. Finally
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RCM+Metis+Local shows when both RCM and Metis are used and the interior vertices
are not checked for inconsistencies. It should be noted that Metis only specifies to which
partition a particular vertex should belong, it does not alter the relative order among the
vertices within a particular partition.

In Figure 2, for a fixed number of processors, the decrease in running time relative to
the basic algorithm ranges from 63% to 75% with a mean of 68%. Although not reported,
we have also made experiments using only Metis, which gave similar results to the ones
obtained using only RCM. In all cases, the number of conflicts was observed to be
consistently low and did not influence the overall running time. As expected, we also
observed that for a fixed number of processors, the number of conflicts decreased with
the number of boundary vertices (and cross-edges). Moreover, the numbers of colors
used remains close to that used by the sequential greedy algorithm.
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Fig. 2. d1-coloring of the graphs mrng4 (left) and auto (right)

To help further explain the decrease in running time we also present Figure 3 which
shows the percentage of boundary vertices while using the original, RCM, and Metis
ordering. Applying Metis to the RCM ordered graph has little effect as Metis is fairly
insensitive to the original ordering.

Note that RCM ordering improves locality but not as much as Metis does. Thus since
applying either only RCM or only Metis gives approximately the same running times,
the gain obtained by the Metis ordering where there are fewer cross-processor memory
accesses and a smaller set of boundary vertices seems to be compensated for by the more
efficient memory access pattern given by the RCM ordering.

As is evident from Figure 3 the percentage of boundary vertices increases as the
number of processors increases. But at the same time the number of interior vertices
handled by each processor decreases. Thus one might suspect that the obtained speedup
is mainly due to each processor spending less and less time on the interior vertices. This
would be similar to the algorithm by Gjertsen et al. [9]. To see that this is not the case,
note that already when using four processors more than 80 % of the vertices of both
graphs are on the boundary but the speedup still continues.
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Fig. 3. Percentage of boundary vertices for graphs auto (left) and mrng4 (right)

In Gjertsen et al. [9] the interior and boundary vertices are colored separately. We
found that in our setting it is advantageous to store and color the interior and boundary
vertices interleaved. We believe that this is due to external memory references being
evened out in time and thus avoiding communication congestion.

4.3 Randomization

In the experiments in the previous section, the number of conflicts that had to be resolved
was small enough that the final sequential phase did not influence the overall running
time. In this section we report on experiments where this is not the case. Specifically
we test how the randomized conflict reduction schemes described in Section 3.3 can be
applied to improve the running time.

For these experiments we report results obtained on a random graph (d2-random)
with 30,000 vertices, 8,999,700 edges, a maximum vertex degree of 699, and an average
vertex degree of 600. This graph was chosen such that the original parallel d2-coloring
algorithm would give a large number of conflicts. We have also performed experiments
using graphs tailored toward d1-coloring. These gave results (omitted for space consid-
erations) similar to those reported here.

For the randomized algorithms we performed similar experiments as those discussed
in Section 4.2. However, these did not yield any significant improvements in the running
times over the original algorithm but kept the results fairly stable. The reason for this
is that irrespective of the chosen ordering technique, almost all the vertices were on the
boundary. Hence the experiments shown here are based on the basic algorithm with the
vertices in their natural order.

The main parameter that must be determined for the TH-algorithm is the shrinking
factor s. In [5] a value between four and six is suggested for d1-coloring. Our configu-
ration differs from theirs in that we rely on a shared memory model while they assume
a distributed memory model. Also, they apply the algorithm recursively to the vertices
that do not receive a legal color after the first round while our approach is to recolor
illegally colored vertices in a sequential phase.
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Fig. 4. The TH-algorithm run on the d2-random graph

Figure 4 shows the performance of the TH-algorithm for a d2-coloring of the graph
d2-random using different values of s. The leftmost figure shows the number of colors
used, the middle figure shows the number of conflicts, and the rightmost figure depicts
the time used. As is evident from Figure 4, the shrinking factor in the TH-algorithm is
critical for its performance. If it is set too small, the algorithm can use more than double
the number of colors used by the sequential greedy algorithm. On the other hand, if the
shrinking factor is set too large, the number of conflicts, and consequently, the running
time increases. The interval for the shrinking factor that produces the best values, both
in terms of the number of colors used and run-time, is fairly small. Interestingly, in our
experiments we found that the best results are obtained if the shrinking factor is set in
such a way that the number of initial available colors is equal or almost equal to the
number of colors used by the sequential greedy algorithm. We note that for practical
purposes this might be difficult to estimate a priori.

In order to compare the TH algorithm with the GMP-algorithm [7], we ran the GMP-
algorithm on the d2-random graph using various values for the parameter q. Due to space
limitations we do not show these numbers here but we observed that the optimal value of
q in terms of speed seems to decrease as the number of processors increases. In terms of
best possible running times, the TH and the GMP-algorithm have fairly similar values,
but obtaining these requires fine tuning of the algorithms.

5 Conclusion

One open interesting question is: Given a partition, how should one order the vertices
within each component to minimize cache misses both locally and between processors?

Even though the randomized methods seem to be promising in terms of handling
dense graphs, more work remains to be done to determine how these need to be tailored
for specific applications. It would also be of interest to know how these techniques could
be applied in a distributed memory setting.
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