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Multi-core spanning forest algorithms using the
disjoint-set data structure
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Abstract—We present new multi-core algorithms for comput-
ing spanning forests and connected components of large sparse
graphs. The algorithms are based on the use of the disjoint-set
data structure. When compared with the previous best algorithms
for these problems our algorithms are appealing for several
reasons: Extensive experiments using up to 40 threads on several
different types of graphs show that they scale better. Also, the new
algorithms do not make use of any hardware specific routines,
and thus are highly portable. Finally, the algorithms are quite
simple and easy to implement.
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I. INTRODUCTION

We consider the problem of computing a spanning tree for
an undirected graph G(V,E). This is a fundamental problem
in computer science as it is a building block for many graph
algorithms. The spanning tree problem falls into the category
of graph problems where there is very little work compared
to the amount of data. Lately, these types of problems have
received considerable interest as one wants to explore the
structure of the very large graphs that are becoming available
from sources such as web-graphs and various social network
graphs. One example of the interest in these types of problems
is the recent introduction of the Graph 500 initiative [1],[2].
This classifies the performance of parallel computers based
on their performance when solving specific graph problems
where the ratio between computation and data is low.

In sequential computation a spanning tree is easily found
using a graph traversal method such as depth-first-search
or breadth-first-search. Both of these methods will traverse
each component of G in a connected manner. It is also
possible to compute a spanning tree by maintaining partial
non-overlapping trees and then adding edges to the solution
as long as they do not introduce a cycle. From a parallel point
of view it is advantageous to be able to work concurrently on
unconnected parts of the graph. Thus many of the algorithms
with best asymptotic running time on the PRAM model
employs techniques of this type.

However, in terms of developing a practical algorithm these
strategies has so far not been successful. In fact, for shared
memory computers the only algorithm that has been shown
to give speedup when applied to arbitrary graphs is based on
performing a connected parallel depth first search [3].
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In this paper we present two new parallel algorithms based
on the UNION-FIND algorithm. The UNION-FIND algorithm
maintains a collection of disjoint sets where each set represents
connected vertices. The classical sequential approach to imple-
menting UNION-FIND algorithms is to use the two techniques
known as Union-by-rank and path compression obtaining a
running time of O(mα(m,n)) for computing a spanning tree
on a graph containing n vertices and m edges [4], where
α is the very slow growing inverse Ackermann function.
Our algorithms on the other hand are based on a different
scheme known as Rem’s algorithm [5]. In an extensive study
we recently showed that even though the asymptotic running
time of this algorithm is suboptimal, in practice it is still
substantially faster than other implementations [6].

Compared to the algorithm in [3] our solution offers the
following advantages: 1) It computes a spanning forest and
not just one spanning tree. 2) It scales better with increasing
number of processors. 3) The edges of the graph can be
processed in any order and therefore does not rely on the
input being given in terms of edge lists for each vertex. 4)
The algorithm is simpler to implement

We also note that as our algorithm is implemented in
OpenMP it is therefore highly portable and does not rely on
any low level hardware specific primitives.

The rest of the paper is organized as follows. In Section
II we summarize previous work on developing parallel al-
gorithms for this problem. Then in Section III we explain
how UNION-FIND algorithms work and in particular Rem’s
algorithm. Our new parallel algorithms are given in Section
IV and Section V contains experiments using these. Finally,
we conclude in Section VI.

II. PREVIOUS WORK

There exists a large number of PRAM algorithms for
computing connected components and spanning trees, for a
survey see the paper by Bader and Cong [3]. This paper also
lists several previous efforts at designing practical parallel
algorithms for these problems and concludes that none of
these show speedup on arbitrary graphs, although some show
modest speedup on particular graphs. The paper then goes
on to present a new parallel algorithm suitable for shared
memory computers for computing the spanning tree of a
connected graph. This algorithm is based on a parallel depth
first search, where one processor first sequentially computes
a stub spanning tree on a small part of the graph. Following
this, the processors will start from different nodes of the stub
tree and perform a depth first traversal until the entire graph
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has been covered. To ensure load balance a processor that runs
out of vertices can steal work from other processors. Through
a number of experiments they show that the algorithm scales
well on different types of graphs. They also compare their
algorithm with an implementation of the Shiloach-Vishkin al-
gorithm [7] for computing connected components. However, in
most cases this algorithm did not give better running time than
the sequential algorithm. All algorithms were implemented
using POSIX threads and software-based barriers.

We note that the Shiloach-Vishkin algorithm is based on the
general principle of maintaining a (dynamic) set of disjoint
connected components each represented by a rooted tree
using parent pointers. Initially each vertex is a component by
itself. Then during the processing of the edges, if an edge is
found to connect two components, one component is grafted
(i.e. merged) with the other by setting the parent pointer of the
root node to point to some vertex in the other component. In
addition, the algorithm performs pointer jumping steps where
a parent pointer is set to point higher up in its own tree, in
this way shortening the distance from the vertex to the root.

Although not referenced in [3], we note that prior to
this publication Cybenko et al. [8] presented different
types of spanning tree algorithms based on parallelizing a
UNION-FIND algorithm. A UNION-FIND algorithm performs
the same type of operations as the Shiloach-Vishkin algorithm,
but a grafting operation is now called a UNION operation and
pointer jumping is referred to as a compression operation. We
outline the details in Section III. For shared memory computers
they present an algorithm based on using a critical section for
the UNION operation. This ensures that there is never any
contention between the processors as to which one updates a
particular parent pointer. The algorithm works by partitioning
the edges among the processors who then work concurrently
on the same global directed forest data structure. Only when
a processor needs to perform a UNION operation will it enter
into the critical section to do so. In [8] it is also shown that
different types of compression operations can be performed
concurrently without using a critical section or locks. The al-
gorithm was implemented using the two techniques of Union-
by-size and path compression. Experiments showed that it
scaled well when applied to random graphs. It is mentioned
that one can use one lock for every node instead of a critical
section, although this approach was not implemented.

There are some differences between the algorithm by Bader
and Cong and the shared memory algorithm by Cybenko et
al. that are worth noting. As implemented, the Bader-Cong
algorithm requires a neighbor list representation where each
edge is represented twice (i.e. in both directions). Also, this
algorithm will only compute a spanning tree of a connected
graph. The algorithm by Cybenko et al. on the other hand, can
compute a spanning forest of a disconnected graph and only
requires a (possibly unordered) list of the edges.

Cybenko et al. also present a distributed memory algorithm
where the edges are partitioned among the processors. Each
processor then computes a spanning forest using its local
edges. In log p steps, where p is the number of processors,
these forests are then merged until one processor has the
complete solution. However, the experimental results from this

algorithm were not promising due to communication costs and
showed that for a fixed size problem the running time increased
with the number of processors used.

We note that Anderson and Woll presented a parallel
UNION-FIND algorithm using wait-free objects suitable for
shared memory computers [9]. In doing so they showed that
parallel algorithms using concurrent UNION operations risk
creating unbalanced trees. However, they did not produce
any experimental results for their algorithm. This algorithm
relies on the low level operation of Compare&Swap to achieve
correctness. The Compare&Swap operation lets one processor
atomically compare the value in one memory location and
depending on the outcome the value can be swapped with
another value. Although some processors offers hardware
support for this operation these are in general not portable
between different architectures. It is also not included in
parallel libraries such as PTHREADS or OpenMP.

Finally, we point out that we have proposed and im-
plemented a UNION-FIND algorithm suitable for distributed
memory parallel computers [10]. This algorithm maintains
distributed disjoint sets. Initially it partitions the vertices of
the graph among the processors with each edge being stored
with one of its endpoints. Similarly to [8], each processor
first computes a local spanning tree on its assigned vertices.
The edges that span vertices allocated to different processors
are then processed in a final stage to compute the complete
solution. This stage employs a parallel algorithm similar to
Rem’s algorithm. The owner of each edge issues a single query
that will travel upwards on the respective trees of the two
initial vertices. The query will terminate once it can determine
if the two trees are already connected. If this is not the case,
the query will perform the merge operation itself. Experiments
showed that this algorithm scaled well although it should be
noted that this was dependent on the graph being partitioned
across the processors as to preserve locality.

III. UNION-FIND ALGORITHMS

In the following we explain in more detail how
UNION-FIND algorithms are used for computing connected
components of a simple undirected graph G(V,E). We also
explain different ways in which such algorithms can be
implemented. Common to all of these algorithms is that they
operate on a collection of disjoint sets containing all vertices
of G as elements. Each set consists of a rooted tree using a
parent function p(). The root element of each set is referred
to as the representative element of the set. The basic outline
of a UNION-FIND algorithm for computing a spanning forest
is shown in Algorithm 1.

Here the operation MAKESET(x) creates a set containing
only the vertex x, while the FIND(x) operation returns the
representative element of the set that vertex x belongs to.
Finally, the UNION(x, y) operation merges the two sets con-
taining vertices x and y. The resulting set of edges S is a
minimal subset of E such that S is a spanning forest of G.
Within S, vertices in the same connected component of G will
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Algorithm 1 The UNION-FIND algorithm
1: S ← ∅
2: for each x ∈ V do
3: MAKESET(x)
4: for each (x, y) ∈ E do
5: if FIND(x) 6= FIND(y) then
6: UNION(x, y)
7: S ← S ∪ {(x, y)}

belong to the same set and will have the same representative
element.

There exists several ways of enhancing Algorithm 1 so that
it runs faster. The most well known of these is to use the two
techniques known as Union-by-rank and path compression.
Union-by-rank specifies that when merging two sets one
should set the pointer of the root element of the “smaller”
tree to point to the root of the “larger” tree. Size is here
measured by a rank value associated with the root element.
This value starts out as zero and is only increased by one
when two sets of equal rank are merged. In path compression
the vertices traversed during a FIND operation (i.e. the FIND
path) are traversed a second time after the root has been found,
setting all parent pointers to point directly to the root. The
running time of Algorithm 1 using both of these techniques is
O(mα(m,n)) for any combination of m MAKESET, UNION,
and FIND operations on n elements [4]. Here α is the very
slowly growing inverse Ackermann function.

Other ways of implementing Algorithm 1 include the
UNION technique Union-by-size where the tree containing the
fewest vertices is set to point to the root of the other tree.
Instead of path compression one can use path-splitting where
every node on the FIND-path is set to point to its grandparent,
the effect being that the FIND-path is split into two disjoint
paths, both hanging off the root. Finally, in path-halving this
process of pointing to a grandparent is only applied to every
other node on the FIND-path.

Combining either Union-by-size or Union-by-rank with
one of the three mentioned compression techniques will still
maintain the running time of O(mα(m,n)).

In a recent experimental study we compared all suggested
ways of implementing Algorithm 1 (a total of 63 different
algorithms) to find which was the most efficient. The con-
clusion from this was that a somewhat forgotten algorithm
known as Rem’s algorithm [5] with a sub-optimal worst case
running time of O(m log2+m/n n) [4] was the best. On a large
collection of test graphs the improvement given by Rem’s
algorithm when compared to using Union-by-rank and path
compression ranged from 38% to 63% with an average of
49%.

In Rem’s algorithm the UNION operation is done by set-
ting a lower numbered node to point to a higher numbered
one. Here the number used is typically the associated index
(numbered 1 through n) of the vertex. We denote this way
of performing the UNION operation as Union-by-index. Also,
the two FIND operations are executed in an interleaved fashion
instead of done separately. Thus when two pointers are mov-

ing upwards along their respective FIND-path, only the one
pointing to the node with the lowered number parent will be
moved. In this way, if the two nodes are already in the same
tree, it is possible to stop the search as soon as the two pointers
both reach their lowest common ancestor z. Compared to the
traditional FIND operation this save two traversals from z to
the root element.

In the case where the two nodes are not in the same tree,
Rem’s algorithm can also save some processing by performing
the UNION operation before the pointers rx and ry reach their
respective roots. This can happen if rx is a root and rx <
p(ry). Then the two sets must be disjoint and the algorithm
will set p(rx) = p(ry) thus merging the sets. Note that this
does not violate the increasing parent pointer property.

Rem’s algorithm was originally presented using a
compression technique known as splicing. In the case when
rx is to be moved to p(rx), let z = p(rx), then the value
of p(rx) is set to p(ry) before rx is set to point to z. Thus,
following the operation the subtree originally pointed to
by rx is now a sibling of ry . This neither compromises
the increasing parent property (because p(rx) < p(ry)) nor
invalidates the set structures (because the two sets will have
been merged when the operation ends.) This also takes care
of a possible final UNION operation once rx (or ry) reaches
the root of its subtree. The effect of splicing is that each
new parent has a higher value than the value of the old
parent, thus hopefully compressing the tree. The algorithm
for processing one edge is given as Algorithm 2.

Algorithm 2 Rem’s algorithm
1: rx ← x, ry ← y
2: while p(rx) 6= p(ry) do
3: if p(rx) < p(ry) then
4: if rx = p(rx) then
5: p(rx)← p(ry), break
6: z ← p(rx), p(rx)← p(ry), rx ← z
7: else
8: if ry = p(ry) then
9: p(ry)← p(rx), break

10: z ← p(ry), p(ry)← p(rx), ry ← z

IV. PARALLELIZING REM’S ALGORITHM

In the following we describe how one can run Rem’s
algorithm in parallel on a shared memory system. In doing
so we make the assumption that memory read/write operations
are atomic and any operations issued concurrently by different
processors will be executed in some unknown sequential order
unless specific constructs are used to ensure an ordering. How-
ever, two dependent operations issued by the same processor
will always be applied in the same order as they are issued.
This is in accordance with the memory model when using the
atomic directive in OpenMP [11].

A. Using Locks
As was suggested by Cybenko et al. it is possible to

implement a parallel UNION-FIND algorithm using a separate
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lock for each vertex. A processor wishing to change any
variable associated with a vertex during a UNION operation
would then have to acquire the vertex’s lock before doing
so. However, when using Union-by-rank or Union-by-size
this gives rise to an additional problem. Consider a UNION
operation that sets p(x) = y. Then one might also have to
update the associated (rank or size) value of y. To ensure
correctness, subsequent actions by other processors must have
knowledge about both the pointer change and the value update
before any new operations are performed on either x or y. Thus
when performing a Union-by-rank or Union-by-size operation
it is necessary to lock both x and y before changing their
values. The only exception to this is a Union-by-rank operation
where no rank values is changed. Then it is sufficient to only
lock the vertex which pointer is being set.

Since any processor acquires multiple locks sequentially it
is possible that acquiring two locks will cause a deadlock
unless every processor always acquires locks in a global
predetermined order. Even then it is possible that a sequence
of processors where each holds one lock each are waiting for
each other and with only one processor being able to execute
a UNION operation. Note that this is not an issue when using
Union-by-index as is done in Rem’s algorithm. This follows
since the vertex being pointed to is not modified and thus it
is only necessary to acquire one lock to execute a UNION
operation.

Thus a processor that wishes to perform a UNION operation
in this setting will first attempt to acquire the necessary lock.
Once this has been achieved the processor will test if this
vertex is still a root element. If this is the case the processor
will set the parent pointer and release the lock. On the other
hand if some other processor has altered the parent pointer so
that the node is no longer a root, the processor will release
the lock and continue executing the algorithm from its current
position.

Algorithm 3 shows how lines 4 and 5 of Rem’s algorithm
would be implemented using OpenMP locks. Here the variable
lock array contains n locks, one for each vertex, while the
variable success is a boolean variable used to indicate if the
variable rx is pointing to is still a root once the lock has been
obtained. If this is not the case the processor will continue
executing the regular algorithm from its current position.

Algorithm 3 Using locking in Rem’s algorithm
1: if rx = p(rx) then
2: omp set lock(lock array(rx))
3: success = FALSE
4: if rx = p(rx) then
5: p(rx) = p(ry)
6: success = TRUE
7: omp unset lock(lock array(rx))
8: if success then
9: break;

Lines 8 and 9 of Rem’s algorithm would have to modified
similarly.

As was noted by Cybenko et al. performing compression
operations does not require the use of locks. Intuitively this
follows from the fact that each tree will always remain
connected even if one compression operation undoes another
one.

B. A New Lock-Free Approach

Since locks give rise to overhead and can possibly limit
speedup we next consider how the UNION-FIND algorithm
can be parallelized using a lock-free strategy.

To do so consider a parallel UNION-FIND algorithm that
does not use locks when performing UNION operations. Then
when a processor sets p(v) = w in a UNION operation it is
possible that this will be undone by another processor that
either performs a UNION or a compression operation that sets
p(v) = z where z 6= w. Moreover, if one is using Union-by-
Rank or Union-by-Size it is possible that a sequence of UNION
operations can create a cycle among the parent pointers. To
see this, consider three nodes v, w, and x where each of these
is the root of a tree and of equal rank (or size) k. Further, let
the tie breaking scheme be such that the nodes are ordered
as v < w < x and assume that the parent pointer is set in a
UNION operation before the rank (or size) value is updated.
Let t0, t1, and t2 be three processors such that t0 is trying to
merge the sets that v and w belongs to, while t1 and t2 are
both trying to merge the sets that w and x belongs to. Then
the following order of operations will create a cycle involving
the parent pointers of w and x: Each processor first traverses
to the roots of the two component it is trying to merge. Then
t0 reads and compares the rank values of v and w (both are
of rank k but v < w). Following this t1 reads and compares
the rank values of w and x and sets p(w) = x but does not
yet increase the rank value of x. Then t0 both sets p(v) = w
and increases the rank of w to k + 1. Finally, t2 reads and
compares the rank values of w and x setting p(x) = w. At
this stage a cycle has been created. A similar sequence of
operations could also create a cycle if rank values are updated
before parent pointers are set.

Note that this situation cannot occur if one is using Union-
by-index. This follows since then the precedence of vertices
is not changed during the execution of the algorithm. Thus
in an algorithm that is using Union-by-index (such as the
Rem algorithm) but not using locks it might be that some
components are not merged in the final solution as they should
have been due to some parent pointer being overwritten during
the execution of the algorithm.

To get around this problem we suggest that each processor
locally stores the edges that gave rise to UNION operations.
When all processors have finished the regular algorithm each
processor checks that both endpoints of each of its stored
edges are in the same component. If this is not the case the
edge is marked for later processing. When all edges have been
checked there are two possibilities for how to proceed. Either
one could iteratively run the parallel algorithm again until
all edges are in the same component. Or if there are very
few edges that requires reprocessing one could handle these
sequentially.
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The advantage of parallelizing the UNION-FIND algorithm
in this way is that it is only necessary to syncronize the
processors twice in each round, first following the execution
of the regular algorithm and then after the verification stage.
Also, assuming that UNION operations are evenly distributed
between the processors then one would expect that each
processor would have to check about n/p edges. This should
be compare with the initial algorithm where each processor
must process m/p edges. Thus if n � m the running time
will still be dominated by the regular algorithm. Also, if the
height of the tree is reasonably low then we would expect the
running time of the two stages to be O(m/p) and O(n/p),
respectively.

One way to reduce the running time of the verification step
is to instead of storing each edge x, y that gave rise to a
UNION operation, to instead store the root vertex s whose
parent pointer is actually being set along with the value t it
is being set to. Once it has been verified that the two stored
vertices are in the same component for every edge that gave
rise to a UNION operation it follows (by induction) that x and
y are also in the same component. The advantage of storing s
and t (instead of x and y) is that one would expect that these
are both closer and higher up in their respective components
than x and y. We note that in this approach care must be taken
so that one is not storing a value that some other processor
might have changed. Thus in the code given below we are not
storing the value that is being pointed to, but rather its child
which is held in a local variable.

Algorithm 4 outlines one complete iteration of the algorithm
that is executed by each processor. Each processor starts with
a list L of edges such that |L| = m/p. At the end of the
algorithm the marked edges could either be fed back to the
algorithm as a new L or one could process each list of marked
edges sequentially.

We note that following the original algorithm it is possible
to rebalance the number of edges that each processor must
verify, however it is unclear if the the cost of this will offset
any gain.

Although the verification scheme is intended for computing
a spanning tree, as given it can only guarantee to compute
the connected components of G (represented by the parent
pointers). The reason for this is that it is possible that the al-
gorithm adds too many edges to the solution. This can happen
if two processors are trying to merge the same components
simultaneously. Then both processors might believe that they
were successful with their UNION operation and (locally) add
their edge to the solution. To determine if this is the case one
could count, once the algorithm ends, how many vertices are
roots and then compare this with the total number of edges
that gave rise to UNION operations. However, this would only
tell if too many edges had been added to the solution, and not
which edges could be removed. One way to purge the solution
of unwanted edges would be to run the locking algorithm
described in Section IV-A only using as input the edges that
the verification algorithm returned.

Algorithm 4 Using verification in Rem’s algorithm
1: U = ∅
2: for each x, y ∈ L do
3: rx ← x, ry ← y
4: while p(rx) 6= p(ry) do
5: if p(rx) < p(ry) then
6: if rx = p(rx) then
7: p(rx)← p(ry)
8: store rx and ry in U , break
9: z ← p(rx), p(rx)← p(ry), rx ← z

10: else
11: if ry = p(ry) then
12: p(ry)← p(rx)
13: store rx and ry in U , break
14: z ← p(ry), p(ry)← p(rx), ry ← z
15: Global barrier
16: for each x, y ∈ U do
17: rx ← x, ry ← y
18: while p(rx) 6= p(ry) do
19: if p(rx) < p(ry) then
20: if p(rx) = rx then
21: mark x, y for further processing, break
22: rx = p(rx)
23: else
24: if p(ry) = ry then
25: mark x, y for further processing, break
26: ry = p(ry)

V. EXPERIMENTS

For the experiments we used a Dell computer running
GNU/Linux and equipped with four 2.00 GHz Intel Xeon
E7-4850 processors with a total of 128 GB memory. Each
processor has ten cores, each which can run two threads
using hyperthreading. Thus the entire configuration can run
a maximum of 80 threads. All algorithms were implemented
in C using OpenMP and compiled with gcc using the -O3 flag.

Our testbed consists of 22 graphs. Ten of them are real-
world graphs drawn from various scientific computing (sc)
applications from the University of Florida Sparse Matrix Col-
lection. The remaining 12 graphs are synthetically generated
using the R-MAT algorithm [12]. By combining the four input
parameters of the R-MAT algorithm in various ways (the sum
of the parameters needs to be equal to one), it is possible to
generate graphs with varying properties. We generated three
types of graphs:
(i) Erdös-Renyi random (er) graphs, using the set of parameters
(0.25, 0.25, 0.25, 0.25);
(ii) small-world type 1 (g) graphs, using the set of parameters
(0.45, 0.15, 0.15, 0.25);
(iii) small-world type 2 (b) graphs, using the set of parameters
(0.55, 0.15, 0.15, 0.15).
These three graph types vary widely in terms of degree
distribution of vertices and density of local subgraphs and
represent a wide spectrum of input types. The er graphs
have normal degree distribution, whereas the g and b graphs
contain many dense local subgraphs. The g and b graphs differ
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TABLE I
STRUCTURAL PROPERTIES OF THE SCIENTIFIC COMPUTING (SC) GRAPHS

IN THE TESTBED. |V | AND |E| ARE GIVEN IN MILLIONS.

Name |V | |E| Max Avg Comp
Deg Deg

sc1 (inline 1) 0.5 18.2 842 72 1
sc2 (ldoor) 1.0 22.8 76 48 1
sc3 (delaunay n23) 8,4 25.2 28 6 1
sc4 (bone010) 1.0 35.3 80 72 2
sc5 (audikw 1) 0.9 38.4 344 81 1
sc6 (delaunay n24) 16.8 50.3 26 6 1
sc7 (hollywood-2009) 1.1 56,4 11,467 99 44,507
sc8 (kron g500-logn21) 2.1 91.0 213,904 87 553,159
sc9 (rgg n 2 24 s0) 16.8 132.6 40 16 2
sc10 (nlpkkt240) 28.0 373.2 27 27 1

TABLE II
STRUCTURAL PROPERTIES OF THE RMAT-RANDOM (ER), RMAT-G, AND

RMAT-B GRAPHS IN THE TESTBED. |V | AND |E| ARE GIVEN IN MILLIONS

Name |V | |E| Max Avg Comp
Deg Deg

er1 2.1 16.8 102 16 891
er2 4.2 33.6 109 16 1,828
er3 8.4 67.1 123 16 5,050
er4 16.8 134.2 138 16 12,061

g1 2.1 16.8 1,069 16 137,898
g2 4.2 33.5 1,251 16 297,570
g3 8.4 67.1 1,739 16 726,599
g4 16.8 134.2 1,814 16 1,456,228

b1 2.1 16.6 14,066 16 730,989
b2 4.2 33.3 20,607 16 1,540,016
b3 8.4 66.7 31,594 16 3,348,760
b4 16.8 133.7 42,662 16 6,807,765

primarily in the magnitude of maximum vertex degree they
contain, the b graphs have much larger maximum degree and
also more components.

For structural properties of the test sets see tables 1 and 2.
Note that the numbers in the |V | and |E| columns are given
in millions. The sequential running times of Rem’s algorithm
on these graph ranged from 0.11 (sc1) to 3.28 (er4) seconds.

We first note that in all of our experiments when using
the verification algorithm we never encountered a situation
where the verification step found some edge which had to
be reprocessed. This is most likely due to the ratio between
the number of UNION operations and the number of edges. It
seems highly unlikely that two UNION operations will happen
in such an interleaved fashion that one will cancel the other.
Also, we did not see speedup from using more threads than
the number of cores. Thus we only show number using up to
40 threads.

The first set of experiments investigates the scalability of the
locking algorithm and the verification algorithm on the graphs
from scientific computing (sc). The results are shown in Figure

1. For these graphs the locking algorithm gave an average
maximal speedup of 20.5 with a range from 12.9 to 29.0, while
the average maximal speedup for the verification algorithm
was 14.4 with a range from 9.7 to 29.2. A trend that we
observed when comparing the curves of individual graphs is
that the verification algorithm seems to scale better when using
up to approximately 16 threads while the locking algorithm
scales further, thus giving a higher peak scalability. To see
this effect we point to Figure 3 where the two lines labeled
“ver” and “lock” shows the behaviour of the verification and
the locking algorithm on the problems sc1 and sc5.

The results for the er, g, and b graphs can be found in Figure
2. Here the numbers for the er graphs are slightly better than
those for the b graphs, who in turn are slightly better than the
g graphs. However, the difference in performance between the
different types of RMAT graphs is fairly small. The ranges
in maximal speedup of all of these were from 5.2 to 14.2.
The overall average for the locking algorithm was 13.9 while
it was 9.1 for the verification algorithm. Thus, the sc graphs
gave better speedup than the synthetically generated graphs.

As was explained in Section IV-B it is possible that the
verification algorithm will perform more UNION operations
than what is needed. Although this does happen in the ex-
periments, the relative occurrence of such operations is very
small compared to the size of the graphs. The relative fraction
of such occurrences divided by the number of vertices in each
graph gives on average 2.6510−4 for 32 threads. Still, this
shows that the verification algorithm only returns the con-
nected components and not a spanning tree. As was suggested
in Section IV-B we then tried to run the locking algorithm only
on the edges that gave rise to UNION operations. However,
this took on average 29% of the total time to run the locking
algorithm for the whole graph on the same configuration.

We have run some of the graphs using the algorithm by
Bader and Cong and also using their implementation of the
Shiloach-Vishkin algorithm. However, since the Bader-Cong
algorithm is a spanning tree algorithm it can only be used on
connected graphs. On these instances we obtained speedup
that was considerably lower than that of the locking and
verification algorithms. As an example we show in Figure 3
the speedup obtained for the sc1 and sc5 graphs. We note that
the speedup that we obtained for the Bader-Cong algorithm is
considerably lower than what was reported in [3]. For most
instances four threads were needed to match the sequential
algorithm. We believe that this is partly due to the fact that
we are using a faster sequential algorithm (Rem’s algorithm)
than what was previously used (depth-first-search).

VI. CONCLUDING REMARKS

We have presented two new parallel algorithms suitable for
shared memory computers for computing spanning forests.
As the experiments show they offer good speedup on a large
selection of test problems. Moreover, the algorithms are quite
simple and only make use of standard directives in OpenMP
and are thus easily portable. Comparisons with the algorithms
from [3] indicate that the presented algorithms scale better.
However, we note that some care should be taken when
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Fig. 1. Scalability results on the algorithms using scientific computing (sc) graphs. Left column: Verification algorithm. Right column: Locking algorithm.
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interpreting these results. The code from [3] is slightly old and
has not been tuned for the current hardware platform. Thus it
is conceivable that it could have been made to run faster. Still,
this does not change what we believe to be one of the main
advantages of our algorithms: Apart from scalability, they are
simple and easy to implement.

Although the speedup given by the verification algorithm
did not reach as high as that of the locking algorithm we still
believe that the general idea of computing a solution without
any constraints and then verifying that it is correct is some-
thing that can be used for developing parallel algorithms for
other problems. We have previously used this when developing
graph coloring algorithms for shared memory computers [13],
[14].

One of the more common uses of the UNION-FIND algo-
rithm is in Kruskal’s algorithm for computing a minimum
weight spanning tree. Since this relies on the edges of the
graph being processed by increasing weight it is clear that the
presented algorithm cannot be used for this purpose. However,
it should be possible to obtain a reasonable approximation to
the minimum weight spanning tree by letting each processor
process its own edges by increasing weight.

Acknowledgements: The authors would like to thank David
Bader and Guojing Cong for making their code available and
also in assistance in running it.
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Fig. 3. Comparisons of all four algorithms on sc1 (left) and sc2 (right).
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