
A PARALLEL ALGORITHM FOR COMPUTING THE EXTREMALEIGENVALUES OF VERY LARGE SPARSE MATRICESFREDRIK MANNE �Abstract. Quantum mechanics often give rise to problems where one needs to �nd a feweigenvalues of very large sparse matrices. The size of the matrices is such that it is not possible tostore them in main memory but instead they must be generated on the 
y.In this paper the method of coordinate relaxation is applied to one class of such problems. Aparallel algorithm based on graph coloring is proposed. Experimental results on a Cray Origin 2000computer show that the algorithm converges fast ant that it also scales well as more processors areapplied. Comparisons show that the convergence of the presented algorithm is much faster on thegiven test problems than using ARPACK [10].Key words. sparse matrix algorithms, eigenvalue computation, parallel computing, graphcoloring, Cray Origin 2000AMS subject classi�cations. 05C50, 05C85, 15A18, 65F15, 65F50, 65Y05, 65Y201. Introduction. Frequently problems in quantum mechanics lead to the com-putation of a small number of extremal eigenvalues and associated eigenvectors ofAx = �Bxwhere A and B are real symmetric and sparse matrices of very high order. Thematrices are often of such a magnitude that it is neither practical nor feasible tostore them in memory. Instead the elements of the matrices are generated as needed,commonly by combining elements from smaller tables.A number of methods have been proposed for solving such systems. See Davidson[2] for a survey. More recent methods include among others the implicitly re-startedArnoldi iteration [10] by Lehoucq et. al. Common to most of these methods is thatthey only require the storage of a few dense vectors. In this paper we consider oneof the early methods, the method of coordinate relaxation [3, 16] used for computingthe smallest eigenvalue of a large sparse symmetric system. The coordinate relaxationmethod selects each coordinate of the approximate eigenvector and alters it so thatthe Rayleigh quotient is minimized. This is repeated until a converged solution isobtained. The advantage of the method is that the amount of memory is restrictedto a few vectors and, as noted by Shavitt et. al [17], it is also possible to neglectcoordinates if their contribution to the overall solution is insigni�cant.However, the convergence of the method is only guaranteed if the smallest eigen-value is simple and has a good separation. Moreover, a good approximation of theeigenvalue must exist. If these conditions are met and the matrix is strictly diagonaldominant, the convergence is usually fast [6].We present an e�cient parallel version of this method applicable for sparse matri-ces. Designing such an algorithm is a non-trivial task since the computation of eachcoordinate in the algorithm depends directly on the previous computations.We �rst show that it is possible to perform the selection of which coordinatesto use in parallel. The selected coordinates de�ne a sparse graph. By performing agraph coloring of the vertices of this graph it is possible to divide the updating of the�Department of Informatics, University of Bergen, N-5020 Bergen, Norway,Fredrik.Manne@ii.uib.no . An extended abstract of this paper was published in [11]1



eigenvector into parallel tasks. Since the sparse graph changes from each iteration ofthe algorithm the graph coloring has to be performed repeatedly.The present algorithm has been implemented and tested on a Cray Origin 2000computer. In our tests we use diagonal dominant matrices from molecular quantummechanics. The results show the scalability of the algorithm. We also report on usingARPACK [10] to solve the same problems.2. The Coordinate Relaxation Method. In this section we review the coor-dinate relaxation (CR) method and its convergence properties. For simplicity we willassume that B = I such that we are considering the simpli�ed problem Ax = �x.Given a symmetric matrix A 2 <n�n. We wish to compute the smallest (orlargest) eigenvalue � and its corresponding eigenvector x. We denote the i'th columnof A by Ai and the number of nonzeros in Ai by nonz(Ai).Given an initial approximation x of the eigenvector and a search direction y we�nd a new eigenvector x0 = x + �y where the scalar � is determined so that theRayleigh quotient R(x0) = x0TAx0x0Tx0 = xTAx+ 2�yTAx+ �2yTAyxTx+ 2�xT y + �2yT yis minimized.Di�erentiating R(x0) with respect to � one obtains the equationdR(x0)d� = a�2 + b�+ cxTx+ 2�xT y + �2yT ywhere a = yTAx � yT y � yTAy � xT y(2.1) b = xTAx � yT y � yTAy � xTx(2.2) c = xTAx � xT y � yTAx � xTx(2.3)In the CR method we take y equal to one of the unit vectors ei. Combined withthe notation F = Ax(2.4) p = xTAx(2.5) q = xTx(2.6)we get yAx = fi(2.7) yTAy = aii(2.8) yT y = 1(2.9) yTx = xi(2.10)This simpli�es the quadratic equation for determining � to�2(fi � aiixi) + �(p� aiiq) + pxi � fiq = 0:(2.11) 2



When � has been determined one must update the values of p; q; x; F , and �accordingly: p0 = p+ 2�fi + �2aii(2.12) q0 = q + 2�xi + �2(2.13) x0 = x+ �ei(2.14) F 0 = Ax0 = Ax+ �Aei = F + �Ai(2.15) �0 = p0q0(2.16)Updating p; q; x, and � involves only a few scalar operations. The most timeconsuming work of the algorithm involves computing F 0. This involves not onlynonz(Ai) scalar operations but each element of Ai must also be generated. If A is tolarge to store in memory this must be done on the 
y.In one complete iteration of the CR method one cycles through every coordinateof x. However, as noted in [17] it is possible to ignore coordinates if their contributionto � is insigni�cant. A threshold that is successively lowered is used to determineif a coordinate should be used or not. This way the most signi�cant updates areperformed �rst. The complete algorithm is as follows:Coordinate RelaxationDetermine initial values for � and xRepeatDo i = 1; nCalculate � using (2.11)Calculate the improvement on � by using �If (improvement � threshold)Update p; q; x; F; and � according to eq. (2.12)- (2.16)End DoLower thresholdUntil ConvergenceThe CR method can also be used to solve the general eigenvalue problem (A ��B)x = 0. If we update x by x0 = !x + �y where ! is a relaxation factor we obtainthe coordinate overrelaxation method. If ! is chosen correctly this can speed up theconvergence of the method. See [15, 16] for the details. These modi�cations do notchange the algorithm signi�cantly and for clarity we ignore them. Once the smallesteigenvalue �1 has been determined it is possible to shift the system to A � �1I anduse the CR method to determine the second smallest eigenvalue. But as noted byDavidson [2] this does not appear to be e�cient. Thus the CR method should mainlybe used for determining the extremal eigenvalues.If one assumes that every coordinate of x is used in one iteration then the com-putation of F can be viewed as computing the sparse matrix-vector product F = A��where the values of �� must be computed sequentially and �j depends on �i, i > j,if aji 6= 0. In this way the CR method is very similar to the method of Gauss-Seidelfor solving linear systems [6]. This is also re
ected in the convergence analysis in thenext section. 3



2.1. Convergence Properties. Consider the general eigenvalue problem (A��B)x = 0. Let x0 be the the initial eigenvector and xk the eigenvector after the kthiteration of the algorithm. In [16] it is shown that x converges to the eigenvectorcorresponding to the smallest eigenvalue �1 of A if the following criteria are met:1. �1 is simple.2. R(x0) < �2, where x0 is the starting vector.3. R(x0) < minj ajjbjj .Let C = A��1B = E+D+ET where E is a strict lower matrix and D a diagonalmatrix. Then xk+1 � (!E +D)�1[(1� !)D � !ET ]xk �M(!; �1)xkIf the relaxation factor ! = 1 and B = I this simpli�es to xk+1 � (E+D)�1(�ET )xk .Thus xk+1 is asymptotically obtained by multiplying xk by the iteration matrixM(!; �1)xk . The convergence of the coordinate relaxation method is governed by thetheory of the successive over-relaxation method for symmetric and semi-de�nite linearsystems. If the above criteria are met, �1 has a good separation, and A is strictlydiagonal dominant the convergence of the method is usually fast [6]. For furtherproperties of the CR method and its convergence properties see [16].3. A Parallel Algorithm. We now present a parallel version of the CR methodfor sparse matrices. The algorithm operates in three stages. First we consider whichcoordinates should be used to update the eigenvector. Then we consider how thecalculations can be ordered to allow for parallel execution, and �nally we discusshow the actual computations are performed. Our computational model is a parallelcomputer with distributed memory. Communication is done by message passing.In order to develop an e�cient parallel algorithm we must locate independenttasks. This should be done such that the communication/computation ratio is low.Moreover, communication tasks should be grouped in order to reduce the numberof times communication is initiated. In this way the accumulated latency of thecommunication can be kept low.The computation of the di�erent values of � is inherently sequential with eachstep of the algorithm depending on the previous ones. As described in Section 2 themain work of the algorithm is in updating F according to (2.15). We note, however,that once a particular value of � has been determined, F can be updated in parallel.Using coordinate i the total amount of work that can be performed in parallel isthen nonz(Ai). For a sparse matrix this is most likely not su�cient for obtainingany signi�cant speedup and the algorithm will be dominated by the time requiredto distribute the values of �. Thus we seek to accumulate more operations in eachparallel step and in this way reduce the time spent on communication.3.1. Finding Candidates. In order to accumulate more work in each parallelstep we �rst consider how multiple coordinates can be chosen for updating the solutionbefore the actual updates on F are performed.In the sequential algorithm a coordinate is chosen if its contribution to the currentvalue of � is larger than the threshold. We suggest using the initial values of �; p; q;and F at the start of the iteration when testing each coordinate to see if it contributesenough to the solution. If so, the coordinate is added to the set of candidates that willbe used to update the solution. In this way we postpone the updating of the solutionuntil after we have determined which coordinates to use.4



This scheme might cause some coordinates that would have been used in thesequential algorithm not to be chosen in the current pass. Similarly, some coordinatesthat would not have been used in the sequential algorithm might be used. We notethat using extra coordinates will not decrease the quality of the solution.After testing each coordinate the chosen ones are used to update the solution. Toensure that all signi�cant contributions to the solution are acquired we make repeatedpasses over the matrix before lowering the threshold value.By dividing the coordinates evenly among the processors we can now determinethe candidates in parallel without the need of communication except for distributingthe initial values. The only load imbalance that might occur is if some processor �ndsmore candidates than others and have to spend more time in storing its results.3.2. Updating the Solution. Assuming that we have collected a set K of co-ordinates as described in Section 3.1 we now consider how it is possible to accumulatemore work in each parallel step.The computation of �; p; q; and � as speci�ed by eq. (2.11)-(2.13) and (2.16) isinherently sequential. However, these computations involve only a few scalar oper-ations. Updating x according to eq. (2.14) involves only one multiplication and oneaddition and can be done in parallel at the end of each iteration. We now show howit is possible to postpone and thus accumulate the updating of F .To be able to compute �j the element fj must be updated by each �i wherei < j; i 2 K; and aij 6= 0. But since the coordinates in K were chosen based ontheir contribution to � at the start of the iteration, it follows that the order in whichthe coordinates of K are applied is not crucial for their contribution to �. Thus it ispossible to reorder the elements of K.Let K = fC1; C2; :::; Crg, 1 � r � jKj be a partitioning of K such that aij = 0for i; j 2 Ck and 1 � k � r. If the coordinates in C1 are applied �rst, we can computeeach �i, i 2 C1, without performing any update on F . This follows from the factthat aij = 0 for i; j 2 C1. Thus the updating of F can be postponed until each �i,i 2 C1 has been computed. Note that the computation of the values of � is sequential.But since this only involves a few scalar operations for each � it can be performedrelatively fast.Before we can compute the values of � corresponding to the coordinates in C2we must perform an update of F . This can be done in several ways: It is possible toupdate only those values of F whose coordinates are in C2:fi = fi + �jaij ; i 2 C2; j 2 C1; aij 6= 0(3.1)It is also possible to update all the values corresponding to coordinates in K � C1before proceeding with C2. A third option is to immediately perform the completeupdate of F : F = F +Xi2C1(�i �Ai)(3.2)If we only perform selective updates on F we must perform one step at the endof the iteration where the rest of F is updated:fi = fi + �jaij ; i 62 K; j 2 K; aij 6= 0(3.3)From a parallel point of view we have now restructured the algorithm to consist offast sequential parts, each one followed by some communication and a potential larger5



parallel update of F . Depending on when we chose to update F we can either try tosave as much work as possible towards the end of each iteration or we can performthe work as it is generated. The selective updating schemes require more attentionto the structure of A than if one performs the complete update of F for each Cj . Wetherefore chose to perform a complete update of F for each Cj .We now consider how the updates on F can be performed in parallel. There aretwo obvious ways in which this can be done, depending on whether we associate thework related to one column or to one row of A with one processor. In the columnscheme one processor calculates the values from �iAi that are needed for updating F .The results are then merged using a binary tree into the complete F . This requiresat most log jCj j communication steps where the partial results are sent. In the rowscheme one processor is responsible for updating fi for each row assigned to it. Thisrequires that each processor has access to the necessary values of �. In both schemeseach processor must have access to the corresponding columns (or rows) of A.We choose the row scheme since the only communication required is the distribu-tion of the �'s. This can be done in one broadcast operation before the parallel updateof F . The load balance now depends on how F is distributed and the structure ofthe rows of A corresponding to coordinates in each Cj . If we distribute x in the sameway as F we must gather both xi and fi, i 2 Cj before the sequential computationof the �'s. We do this on processor 0 which then computes the values of �.We now address how one can partition K into fC1; C2; : : : ; Crg such that aij = 0for all i; j 2 Ck, 1 � k � r. Construct the adjacency graph G(K) = (V;E) withjV j = jKj and an edge (i; j) if and only if i; j 2 K and aij 6= 0. Then Ci must consistof coordinates whose vertices are non-adjacent in G(K). In other words they mustform an independent set. Partitioning the vertices of G(K) into independent subsetsreduces to the well known graph-coloring problem:Given a graph G, color the nodes in G using as few colors as possibleunder the restriction that no adjacent vertices are colored using thesame color.If we order the number of colors used from 1 to r, Ci consists of the coordinateswhose corresponding vertices are colored with color i.Computing the solution using the fewest colors is known to be NP-hard [4], itis also di�cult to �nd a solution that approximates the optimal solution well [7].However, there exists a number of algorithms that run in linear time and producerelatively good colorings [8].The complete parallel algorithm is as follows:Parallel Coordinate RelaxationCalculate initial value of � and xRepeatDo s timesFind a set of candidates KPerform a graph coloring on G(K)For each color i:Gather fj and xj j 2 Ci on processor 0Processor 0: For each ej 2 CiCalculate p, q, and �6



Broadcast the values of �Update F and x with the coordinates in CiEnd doLower thresholdProcessor 0: Distribute p and qUntil convergenceHere s is the number of passes we make over the matrix before lowering thethreshold. Note again that the calculation of p, q, and � must be carried out in asequential manner whereas �nding candidates and updating F can be carried out inparallel.4. Numerical Experiments. In this section we present results on applying theparallel CR algorithm developed in Section 3 to problems from quantum mechanicalcalculations. We �rst give a description of the test problems.4.1. Test matrices. The eigenvalue problems that have been used to test thealgorithm are due to R�eggen [14]. These problems arise in quantum mechanical cal-culations of electron correlation energies in molecules using extended geminal models.R�eggen proposed using the sequential CR method for solving these and showed thefeasibility of this approach [13].The test matrices we use are strictly diagonal dominant symmetric matrices wherea11 gives a good approximation of the smallest eigenvalue �1. The size of a matrixA is speci�ed through a parameter m. Each row and column of A is labeled by fourindices (i1; i2; j1; j2) where 1 � i2 < i1 � m and 1 � j2 < j1 � m. Thus each elementof A is speci�ed by two quadruples: (i1; i2; j1; j2); (i01; i02; j01; j02) giving the row and thecolumn indices of the element. An element of A is non-zero if and only ifjfi1; i2g \ fi01; i02gj+ jfj1; j2g \ fj01; j02gj � 2:(4.1)Let S = m(m�1)2 . Then the dimension of A is S2 and the number of non-zero elementsis given by the polynomial f(m) = 1:25m6 � 6:75m5 + 13:5m4 � 11:75m3 + 3:75m2.The number of non-zeros in each column of A is m2 � 17m+ 5.The matrix consists of S�S blocks each of size S�S. Each element of the sameblock has the same initial coordinates (i1; i2); (i01; i02). The diagonal blocks are full. Ifjfi1; i2g\fi01; i02gj = 1 the block has the same element structure as the block structureof A. If jfi1; i2g \ fi01; i02gj = 0 the block only contains diagonal elements.For m = 8 this gives a matrix as shown if Figure 4.1. Here the block size S is 28,the dimension of the matrix S2 is 784, and the number of non-zeros is 156016.The values of the non-zero elements of A are constructed from two tables h and tgiving respectively the one and two electron integrals. Let T = 12m(m+1). Then thetable t is of size T 2 and h of size T . Between 2 and 6 elements are taken from h andt and summed to construct each aij . It should be noted that although there is somestructure in how the elements of t and h are accessed this is not su�cient to achievegood memory locality when generating the columns of A.4.2. Experimental results. All experiments have been performed on a CrayOrigin 2000 supercomputer with 128 MIPS R10000 processors. Each processor has 4Mbytes of primary cache and 192 Mbytes of memory. Physically this is a distributedmemory computer but the operating system also supports shared memory execution.We present results for two matrices, one with m = 38 and one with m = 68.7



Fig. 4.1. Structure of A with m = 8For m = 38 and m = 68 the order of A is respectively 494209 and 5189284 andcontains on the order of 3 � 109 and 1:1 � 1011 non-zero elements. Storing A in acompressed scheme requires 8 bytes for each 
oating point value and 4 bytes for itsrow index. In addition one needs S2 integers for the column pointers. Thus oneneeds approximately 1.3 Terra bytes to store A in the case when m = 68. On todayscomputers this is not feasible and A is therefore generated as needed.When the algorithm starts the tables t and h are copied to each processor. Thedimension of A is split into groups of S consecutive elements and assigned to theprocessors in a round robin fashion. Each processor is then responsible for �ndingcandidates among its assigned columns of A and for updating the corresponding el-ements of F and x. In this way each processor gets blocks of consecutive elementsfrom F and some reuse of index calculations and values from t and h are possible.When a set of candidates has been selected the structure of its adjacency graphis given implicitly by their indices. Thus there is no need to construct and store theentire graph prior to performing the graph coloring. For each vertex we mark thecolors of its adjacent vertices as used and search to see if there is any color availableor if a new color is needed. The way in which this search is performed can in
uencesissues such as load balancing and the number of colors used. We choose to performa linear search. Other schemes such as starting the search from a random point weretried but this did not have any signi�cant impact on the running time.Two iterations of the algorithm are made before lowering the threshold. Thethreshold starts at 10�5 and is lowered by a factor of 10 down to 10�15.Tables 4.1 and 4.2 gives the execution time in seconds and the speedup of the par-allel CR algorithm for the two matrices. The �rst column \Proc" denotes the numberof processors used, \Total" is the total time of the algorithm, while \Candidates",\Compute", and \Color" gives the time needed for �nding candidates, for updatingthe solution, and for performing the graph coloring.In Table 4.3 we display more detailed information about the case whenm = 68 runon 10 processors. Each row displays information about one iteration of the algorithm.8



Proc. Total Speedup Candidates Compute Color1 162.4 1.0 1.4 157.7 0.65 40.7 4.0 0.9 39.1 0.710 19.8 8.2 0.4 18.6 0.720 12.3 13.2 0.2 11.3 0.830 9.2 17.7 0.1 8.2 0.940 8.9 18.2 0.1 7.9 0.9Table 4.1Execution times and speedup for m = 38.Proc. Total Speedup Candidates Compute Color10 1027 1.0 3.9 1011 11.816 662 1.6 2.5 646 13.526 407 2.5 1.5 392 13.531 336 3.1 1.2 322 12.841 260 4.0 0.9 246 13.151 209 4.9 0.8 196 12.275 156 6.6 0.5 142 13.6100 128 8.0 0.4 113 14.8Table 4.2Execution times and speedup for m = 68.The column labeled \jKj" gives the number of candidates in each iteration, \nonz"gives the number of edges in the adjacency graph G(K), and \Max deg" the maximumdegree of any vertex in G(K). \Col Time" and \Compute" gives the time spent oncoloring and updating F in each iteration, \Colors" gives the number of colors used,and � shows the development of the desired eigenvalue.For m = 68 the number of candidates in each iteration increases from 200 up to210000. The total number of candidates found over all iterations is just over 700000.These numbers vary slightly with the number of processors used. Note that this isapproximately 14 % of the dimension of A. The parallel and sequential algorithmsboth produce the same answer. For m = 68 the di�erence between the sequentialsolution and the parallel one was never more than 2 � 10�10 and the number ofcandidates found di�er by less than 2 %.As can be seen from Tables 4.1 and 4.2 almost all of the time is spent updatingF . The time to calculate the values of � and spreading them around is insigni�cantcompared to the time needed to do the updates. The algorithm scales fairly well inthe case when m = 68. For m = 38 the speedup is hampered by the lack of work asthe number of processors increases.For each color the time spent updating F is dominated by the processor with themost work. In the case of m = 68 on 10 processors a perfect load distribution wouldhave resulted in an additional speedup of approximately 18 %.The main obstacle to performing the update of F more e�ciently is the unstruc-tured memory references in t when generating Ai. Note that this is not an e�ect ofthe CR method but fundamental to the speci�cation of A.To compare the CR algorithm with other methods we have used ARPACK [10]to solve the eigenvalue problem. ARPACK is an implementation of the implicitly9



jKj nonz Max deg Col Time Colors Compute �232 7626 78 0.01 61 0.35 -7.654187543487853218 42 6 0.00 6 0.03 -7.6561355264945705751 69325 750 0.02 190 1.09 -7.681844519927988642 262 20 0.01 19 0.08 -7.68230684156407851077 117908 555 0.02 228 1.53 -7.686484843497649641 262 24 0.01 15 0.07 -7.68653435577086341979 159847 1023 0.03 257 2.83 -7.6871480107658794202 1412 48 0.01 17 0.31 -7.687171481872211715248 2339389 922 0.14 225 22.51 -7.68759806616443521224 18314 150 0.01 32 1.81 -7.687613322439830251164 14037455 1257 0.61 305 73.77 -7.68778728551417252768 66972 385 0.02 87 4.20 -7.687791019533382790980 31859150 1391 1.27 328 128.40 -7.68782437715149584193 112720 466 0.02 107 6.26 -7.6878249335847650132099 54061398 1440 2.05 348 184.26 -7.68782983626863736616 203923 512 0.03 116 9.75 -7.6878299196455533179214 87415369 1563 3.25 389 246.65 -7.68783060530423969346 339152 500 0.05 119 13.68 -7.6878306171439403217718 119863154 1611 4.36 390 297.14 -7.687830701553593810821 414196 461 0.06 109 15.63 -7.6878307028821737Table 4.3Sizes and times for m = 68 run on 10 processorsre-started Arnoldi iteration available through Netlib. To use this one must supplya matrix-vector multiplication routine for computing y = Ax where x is suppliedby the package. For large A almost all the computation is spent on this matrixvector product. This computation also lends itself well to parallelization. Initial testsshowed that the method did not converge. As suggested by Morgan and Scott [12] weinstead applied the algorithm to the preconditioned system L�1(A � �I)L�T where� is the current estimate of the eigenvalue and M = LLT is the diagonal of A� �I .With this approach the algorithm converged but only after performing more than 50matrix-vector multiplications. Even if the matrix-vector operations were performedin parallel this took signi�cantly longer time than the sequential CR method.We have also implemented the sequential CR method and parallelized the up-dating of F through the use of shared memory. This did not show any signi�cantspeed-up. We believe this is due to the fact that the elements of Ai are not generatedin row order but in a more unstructured manner. Thus two processors might try toupdate elements of F that are close enough to be on the same cache-line in memoryand thus cause communication.5. Conclusion. Through some restructuring of the CR algorithm and the useof a graph coloring algorithm we developed a parallel version of the CR algorithm.Experimental results on very large problems from quantum mechanics showed thatthe algorithm scaled well as more processors were applied.The close similarity between the CR algorithm and the Gauss-Seidel algorithmis to a somewhat lesser extent also re
ected in parallel implementations of the twoalgorithms. Koester et. al. [9] presented a parallel Gauss-Seidel algorithm for sparse10



matrices based (partly) on performing a graph coloring of the matrix. They showedthat computations associated with one color can be performed in parallel. This issimilar to the presented algorithm. However, the graph coloring is part of a larger re-ordering step that is only performed initially before the computation starts. Moreoverthis reordering step takes signi�cant longer time than the numerical solution itself.Thus the time must be amortized over many computations with the same structure.It is fairly expensive to generate the elements of A since the access of t and h isnot done in a systematic enough way. This is typical for these types of problems [2].Thus performing the updates of F takes su�ciently long time to justify performingthe graph coloring in each iteration of the algorithm. If the matrix A had been directlyavailable the graph coloring would most likely have taken a more signi�cant amountof the total time. In this case it would have been possible to try and use a parallelgraph coloring algorithm [1, 5]. This was not pursued as the relative time spent onthe graph coloring compared to the updating of F is small.If t and h are large making a separate copy for each processor might requireto much memory. It is conceivable that one could design an algorithm where onlyone copy of t and h is used by all the processors. These would then be stored ina distributed fashion and shared either by making explicit request for elements orthrough the use of shared memory. However, this would most likely decrease theperformance of the algorithm.The success of the CR method depends on being able to ignore updates thatcontribute insigni�cantly to the solution. If this approach could be used in othermethods then these might be able to compete with the CR method on the type ofproblems that were used in the present work.6. Acknowledgment. The author thanks Inge R�eggen and Tor S�revik forconstructive comments and discussions.REFERENCES[1] J. Allwright, R. Bordawekar, P. D. Coddington, K. Dincer, and C. Martin, A compar-ison of parallel graph coloring algorithms, Tech. Report NPAC technical report SCCS-666,Northeast Parallel Architectures Center at Syracuse University, 1994.[2] E. R. Davidson, Super-matrix methods, Computer Physics Communications, (1988), pp. 49{60.[3] D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra, W. H. Free-man and Co., San Francisco, CA., 1963.[4] M. R. Garey and D. S. Johnson, Computers and Intractability, Freeman, 1979.[5] R. K. Gjertsen Jr., M. T. Jones, and P. Plassman, Parallel heuristics for improved, balancedgraph colorings, J. Par. and Dist. Comput., 37 (1996), pp. 171{186.[6] G. H. Golub and C. F. V. Loan, Matrix Computations, North Oxford Academic, 2 ed., 1989.[7] M. Halldorsson, A still better performance guarantee for approximate graph coloring, Inf.Proc. Letters, (1993), pp. 19{23.[8] M. T. Jones and P. Plassman, A parallel graph coloring heuristic, SIAM J. Sci. Comput.,(1993), pp. 654{669.[9] D. P. Koester, S. Ranka, and G. Fox, A parallel gauss-seidel algorithm for sparse powersystem matrices, in Proceedings of Supercomputing '94, 1994, pp. 184{193.[10] R. B. Lehoucq, D. Sorensen, and P. Vu, ARPACK: An implementation of the implicitlyre-started Arnoldi iteration that computes some of the eigenvalues and eigenvectors of alarge sparse matrix. Available from netlib@ornl.gov under the directory scalapack, 1996.[11] F. Manne, A parallel algorithm for computing the extremal eigenvalues of very large sparsematrices (extended abstract), in proceedings of Para98, Workshop on Applied ParallelComputing in Large scale scienti�c and Industrial Problems, vol. 1541, Lecture Notes inComputer Science, Springer, 1998, pp. 332{336.[12] R. B. Morgan and D. S. Scott, Preconditioning the Lanczos algorithm for sparse symmetriceigenvalue problems, SIAM J. Sci. Comput., 14 (1993), pp. 585{593.11



[13] I. R�eggen. Private communications.[14] I. R�eggen and P. A. Wind, Electron correlation, extended geminal models, and intermolec-ular interactions: Theory, J. Chem. Phys., (1996), pp. 2751{2761.[15] A. Ruhe, SOR-methods for the eigenvalue problem with large sparse matrices, Math. Comp.,28 (1974), pp. 695{710.[16] H. R. Schwarz, The method of coordinate overrelaxation for (A � �B)x = 0, Numer. Math.,(1974), pp. 135{151.[17] I. Shavitt, C. F. Bender, A. Pipano, and R. P. Hosteny, The iterative calculation of severalof the lowest or highest eigenvalues and corresponding eigenvectors of very large symmetricmatrices, Journal of Computational Physics, (1973), pp. 90{108.

12


