A PARALLEL ALGORITHM FOR COMPUTING THE EXTREMAL
EIGENVALUES OF VERY LARGE SPARSE MATRICES

FREDRIK MANNE *

Abstract. Quantum mechanics often give rise to problems where one needs to find a few
eigenvalues of very large sparse matrices. The size of the matrices is such that it is not possible to
store them in main memory but instead they must be generated on the fly.

In this paper the method of coordinate relaxation is applied to one class of such problems. A
parallel algorithm based on graph coloring is proposed. Experimental results on a Cray Origin 2000
computer show that the algorithm converges fast ant that it also scales well as more processors are
applied. Comparisons show that the convergence of the presented algorithm is much faster on the
given test problems than using ARPACK [10].

Key words. sparse matrix algorithms, eigenvalue computation, parallel computing, graph
coloring, Cray Origin 2000

AMS subject classifications. 05C50, 05C85, 15A18, 65F15, 65F50, 65Y05, 65Y20

1. Introduction. Frequently problems in quantum mechanics lead to the com-
putation of a small number of extremal eigenvalues and associated eigenvectors of

Az = \Bx

where A and B are real symmetric and sparse matrices of very high order. The
matrices are often of such a magnitude that it is neither practical nor feasible to
store them in memory. Instead the elements of the matrices are generated as needed,
commonly by combining elements from smaller tables.

A number of methods have been proposed for solving such systems. See Davidson
[2] for a survey. More recent methods include among others the implicitly re-started
Arnoldi iteration [10] by Lehoucq et. al. Common to most of these methods is that
they only require the storage of a few dense vectors. In this paper we consider one
of the early methods, the method of coordinate relaxation [3, 16] used for computing
the smallest eigenvalue of a large sparse symmetric system. The coordinate relaxation
method selects each coordinate of the approximate eigenvector and alters it so that
the Rayleigh quotient is minimized. This is repeated until a converged solution is
obtained. The advantage of the method is that the amount of memory is restricted
to a few vectors and, as noted by Shavitt et. al [17], it is also possible to neglect
coordinates if their contribution to the overall solution is insignificant.

However, the convergence of the method is only guaranteed if the smallest eigen-
value is simple and has a good separation. Moreover, a good approximation of the
eigenvalue must exist. If these conditions are met and the matrix is strictly diagonal
dominant, the convergence is usually fast [6].

We present an efficient parallel version of this method applicable for sparse matri-
ces. Designing such an algorithm is a non-trivial task since the computation of each
coordinate in the algorithm depends directly on the previous computations.

We first show that it is possible to perform the selection of which coordinates
to use in parallel. The selected coordinates define a sparse graph. By performing a
graph coloring of the vertices of this graph it is possible to divide the updating of the

*Department of Informatics, University of Bergen, N-5020 Bergen, Norway,
Fredrik.Manne@ii.uib.no . An extended abstract of this paper was published in [11]

1

eigenvector into parallel tasks. Since the sparse graph changes from each iteration of
the algorithm the graph coloring has to be performed repeatedly.

The present algorithm has been implemented and tested on a Cray Origin 2000
computer. In our tests we use diagonal dominant matrices from molecular quantum
mechanics. The results show the scalability of the algorithm. We also report on using
ARPACK [10] to solve the same problems.

2. The Coordinate Relaxation Method. In this section we review the coor-
dinate relaxation (CR) method and its convergence properties. For simplicity we will
assume that B = I such that we are considering the simplified problem Az = Az.

Given a symmetric matrix A € R"**". We wish to compute the smallest (or
largest) eigenvalue A and its corresponding eigenvector z. We denote the i’th column
of A by A; and the number of nonzeros in A; by nonz(4;).

Given an initial approximation = of the eigenvector and a search direction y we
find a new eigenvector ' = z + ay where the scalar « is determined so that the
Rayleigh quotient

z'T Az . T Az + 20yT Az + o®yT Ay
Tz 2Tz 4 2axTy + a2yTy

R(z") =

is minimized.
Differentiating R(z') with respect to « one obtains the equation

dR(z") aa? + ba + ¢
da zTr + 2azTy + a2yTy
where
(2.1) a=yl Az« yTy —yT Ay x Ty
(2.2) b=aT Az xyTy —yTAyx 2Tz
(2.3) c=axTAzsxzTy —yTAz s« 2Tz

In the CR method we take y equal to one of the unit vectors e;. Combined with
the notation

(2.4) F = Ax
(2.5) p=zl Az
(2.6) q=aTz
we get

(2.7) yAz = f;
(2.8) y Ay = ai
(2.9) yly=1
(2.10) yTo =

This simplifies the quadratic equation for determining « to

(2.11) o (fi — agxi) + a(p — aiq) + pzri — fig = 0.
2

When « has been determined one must update the values of p,q,z, F, and A
accordingly:

= p+2afi+a’a;
q+ 20x; + o

(2.12)
(2.13)
(2.14) z' T+ ae;
(2.15)
(2.16)

<
I

F' = Az = Az + ade; = F + aA;

P’
’
A E

Updating p,q,z, and X involves only a few scalar operations. The most time
consuming work of the algorithm involves computing F’. This involves not only
nonz(A;) scalar operations but each element of A; must also be generated. If A is to
large to store in memory this must be done on the fly.

In one complete iteration of the CR method one cycles through every coordinate
of z. However, as noted in [17] it is possible to ignore coordinates if their contribution
to A is insignificant. A threshold that is successively lowered is used to determine
if a coordinate should be used or not. This way the most significant updates are
performed first. The complete algorithm is as follows:

Coordinate Relaxation
Determine initial values for A and z
Repeat
Doi=1,n
Calculate « using (2.11)
Calculate the improvement on A by using «
If (improvement > threshold)
Update p, q,z, F, and X according to eq. (2.12)- (2.16)
End Do
Lower threshold
Until Convergence

The CR method can also be used to solve the general eigenvalue problem (A —
AB)z = 0. If we update z by ' = wz + ay where w is a relaxation factor we obtain
the coordinate overrelaxzation method. If w is chosen correctly this can speed up the
convergence of the method. See [15, 16] for the details. These modifications do not
change the algorithm significantly and for clarity we ignore them. Once the smallest
eigenvalue \; has been determined it is possible to shift the system to A — A\ and
use the CR method to determine the second smallest eigenvalue. But as noted by
Davidson [2] this does not appear to be efficient. Thus the CR method should mainly
be used for determining the extremal eigenvalues.

If one assumes that every coordinate of z is used in one iteration then the com-
putation of F' can be viewed as computing the sparse matrix-vector product F' = Aa
where the values of @ must be computed sequentially and «; depends on a;, 7 > j,
if aj; # 0. In this way the CR method is very similar to the method of Gauss-Seidel
for solving linear systems [6]. This is also reflected in the convergence analysis in the
next section.

2.1. Convergence Properties. Consider the general eigenvalue problem (A —
AB)z = 0. Let z° be the the initial eigenvector and z* the eigenvector after the kth
iteration of the algorithm. In [16] it is shown that z converges to the eigenvector
corresponding to the smallest eigenvalue A; of A if the following criteria are met:

1. \; is simple.
2. R(z°) < A2, where ¥ is the starting vector.
3. R(2°) < min; Z]L]’

Let C = A—\1B = E+ D+ E” where E is a strict lower matrix and D a diagonal

matrix. Then

" = (WE + D)1 - w)D — wET)zk = M(w, A\y)zF

If the relaxation factor w = 1 and B = I this simplifies to zF*! ~ (E+ D) ' (—ET)z*.

Thus z**! is asymptotically obtained by multiplying z* by the iteration matrix
M (w, \1)z*. The convergence of the coordinate relaxation method is governed by the
theory of the successive over-relaxation method for symmetric and semi-definite linear
systems. If the above criteria are met, A\; has a good separation, and A is strictly
diagonal dominant the convergence of the method is usually fast [6]. For further
properties of the CR method and its convergence properties see [16].

3. A Parallel Algorithm. We now present a parallel version of the CR method
for sparse matrices. The algorithm operates in three stages. First we consider which
coordinates should be used to update the eigenvector. Then we consider how the
calculations can be ordered to allow for parallel execution, and finally we discuss
how the actual computations are performed. Our computational model is a parallel
computer with distributed memory. Communication is done by message passing.

In order to develop an efficient parallel algorithm we must locate independent
tasks. This should be done such that the communication/computation ratio is low.
Moreover, communication tasks should be grouped in order to reduce the number
of times communication is initiated. In this way the accumulated latency of the
communication can be kept low.

The computation of the different values of « is inherently sequential with each
step of the algorithm depending on the previous ones. As described in Section 2 the
main work of the algorithm is in updating F' according to (2.15). We note, however,
that once a particular value of « has been determined, F' can be updated in parallel.
Using coordinate 7 the total amount of work that can be performed in parallel is
then nonz(4;). For a sparse matrix this is most likely not sufficient for obtaining
any significant speedup and the algorithm will be dominated by the time required
to distribute the values of @. Thus we seek to accumulate more operations in each
parallel step and in this way reduce the time spent on communication.

3.1. Finding Candidates. In order to accumulate more work in each parallel
step we first consider how multiple coordinates can be chosen for updating the solution
before the actual updates on F' are performed.

In the sequential algorithm a coordinate is chosen if its contribution to the current
value of A is larger than the threshold. We suggest using the initial values of A, p, q,
and F' at the start of the iteration when testing each coordinate to see if it contributes
enough to the solution. If so, the coordinate is added to the set of candidates that will
be used to update the solution. In this way we postpone the updating of the solution
until after we have determined which coordinates to use.

4

This scheme might cause some coordinates that would have been used in the
sequential algorithm not to be chosen in the current pass. Similarly, some coordinates
that would not have been used in the sequential algorithm might be used. We note
that using extra coordinates will not decrease the quality of the solution.

After testing each coordinate the chosen ones are used to update the solution. To
ensure that all significant contributions to the solution are acquired we make repeated
passes over the matrix before lowering the threshold value.

By dividing the coordinates evenly among the processors we can now determine
the candidates in parallel without the need of communication except for distributing
the initial values. The only load imbalance that might occur is if some processor finds
more candidates than others and have to spend more time in storing its results.

3.2. Updating the Solution. Assuming that we have collected a set K of co-
ordinates as described in Section 3.1 we now consider how it is possible to accumulate
more work in each parallel step.

The computation of «,p,q, and A as specified by eq. (2.11)-(2.13) and (2.16) is
inherently sequential. However, these computations involve only a few scalar oper-
ations. Updating z according to eq. (2.14) involves only one multiplication and one
addition and can be done in parallel at the end of each iteration. We now show how
it is possible to postpone and thus accumulate the updating of F'.

To be able to compute «a; the element f; must be updated by each a; where
i < j,4 € K, and ay; # 0. But since the coordinates in K were chosen based on
their contribution to A at the start of the iteration, it follows that the order in which
the coordinates of K are applied is not crucial for their contribution to A. Thus it is
possible to reorder the elements of K.

Let K = {C1,Cs, ...,C,}, 1 < r < |K| be a partitioning of K such that a;; = 0
fori,7 € Cr and 1 < k < r. If the coordinates in C'; are applied first, we can compute
each ay, © € Cp, without performing any update on F. This follows from the fact
that a;; = 0 for 7,5 € C;. Thus the updating of F' can be postponed until each a;,
1 € C1 has been computed. Note that the computation of the values of « is sequential.
But since this only involves a few scalar operations for each « it can be performed
relatively fast.

Before we can compute the values of a corresponding to the coordinates in Cs
we must perform an update of F'. This can be done in several ways: It is possible to
update only those values of F' whose coordinates are in Cs:

(3.1) fi=fi+ajay;, 1€Cs,j€Cra4 #0

It is also possible to update all the values corresponding to coordinates in K — C;
before proceeding with C5. A third option is to immediately perform the complete
update of F":

(3.2) F=F+) (aixA)
i€Cy
If we only perform selective updates on F' we must perform one step at the end
of the iteration where the rest of F' is updated:

(3.3) fi=fit+tajay, i€K,j€K,ay #0

From a parallel point of view we have now restructured the algorithm to consist of
fast sequential parts, each one followed by some communication and a potential larger

5

parallel update of F'. Depending on when we chose to update F' we can either try to
save as much work as possible towards the end of each iteration or we can perform
the work as it is generated. The selective updating schemes require more attention
to the structure of A than if one performs the complete update of F' for each C;. We
therefore chose to perform a complete update of F' for each Cj.

We now consider how the updates on F' can be performed in parallel. There are
two obvious ways in which this can be done, depending on whether we associate the
work related to one column or to one row of A with one processor. In the column
scheme one processor calculates the values from «; A; that are needed for updating F'.
The results are then merged using a binary tree into the complete F'. This requires
at most log|C;| communication steps where the partial results are sent. In the row
scheme one processor is responsible for updating f; for each row assigned to it. This
requires that each processor has access to the necessary values of a. In both schemes
each processor must have access to the corresponding columns (or rows) of A.

We choose the row scheme since the only communication required is the distribu-
tion of the a’s. This can be done in one broadcast operation before the parallel update
of F'. The load balance now depends on how F' is distributed and the structure of
the rows of A corresponding to coordinates in each C;. If we distribute = in the same
way as F' we must gather both z; and f;, i € C; before the sequential computation
of the a’s. We do this on processor 0 which then computes the values of a.

We now address how one can partition K into {C1,C>,...,C,} such that a;; =0
for all 4,57 € Cr, 1 < k < r. Construct the adjacency graph G(K) = (V, E) with
|[V| = |K| and an edge (4,) if and only if 4, j € K and a;; # 0. Then C; must consist
of coordinates whose vertices are non-adjacent in G(K). In other words they must
form an independent set. Partitioning the vertices of G(K) into independent subsets
reduces to the well known graph-coloring problem:

Given a graph G, color the nodes in G using as few colors as possible
under the restriction that no adjacent vertices are colored using the
same color.

If we order the number of colors used from 1 to , C; consists of the coordinates
whose corresponding vertices are colored with color i.

Computing the solution using the fewest colors is known to be NP-hard [4], it
is also difficult to find a solution that approximates the optimal solution well [7].
However, there exists a number of algorithms that run in linear time and produce
relatively good colorings [8].

The complete parallel algorithm is as follows:

Parallel Coordinate Relaxation
Calculate initial value of A\ and =
Repeat
Do s times
Find a set of candidates K

Perform a graph coloring on G(K)

For each color i:
Gather f; and z; j € C; on processor 0
Processor 0: For each e; € Cj
Calculate p, ¢, and «

6

Broadcast the values of «
Update F' and z with the coordinates in C}
End do
Lower threshold
Processor 0: Distribute p and ¢
Until convergence

Here s is the number of passes we make over the matrix before lowering the
threshold. Note again that the calculation of p, ¢, and @ must be carried out in a
sequential manner whereas finding candidates and updating F' can be carried out in
parallel.

4. Numerical Experiments. In this section we present results on applying the
parallel CR algorithm developed in Section 3 to problems from quantum mechanical
calculations. We first give a description of the test problems.

4.1. Test matrices. The eigenvalue problems that have been used to test the
algorithm are due to Rgeggen [14]. These problems arise in quantum mechanical cal-
culations of electron correlation energies in molecules using extended geminal models.
Rgeggen proposed using the sequential CR method for solving these and showed the
feasibility of this approach [13].

The test matrices we use are strictly diagonal dominant symmetric matrices where
a11 gives a good approximation of the smallest eigenvalue ;. The size of a matrix
A is specified through a parameter m. Each row and column of A is labeled by four
indices (i1, 142, j1,J2) where 1 < iy < i3 <m and 1 < j» < j; < m. Thus each element
of A is specified by two quadruples: (i1, 12, j1,J2), (11,5, j1,j5) giving the row and the
column indices of the element. An element of A is non-zero if and only if

(4.1) {iv,do} N {dy i} + o1, g2} 0 {d1, G2} > 2.

Let S = W Then the dimension of A is S? and the number of non-zero elements
is given by the polynomial f(m) = 1.25m°® — 6.75m> + 13.5m* — 11.75m> + 3.75m?.
The number of non-zeros in each column of A is m? — 17m + 5.

The matrix consists of S x S blocks each of size S x S. Each element of the same
block has the same initial coordinates (i1,2), (i],4%). The diagonal blocks are full. If
[{i1,i2} N{i}, 95} = 1 the block has the same element structure as the block structure
of A. If [{i1,i2} N {i},i5}| = 0 the block only contains diagonal elements.

For m = 8 this gives a matrix as shown if Figure 4.1. Here the block size S is 28,
the dimension of the matrix S? is 784, and the number of non-zeros is 156016.

The values of the non-zero elements of A are constructed from two tables h and ¢
giving respectively the one and two electron integrals. Let T' = %m(m +1). Then the
table t is of size T? and h of size T. Between 2 and 6 elements are taken from h and
t and summed to construct each a;;. It should be noted that although there is some
structure in how the elements of ¢ and h are accessed this is not sufficient to achieve
good memory locality when generating the columns of A.

4.2. Experimental results. All experiments have been performed on a Cray
Origin 2000 supercomputer with 128 MIPS R10000 processors. Each processor has 4
Mbytes of primary cache and 192 Mbytes of memory. Physically this is a distributed
memory computer but the operating system also supports shared memory execution.
We present results for two matrices, one with m = 38 and one with m = 68.

7

400

500 R

700

Fia. 4.1. Structure of A with m =8

For m = 38 and m = 68 the order of A is respectively 494209 and 5189284 and
contains on the order of 3 x 10° and 1.1 x 10*! non-zero elements. Storing A in a
compressed scheme requires 8 bytes for each floating point value and 4 bytes for its
row index. In addition one needs S? integers for the column pointers. Thus one
needs approximately 1.3 Terra bytes to store A in the case when m = 68. On todays
computers this is not feasible and A is therefore generated as needed.

When the algorithm starts the tables ¢t and h are copied to each processor. The
dimension of A is split into groups of S consecutive elements and assigned to the
processors in a round robin fashion. Each processor is then responsible for finding
candidates among its assigned columns of A and for updating the corresponding el-
ements of F' and z. In this way each processor gets blocks of consecutive elements
from F' and some reuse of index calculations and values from ¢ and h are possible.

When a set of candidates has been selected the structure of its adjacency graph
is given implicitly by their indices. Thus there is no need to construct and store the
entire graph prior to performing the graph coloring. For each vertex we mark the
colors of its adjacent vertices as used and search to see if there is any color available
or if a new color is needed. The way in which this search is performed can influences
issues such as load balancing and the number of colors used. We choose to perform
a linear search. Other schemes such as starting the search from a random point were
tried but this did not have any significant impact on the running time.

Two iterations of the algorithm are made before lowering the threshold. The
threshold starts at 1075 and is lowered by a factor of 10 down to 10715,

Tables 4.1 and 4.2 gives the execution time in seconds and the speedup of the par-
allel CR algorithm for the two matrices. The first column “Proc” denotes the number
of processors used, “Total” is the total time of the algorithm, while “Candidates”,
“Compute”, and “Color” gives the time needed for finding candidates, for updating
the solution, and for performing the graph coloring.

In Table 4.3 we display more detailed information about the case when m = 68 run
on 10 processors. Each row displays information about one iteration of the algorithm.

8

Proc. | Total | Speedup | Candidates | Compute | Color
1 162.4 1.0 14 157.7 0.6
5 40.7 4.0 0.9 39.1 0.7
10 19.8 8.2 0.4 18.6 0.7
20 12.3 13.2 0.2 11.3 0.8
30 9.2 17.7 0.1 8.2 0.9
40 8.9 18.2 0.1 7.9 0.9
TABLE 4.1

Ezecution times and speedup for m = 38.

Proc. | Total | Speedup | Candidates | Compute | Color
10 1027 1.0 3.9 1011 11.8
16 662 1.6 2.5 646 13.5
26 407 2.5 1.5 392 13.5
31 336 3.1 1.2 322 12.8
41 260 4.0 0.9 246 13.1
51 209 4.9 0.8 196 12.2
75 156 6.6 0.5 142 13.6
100 128 8.0 0.4 113 14.8

TABLE 4.2

FEzecution times and speedup for m = 68.

The column labeled “|K|” gives the number of candidates in each iteration, “nonz”
gives the number of edges in the adjacency graph G(K), and “Max deg” the maximum
degree of any vertex in G(K). “Col Time” and “Compute” gives the time spent on
coloring and updating F' in each iteration, “Colors” gives the number of colors used,
and A shows the development of the desired eigenvalue.

For m = 68 the number of candidates in each iteration increases from 200 up to
210000. The total number of candidates found over all iterations is just over 700000.
These numbers vary slightly with the number of processors used. Note that this is
approximately 14 % of the dimension of A. The parallel and sequential algorithms
both produce the same answer. For m = 68 the difference between the sequential
solution and the parallel one was never more than 2 x 107'% and the number of
candidates found differ by less than 2 %.

As can be seen from Tables 4.1 and 4.2 almost all of the time is spent updating
F. The time to calculate the values of « and spreading them around is insignificant
compared to the time needed to do the updates. The algorithm scales fairly well in
the case when m = 68. For m = 38 the speedup is hampered by the lack of work as
the number of processors increases.

For each color the time spent updating F' is dominated by the processor with the
most work. In the case of m = 68 on 10 processors a perfect load distribution would
have resulted in an additional speedup of approximately 18 %.

The main obstacle to performing the update of F' more efficiently is the unstruc-
tured memory references in ¢ when generating A;. Note that this is not an effect of
the CR method but fundamental to the specification of A.

To compare the CR algorithm with other methods we have used ARPACK [10]
to solve the eigenvalue problem. ARPACK is an implementation of the implicitly

9

Sizes and times for m = 68 run on 10 processors

|K| nonz Max deg | Col Time | Colors | Compute A
232 7626 78 0.01 61 0.35 -7.6541875434878532
18 42 6 0.00 6 0.03 -7.6561355264945705
751 69325 750 0.02 190 1.09 -7.6818445199279886
42 262 20 0.01 19 0.08 -7.6823068415640785
1077 117908 555 0.02 228 1.53 -7.6864848434976496
41 262 24 0.01 15 0.07 -7.6865343557708634
1979 159847 1023 0.03 257 2.83 -7.6871480107658794
202 1412 48 0.01 17 0.31 -7.6871714818722117
15248 | 2339389 922 0.14 225 22.51 -7.6875980661644352
1224 18314 150 0.01 32 1.81 -7.6876133224398302
51164 | 14037455 1257 0.61 305 73.77 -7.6877872855141725
2768 66972 385 0.02 87 4.20 -7.6877910195333827
90980 | 31859150 1391 1.27 328 128.40 | -7.6878243771514958
4193 112720 466 0.02 107 6.26 -7.6878249335847650
132099 | 54061398 1440 2.05 348 184.26 | -7.6878298362686373
6616 203923 512 0.03 116 9.75 -7.6878299196455533
179214 | 87415369 1563 3.25 389 246.65 | -7.6878306053042396
9346 339152 500 0.05 119 13.68 -7.6878306171439403
217718 | 119863154 1611 4.36 390 297.14 | -7.6878307015535938
10821 414196 461 0.06 109 15.63 -7.6878307028821737

TABLE 4.3

re-started Arnoldi iteration available through Netlib. To use this one must supply
a matrix-vector multiplication routine for computing y = Az where z is supplied
by the package. For large A almost all the computation is spent on this matrix
vector product. This computation also lends itself well to parallelization. Initial tests
showed that the method did not converge. As suggested by Morgan and Scott [12] we
instead applied the algorithm to the preconditioned system L—!(A — AI)L~T where
A is the current estimate of the eigenvalue and M = LLT is the diagonal of A — AI.
With this approach the algorithm converged but only after performing more than 50
matrix-vector multiplications. Even if the matrix-vector operations were performed
in parallel this took significantly longer time than the sequential CR method.

We have also implemented the sequential CR, method and parallelized the up-
dating of F' through the use of shared memory. This did not show any significant
speed-up. We believe this is due to the fact that the elements of A; are not generated
in row order but in a more unstructured manner. Thus two processors might try to
update elements of F' that are close enough to be on the same cache-line in memory
and thus cause communication.

5. Conclusion. Through some restructuring of the CR algorithm and the use
of a graph coloring algorithm we developed a parallel version of the CR algorithm.
Experimental results on very large problems from quantum mechanics showed that
the algorithm scaled well as more processors were applied.

The close similarity between the CR algorithm and the Gauss-Seidel algorithm
is to a somewhat lesser extent also reflected in parallel implementations of the two
algorithms. Koester et. al. [9] presented a parallel Gauss-Seidel algorithm for sparse

10

matrices based (partly) on performing a graph coloring of the matrix. They showed
that computations associated with one color can be performed in parallel. This is
similar to the presented algorithm. However, the graph coloring is part of a larger re-
ordering step that is only performed initially before the computation starts. Moreover
this reordering step takes significant longer time than the numerical solution itself.
Thus the time must be amortized over many computations with the same structure.

It is fairly expensive to generate the elements of A since the access of t and h is
not done in a systematic enough way. This is typical for these types of problems [2].
Thus performing the updates of F' takes sufficiently long time to justify performing
the graph coloring in each iteration of the algorithm. If the matrix A had been directly
available the graph coloring would most likely have taken a more significant amount
of the total time. In this case it would have been possible to try and use a parallel
graph coloring algorithm [1, 5]. This was not pursued as the relative time spent on
the graph coloring compared to the updating of F' is small.

If t and h are large making a separate copy for each processor might require
to much memory. It is conceivable that one could design an algorithm where only
one copy of ¢t and h is used by all the processors. These would then be stored in
a distributed fashion and shared either by making explicit request for elements or
through the use of shared memory. However, this would most likely decrease the
performance of the algorithm.

The success of the CR method depends on being able to ignore updates that
contribute insignificantly to the solution. If this approach could be used in other
methods then these might be able to compete with the CR method on the type of
problems that were used in the present work.

6. Acknowledgment. The author thanks Inge Rgeggen and Tor Sgrevik for
constructive comments and discussions.
REFERENCES
[1] J. ALLWRIGHT, R. BORDAWEKAR, P. D. CODDINGTON, K. DINCER, AND C. MARTIN, A compar-

ison of parallel graph coloring algorithms, Tech. Report NPAC technical report SCCS-666,
Northeast Parallel Architectures Center at Syracuse University, 1994.

[2] E. R. DAVIDSON, Super-matriz methods, Computer Physics Communications, (1988), pp. 49-60.
[3] D. K. FADDEEV AND V. N. FADDEEVA, Computational Methods of Linear Algebra, W. H. Free-
man and Co., San Francisco, CA., 1963.
[4] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, Freeman, 1979.
[5] R. K. GJERTSEN JR., M. T. JONES, AND P. PLASSMAN, Parallel heuristics for improved, balanced
graph colorings, J. Par. and Dist. Comput., 37 (1996), pp. 171-186.
[6] G.H. GoLuB AND C. F. V. LoAN, Matriz Computations, North Oxford Academic, 2 ed., 1989.
[7] M. HALLDORSSON, A still better performance guarantee for approzimate graph coloring, Inf.
Proc. Letters, (1993), pp. 19-23.
[8] M. T. JoNES AND P. PLASSMAN, A parallel graph coloring heuristic, SIAM J. Sci. Comput.,
(1993), pp. 654-669.
[9] D. P. KOESTER, S. RANKA, AND G. Fox, A parallel gauss-seidel algorithm for sparse power
system matrices, in Proceedings of Supercomputing ’94, 1994, pp. 184-193.
[10] R. B. LEHOUCQ, D. SORENSEN, AND P. Vu, ARPACK: An implementation of the implicitly
re-started Arnoldi iteration that computes some of the eigenvalues and eigenvectors of a
large sparse matriz. Available from netlibQornl.gov under the directory scalapack, 1996.
[11] F. MANNE, A parallel algorithm for computing the extremal eigenvalues of very large sparse

matrices (extended abstract), in proceedings of Para98, Workshop on Applied Parallel
Computing in Large scale scientific and Industrial Problems, vol. 1541, Lecture Notes in
Computer Science, Springer, 1998, pp. 332-336.

[12] R. B. MORGAN AND D. S. ScOTT, Preconditioning the Lanczos algorithm for sparse symmetric
eigenvalue problems, SIAM J. Sci. Comput., 14 (1993), pp. 585-593.

11

[13] I. RPEGGEN. Private communications.

[14] I. ROEGGEN AND P. A. WIND, Electron correlation, extended geminal models, and intermolec-
ular interactions: Theory, J. Chem. Phys., (1996), pp. 2751-2761.

[15] A. RUHE, SOR-methods for the eigenvalue problem with large sparse matrices, Math. Comp.,
28 (1974), pp. 695-710.

[16] H. R. SCHWARZ, The method of coordinate overrelazation for (A — AB)z = 0, Numer. Math.,
(1974), pp. 135-151.

[17] I. SmAvITT, C. F. BENDER, A. PIPANO, AND R. P. HOSTENY, The iterative calculation of several
of the lowest or highest eigenvalues and corresponding eigenvectors of very large symmetric
matrices, Journal of Computational Physics, (1973), pp. 90-108.

12

