
REDUCING THE HEIGHT OF AN ELIMINATION TREE THROUGHLOCAL REORDERINGSFREDRIK MANNEAbstract. Finding low elimination trees is important in parallel Cholesky factorization. We lookat two orderings for achieving low height, Nested Dissection and Maximal Independent Subset, andshow that in general they will not give a minimum height elimination tree. A more general version ofNested Dissection called Minimal Cutset orderings is shown to always contain an ordering that givesa minimum height elimination tree for an arbitrary graph. From this we design the Minimal Cutsetalgorithm for reducing the height of a given elimination tree. This algorithm is compared with analgorithm using tree rotations by Liu and an algorithm that reorders chains by Hafsteinsson. Weshow that none of the three algorithms is strictly better than any of the other. Finally we show thatall three algorithms are members of a more general class of algorithms that depend on a commonresult on how elimination trees can be restructured.Key words. elimination tree, nested dissection, maximal independent set, minimal cutset,sparse matrix computationsAMS(MOS) subject classi�cations. 65F501. Introduction. The problem of �nding a minimum height elimination tree ismotivated from solving a large sparse symmetric positive de�nite linear system of theform Ax = b using parallel Cholesky factorization where A is an nn matrix. Variousalgorithms for doing this exist (Liu [9] and Hafsteinsson [4]). They all have in commonthat their speed depends on the height of the elimination tree of A. However it isknown that this problem is NP-hard (Pothen [12]).The other important parameter for Cholesky factorization is the amount of �llin the Cholesky factor L. It is also known that minimizing this quantity is NP-hard(Yannakakis [13]).Various heuristics for achieving a low elimination tree have been proposed. Theyare centered around two directions: The �rst is to use a method that gives low heightwithout concern about the amount of �ll, such as Nested Dissection (Leiserson et al.[7]). The second is to start with an ordering that gives low �ll and then to �nd anordering that gives a low elimination tree without increasing the amount of �ll (Liu[8]).In this paper we look at two aspect of the minimum height problem. First weidentify a class of orderings that are shown always to contain an ordering which givesa minimum height elimination tree.From this result we then design an algorithm for reducing the height of an elimi-nation tree. This algorithm is compared with two existing algorithms for this problem.Finally, we show that all three algorithms are variations on how a general result forreordering elimination trees can be applied.2. Elimination Trees and Notation. In this section we present how the elim-ination tree of A is constructed and how it relates to sparse Cholesky factorization.We also present some graph notation which might be unfamiliar to the reader. Forreaders who would like a more thorough introduction to elimination trees and theirnotation see Liu [9].The adjacency graph G of A is formed by taking n nodes and adding an edge (i; j)for each ai;j 6= 0, i < j. The �lled graph G� of G is found by the following method:Set all nodes unmarked and iterate the following step n times: Select an unmarkednode v and add edges to G such that all unmarked neighbors of v are adjacent (i.e.the unmarked neighbors form a clique), and then mark v.1

The graph G� is the adjacency graph of L+LT where L is the Cholesky-factor ofA. We call the ordering in that we select the nodes when forming G� an eliminationordering.The elimination tree T of G is de�ned as follows: Node j is the parent of node i(j > i) in T i� j is the lowest numbered among the higher numbered neighbors of iin the �lled graph G� (i is a child of j). If � is the elimination ordering that gives G�we will denote its elimination tree by T�.The elimination tree T describes the dependencies between the columns of thematrix A during Cholesky factorization (Liu [9]). If node i is a descendant of node jin T when factoring A, column i of L has to be computed before column j Thus theheight of the elimination tree gives a limit on how fast we can factor A if we computeas many rows in parallel as possible.The following graph notation will be used in this paper:We denote the edge set of a graph G by E(G), and the vertex set by V (G). If Bis a set of nodes G�B. is the induced graph of G containing all nodes not in B.A cutset C is a set of nodes in G such that G�C contains at least two components.T [x] denotes the subtree of T induced by x and all its descendants in T ; x is theroot of this subtree. A chain v; :::; w is a path in T such that each node with theexception of the lowest node v has exactly one child. If v has no children v is a leaf.A chain is lowest if the lowest node is a leaf in T .If x is on the path y; :::; root(T) in T we say that y is a descendant of x, and x isan ancestor of y. If y is neither an ancestor nor a descendant we say that x and y areunrelated. A proper descendant/ancestor of x is an descendant/ancestor of x otherthan x itself.The root of an elimination tree T is denoted by root(T). The height of a node xin T is denoted by h(x). The height of an elimination tree is the height of root(T)and is denoted by h(T) The parent of a node x in T is denoted by p(v). We de�nep(root(T)) = root(T).Let x be a node in G. We then denote all nodes adjacent in G to x other than xitself by adj(x). If S is a set of nodes we denote all nodes in V (G)� S adjacent in Gto nodes in S by adj(S).A chordal graph is a graph which doesn't contain any cordless cycles of lengthmore than 3. A simplicial node x is a node such that adj(x) is a clique.3. Nested Dissection and Maximal Independent Set. In this section welook at two heuristics, Nested Dissection and Maximal Independent Set, for �ndingorderings on a graph which give low elimination trees. We will see how they relate tothe minimum height problem.In order to get a "low" elimination tree we need to have a tree with branching. Wetherefore �rst show a necessary and su�cient condition for two nodes to be unrelatedin T . To do this we need two results from Liu [9], which we state here without proof.If G is a graph with elimination tree T then the following facts are true:Fact 1. For any node x in T the nodes in T [x] induce a connected component ofG. Fact 2. If (x; y) 2 E(G�) and x < y then node x is a descendant of node y inT . This allows us to show the following result:Theorem 3.1. Let G be a graph with elimination tree T , and let x and y be twodistinct nodes in V (G) such that x; y 6= root(T). Let z be the lowest common properancestor of x and y in T , and let C be the set of all nodes on the path z; :::; root(T)2

in T . Then x and y are unrelated in T i� C is a cutset in G such that x and y arein di�erent components of G� C.Proof. Let s be the child of z such that x 2 T [s]. We know from Fact 1 that thenodes in T [s] induce a connected component G0 of G.) 1 Since adj(G0) � C (Fact 2) and y 62 C it follows that y 62 adj(G0). We knowthat y 62 G0; adj(G0) must therefore be a cutset between x and y in G.(Because G0 is connected we know that y 62 T [s]. It follows that s and y mustbe unrelated in T and therefore also x and y.Note the following consequence of Theorem 1: if v is an ancestor of z in T thenx and y are unrelated in T i� the nodes on the path z; :::; v in T induce a cutset inthe subgraph of G induced by the nodes in T [v].Nested Dissection is a top down algorithm where one �rst identi�es and removesa cutset from G. The nodes in the cutset are ordered last. This process is thenrepeated recursively for each remaining component. This guarantees that nodes indi�erent remaining components at each stage are unrelated in T and that at least onenode in each cutset has two or more children in T . Each cutset is chosen in such away that the largest remaining component includes no more than bcnc nodes for someconstant c, 0 < c < 1, where n is the number of remaining nodes. We shall call suchan elimination ordering for a cn-Nested Dissection ordering.It can be shown that if G and its subgraphs have separators of size s such that nocomponent is larger than cn where c is some constant, then we can always �nd a NestedDissection ordering that gives an elimination tree of height O(slogn) (Bodlander et.al [1]). In [7] Leiserson and Lewis give experimental results from applying a NestedDissection algorithm to a collection of matrices from the Harwell-Boeing collection [2].However, as we shall see no Nested Dissection ordering will give a minimum heightelimination tree for every graph.Consider the graph G in Figure 1. We have shown the two elimination treescorresponding to the following two elimination orderings: � = fa; b; c; d; f; e; h; i; ggand � = fa; b; h; i; c; d; g; d; fg.
G

c d e f g

a b

h

i

h

g

a ie

f

b

d

c

Tα

d

f

a eci

g

b h

Tβ

Fig. 1.As seen from Figure 1, � gives a minimum height elimination tree, while � isordered after a Nested Dissection ordering. If we add nodes to G that are onlyadjacent to g we still have to eliminate e or f last in order to get a minimum heightelimination tree. From this we see that for any given value of c, we can add nodeswhich are only adjacent to g such that the component of G � f containing g, hasmore than cn nodes. Thus we see that no cn-Nested Dissection ordering will give aminimum height elimination tree for an arbitrary graph.1 In Liu gives a proof of the) part of Theorem 1.3

Maximal Independent Subset is a greedy algorithm where one chooses a maximalindependent set of nodes S1 (i.e. if v; w 2 S1, (v; w) 62 E(G)) and orders �rst. Foreach pair x; y 2 S1 the nodes in G�S1 will be a cutset. This guarantees that exactlythe nodes in S1 will be leaves in T . The process is repeated (recursively) after adding�ll edges to G so that for each x 2 S1 adj(x) is a clique. Gilbert et al. [3] presentan implementation of the Maximal Independent Set algorithm on the ConnectionMachine.As it turns out Maximal Independent Set does not in general give a minimumheight elimination tree no matter how we choose Si at each stage of the algorithm.To see this look at the graph and the elimination tree in Figure 2.
G T

a b c

d

e f

kjihg

i

j

a

b

k

e

fd

h

cgFig. 2.The only elimination ordering that achieves minimum height 3 is given by choosingS1 = fa; c; d; f; g; kg as leaves in T . But this is not a maximal independent set since nonode adjacent to i is chosen. Thus we see that no Maximal Independent Set orderingwill give a minimum height elimination tree for an arbitrary graph.Maximal Independent Set is a generalization of an algorithm for �nding low elim-ination trees for chordal graphs by Jess and Kees [6]. At each stage in their algorithmone selects a maximal independent set of simplicial nodes and eliminate. It has beenshown (Liu [8]) that for chordal graphs this algorithm give the lowest possible elim-ination tree over all orderings that does not increase the number of �ll edges. It ishowever easy to see that the Jess and Kees algorithm does not produce a minimumheight elimination tree for an arbitrary chordal graph if we allow �ll edges. Considera straight line of 2k � 1 nodes. It has minimum height k � 1, but the lowest tree onecan get without increasing �ll has height 2k�1 � 1.4. Minimal Cutset Orderings. A Minimal Cutset ordering is an eliminationordering where one removes a minimal cutset C from G and order it last (with noconstraint on the size of the components of G � C). This is repeated (recursively)until all remaining component are cliques in G. It is easy to show that each minimalcutset C will be a non-lowest maximal chain in T and that C will induce a clique inG�. We will now show that for an arbitrary graph G with elimination tree T thereexists an elimination ordering � such that the following two conditions are met: (1)� is given by a Minimal Cutset ordering. (2) h(T�) � h(T).We give a proof by induction on the number of nodes in G. Let G be a graphwith elimination tree T . If jV (G)j � 2 the hypothesis is trivially true. Assume nowthat jV (G)j = n > 2 and that the induction hypothesis holds for jV (G)j < n. Thereare two cases to consider:1. T is a chain. If G is a clique we are done. If G is not a clique then there mustexist some minimal cutset C in G. We eliminate C last in any order. By the4

induction hypothesis there exists an elimination order �i on each componentof G � C such that the result is true. Our elimination ordering will now beany ordering that preserves the order within each �i and with C last.2. T is not a chain. Let K be the uppermost maximal chain in T . Note �rstthat reordering the nodes in K will not increase the height of the eliminationtree. Since K is a cutset it must contain a minimal cutset C. Reorder K sothat the nodes in C are ordered last and the nodes in K�C second last. T .eheight of the elimination tree has not increased and a minimal cutset is noweliminated last. The result now follows by the induction hypothesis.Since our claim holds true for every ordering onG we are able to state the followingresult:Theorem 4.1. Let G be an arbitrary graph. Then there exists a Minimal Cutsetordering on G that gives an elimination tree of minimum height.5. The Minimal Cutset Algorithm. We will now show how the result fromTheorem 2 can be utilized to design an algorithm for reducing the height of an elim-ination tree. We will design an algorithm that takes any elimination ordering andreorders it into a Minimal Cutset ordering giving an elimination tree of the same orlower height. To do this we �rst need the following fact from Liu [9]:Fact 3. Let G be a graph with elimination tree T . A node x 2 V (G) is adjacentin G� to exactly those of its ancestors in T that the nodes in T [x] are adjacent to inG. First we look at the case when the elimination tree is not a chain. Let G be agraph with elimination tree T and letK be the set of nodes in the uppermost maximalchain in T . The new elimination ordering � is the same as the one we had originallyexcept that we have interchanged the relative order among the nodes in K. Thisensures that the height of the new elimination tree does not increase.Let x 62 K be a child of a node in K such that h(x) is maximal among all suchnodes. Then we know from Fact 3 that x is adjacent in G� to all the nodes in Kwhich the nodes in T [x] are adjacent to in G. We call this set of nodes B. It followsthat B is a cutset in G. We now �nd a component R of G � B which is adjacent inG to the fewest nodes in B. The subset of B that R is adjacent to is denoted by C.Each component of G� B which is adjacent in G to a node in B � C is in the samecomponent of G�C as both x and B �C. It follows that each component in G�Cis adjacent in G to each node in C. C must therefore be a minimal cutset in G.
G

B

C

x

RFig. 3.The nodes in K are now permuted so that we �rst eliminate the nodes in K �Bfollowed by the nodes in B�C and C while maintaining the relative order among thenodes in each group. This ensures that a minimal cutset is eliminated last and that5

the height of the elimination tree does not increase. The e�ect on T is that the nodesin T [x] have now been moved jKj � jBj places closer to the root.This process can be performed in two steps: First we eliminate the nodes in Blast. This way we can identify the nodes in C by �nding a node y 62 B such thatp(y) 2 B and so that y is adjacent in G� to the fewest nodes in B among all suchnodes. We then set C equal to the nodes in B that y is adjacent to in the current G�.Finally we rearrange the nodes in B so that the nodes in C are eliminated last.We can now remove C and all edges incident to it from G and T , and repeat theprocess for each remaining component. When this is done each maximal non-lowestchain v; :::; w will induce a minimal cutset in the subgraph of G induced by the nodesin T [w].It remains to show how each maximal lowest chain in T which does not induce aclique in G, can be reordered into a Minimal Cutset-ordering such that the height ofthe elimination tree is not increased.Assume that G is not complete and that h(T) = n � 1. Then reordering thenodes cannot increase the height of T . Since G is not a clique there exists at leastone node x which is not adjacent to all other nodes in G. The nodes in K = adj(x) isa cutset in G. We eliminate the nodes in K last and the nodes in V (G) �K secondlast. Some node in K must now have at least two children, and we can proceed as forthe maximal non-lowest chain.This method can be applied recursively to each maximal lowest chain in T untilall lowest chains are cliques in G. We thus see that this algorithm which we willcall the Minimal Cutset-algorithm, will �nd a Minimal Cutset ordering for any graphwithout increasing the height of the elimination tree.Figure 4 shows an example of how the algorithm works. We start with the elim-ination ordering b; d; f; c; a; e. The topmost maximal chain is c; a; e and we choosex = d. This gives B = fa; cg which we order last. We then set y = e or f and getC = c which is ordered last. We now have a lowest chain b; d; a which is reordered sothat b is eliminated last.
G

a

c d

b

e f

T

b

d

c

f

a

e c

fb e

a d

c

f

d

a e

b

c

f

b

d

a

e

Fig. 4.The height of the elimination tree is now reduced from 4 to 2.6. Tree Rotations and Chain Reorderings. We will now study two algo-rithms for reducing the height of an elimination tree by respectively Liu [8] andHafsteinsson [4] and see how they compare with the Minimal Cutset algorithm.Liu's algorithm performs local rotations in the elimination tree that do not in-crease the number of �ll edges. The algorithm is based upon the following idea:Let x be a node such that its ancestors in T induce a clique in G� and let K bethe ancestors of x which are adjacent to x in G� and B the ancestors which are notadjacent to x in G�. We now restructure the nodes in K and B so that the nodes in6

K are ordered last and the nodes in B second last while keeping the relative orderamong nodes in the two groups. The rest of the ordering is kept as it is.Since K is a cutset between x and B it follows that x and B are unrelated inthe new elimination tree and that T [x] has moved jBj places closer to the root of theelimination tree.The algorithm is as follows:y = a deepest leaf in TFor each x on the path root(T); :::; y in TIf x is not adjacent i G� to all of it's ancestors in Tthen if Restructure(x) makes T lowerthen Restructure(x)else HaltFigure 5 shows an example of how the algorithm works. We set y = 1 and performRestructure(2). This reduces the height of the elimination tree from 3 to 2.
1

53

2

4

1

2

3

5

4

3

4

5

1

2

G T

Fig. 5.Hafsteinsson's algorithm reorders each maximal chain v; :::; w = K in T which isnot a clique in G�. It works by selecting the topmost node x 2 K that is not adjacentin G� to all other nodes from K and by eliminating x �rst while keeping the rest ofthe ordering as it is. Let y 2 K be the highest node not adjacent to x in G�. Itfollows that the ancestors of y are now a cutset between x and y in G and that x isa leaf with p(x) = p(y). This process is continued until all chains in T are cliquesin G�. Figure 6 shows an example of Hafsteinsson's algorithm. We have 3 maximalchains in T but only 1,2,3 is not a clique in G�. Setting x = 2 and reordering thischain gives an elimination tree of height 2.
G

61 2 3 5 4

T

1

2

3

6

5

4

6

4

52

1 3Fig. 6.We now show that none of the algorithms is strictly better than any of the others.Note �rst that the only algorithm that has any e�ect on the original elimination treein Figure 4 is the Minimal Cutset algorithm. Similarly the only graph that has any7

e�ect on the graph in Figure 5 is Liu's. Finally, Liu's algorithm has no e�ect onthe graph in Figure 6 and the Minimal Cutset algorithm cannot produce as low anelimination tree as Hafsteinsson's algorithm on the graph in Figure 7. In Figure 7, ashows the initial elimination tree with double lines indicating a chain of consecutiveordered nodes, b shows the elimination tree after applying Hafsteinsson's algorithmand c shows the elimination tree after applying the Minimal Cutset algorithm.
G

5

6

78 9 1 4 3 2

10

11

1

4

3

2

11

T

a

5

6

7

8

9

1

4

3

2

10

11

b

5

6

7 8

9

1

4

3

2 10

11

cFig. 7.7. A New Class. In this section we show a general result on how eliminationtrees can be reordered. It turns out that the three algorithms studied in the previoussection are all based on special cases of this general result.Theorem 7.1. Let G be a graph with elimination ordering � and eliminationtree T�. Let x; y 2 V (G) be such that y is an ancestor of x in T� and (x; y) 62 E(G��).Then there exists a permutation of the nodes on the path x; :::; y in T� such that exactlyy is removed from the ancestors of x.Proof. Let v be the highest node on the path x; :::; y in T� such that (v; y) 62E(G��). We can assume that the nodes on the path v; k1; k2; :::; kr; y in T� are elimi-nated in consecutive order and that the nodes in the subtrees hanging from this pathare eliminated before v. This will not a�ect the structure of T� nor the �ll in G��. Wecreate a new elimination order � by eliminating y just before v while maintaining therelative order among the rest of the nodes.Since y has no edges in G�� to nodes in T�[v] it follows that K = k1; k2; :::; kr andthe ancestors of y in T� induce a cutset between y and v in G, and that v and y mustbe unrelated in T�. The structure of T� is described by the following observations:1. Since only the order among the nodes in K[y is altered the structure of eachsubtree in T� �K � y remains unchanged.2. Since v; k1; k2; :::; kr�1 are eliminated in consecutive order in � and each nodeis adjacent to the next in G�� it follows that p(v) = k1 and that p(ki) = ki+1,0 � i < r, in T� . If p(y) 6= root(T�) let z = p(y) in T�. Then there is somenode in T�[y] that is adjacent to z in G. This node will be a descendantof kr in T�. It follows that (kr; z) 2 E(G��) and that p(kr) = z in T� . Ify = root(T�) then kr will be the root of T� since kr is now eliminated last.3. Let w be a node such that w 62 K and p(w) 2 K in T�. If (w; y) 2 E(G��)then p(w) = y in T� else if (w; y) 62 E(G��) then p(w) remains unchanged inT�. 8

4. If (k1; y) 62 E(G) there must be some child w of k1 in T� such that (w; y) 2E(G��) and therefore also in E(G��). In T� the node w will be a child of y.Thus (y; k1) 2 E(G��) and it follows that p(y) = k1 in T� .
T z

k

y

v

x

k

r

1

α z

y

kr

k1

v

x

Tβ

Fig. 8.From observations 1 to 4 it follows that the path x; :::; root(T�) remains unchangedin T� except that y has now been removed.We can view the process used in the proof of Theorem 3 in the following way:After we have selected x and y we move y downwards in T until it folds out to theside. We will now show that the three algorithms from the previous section consist ofrepeated applications of this result.First consider the Minimal Cutset algorithm. Note that in both steps (selectinga cutset and making it minimal) of the reordering of a non-leaf chain in the MinimalCutset algorithm we select a set of related nodes (K�B and B�C) which are removedfrom the ancestors of some node (x and y). The reordering step can be viewed as ifthe nodes in each set are moved down one at a time until they fold out starting withthe lowest node �rst just like in the proof of Theorem 3.In Liu's algorithm the reordering step consists of selecting a set of nodes B whichare not adjacent to some node x on a longest path in T . In the same way as for theMinimal Cutset algorithm these nodes are moved down starting with the lowest node�rst, until they fold out.Hafsteinsson's algorithm is just an application of Theorem 3 with the restrictionthat the path from x to y in T must be a maximal chain.We thus see that the algorithms di�er as to the strategy by which the nodes tobe folded out are selected.When applying the result from Theorem 3 it is not true that the height of theelimination tree always decreases. This is still not true even if we select x on a longestpath in T and fold out an ancestor y of x which is not adjacent to x in G�. This is sobecause on its way down y will pull with it all subtrees that are hanging on the pathx; :::; y in T that are adjacent to y in G� (observation 3 in Th. 3). These will nowbe further down in the elimination tree than before. If w is a node hanging from thepath p(v); :::; y in T with (w; y) 2 E(G�) and if h(w) � h(v) then the height of theelimination tree does not decrease. We can, however, continue recursively to reorderT [y] in the new elimination tree and try to make it lower.None of the algorithms uses the result of Theorem 3 to its full extent for reducingheight. In order to see this look at the graph in Figure 9. None of the three algorithmsgives a lower elimination tree. Node 9 is not adjacent to node 2 inG�. We can thereforemove node 9 down until it folds out and in doing so produce a lower elimination tree.9

4

1

3

2

8

9

7

6

5

T

4

1

3

2

9

8

76

5

G

6

7

8

9

1 5 43

2

Fig. 9.Di�erent ways of selecting the nodes to be folded out can lead to other algorithms.Let x be a node on a longest path in T . Other choices might be:1. Fold out the lowest/highest eligible node.2. Fold out the node that has to be moved the shortest distance.3. Fold out the node that is closest to the root after having been folded out.8. Conclusion. We have shown that Nested Dissection and Maximal Indepen-dent Subset give potentially low elimination trees but not necessarily of minimumheight. We have also introduced a more general class of elimination orderings calledMinimal Cutset orderings and shown the existence of a Minimal Cutset ordering thatgives a minimum height elimination tree for an arbitrary graph.This result is useful since it tells us that it is only necessary to remove minimalcutsets when doing Nested Dissection on a graph in order to get a low eliminationtree. It can also be helpful when designing algorithms for �nding minimum heightelimination trees for special classes of graphs. One such an algorithm for trees isshown by the author in [11].We then compared the algorithms proposed by Liu and Hafsteinsson with theMinimal Cutset algorithm and showed that none of these is strictly better than anyof the others. Finally, we showed that these three algorithms are members of a class ofalgorithms that depend on a general result on how elimination trees can be reordered.Bodlander et al. [1] has shown that an approximation algorithm for �nding cutsetscan be used to �nd an elimination tree which is at most of height log2n times theminimum. It would be interesting if one could �nd orderings which at the same timekeep the amount of �ll low and also gives a low elimination tree. If one is to achievea low elimination tree there cannot be too much �ll in G� since it would increase thedependencies among the nodes and prevent branching. Heggernes [5] has shown thatgiven a partition of a graph into minimal cutsets �nding the minimum �ll orderingreduces to a local problem for each, but unfortunately these problems still remainNP-hard.9. Acknowledgments. The author thanks Professor Bengt Aspvall for encour-agement and guidance during the work with [10] where most of the results of thispaper were �rst presented.
10

REFERENCES[1] H. L. Bodlander, J. R. Gilbert, H. Hafsteinsson, and T. Kloks, Approximating treewidth,pathwidth and minimum elimination tree height, Tech. Report CSL-90-10, Xerox Palo AltoResearch Center, 1991.[2] I. Duff, R. Grimes, and J. Lewis, Sparse matrix test problems, ACM Transactions on Math-ematical Software, 15 (1989), pp. 1{14.[3] J. R. Gilbert and R. Schreiber, Highly parallel matrix reordering and symbolic factorization.In preparation, 1991.[4] H. Hafsteinsson, Parallel Sparse Cholesky Factorization, PhD thesis, Cornell University, 1988.[5] P. Heggernes, Reducing the �ll-in size for an elimination tree. University of Bergen, Norway,In preparation, 1991.[6] J. A. G. Jess and H. G. M. Kees, A data structure for parallel LU decomposition, IEEETransactions on Computers, C-31 (1982), pp. 231{239.[7] C. E. Leiserson and J. G. Lewis, Orderings for parallel sparse symmetric factorization.Unpublished manuscript, 1988.[8] J. W. H. Liu, Reordering sparse matrices for parallel elimination, Parallel Computing, 11(1989), pp. 73{91.[9] , The role of elimination trees in sparse factorization, SIAM Journal of Matrix Analysisand Applications, 11 (1990), pp. 134{172.[10] F. Manne, Minimum height elimination trees for parallel Cholesky factorization, master'sthesis, University of Bergen, Norway, 1989. (In Norwegian).[11] , An algorithm for computing a minimum height elimination tree for a tree, Tech. ReportCS-91-59, University of Bergen, Norway, 1992.[12] A. Pothen, The complexity of optimal elimination trees, Tech. Report CS-88-13, PennsylvaniaState University, 1988.[13] M. Yannakakis, Computing the minimum �ll-in is NP-complete, SIAM Journal of Algorithmsand Discrete Methods, 2 (1981), pp. 77{79.

11

