REDUCING THE HEIGHT OF AN ELIMINATION TREE THROUGH
LOCAL REORDERINGS

FREDRIK MANNE

Abstract. Finding low elimination trees is important in parallel Cholesky factorization. We look
at two orderings for achieving low height, Nested Dissection and Maximal Independent Subset, and
show that in general they will not give a minimum height elimination tree. A more general version of
Nested Dissection called Minimal Cutset orderings is shown to always contain an ordering that gives
a minimum height elimination tree for an arbitrary graph. From this we design the Minimal Cutset
algorithm for reducing the height of a given elimination tree. This algorithm is compared with an
algorithm using tree rotations by Liu and an algorithm that reorders chains by Hafsteinsson. We
show that none of the three algorithms is strictly better than any of the other. Finally we show that
all three algorithms are members of a more general class of algorithms that depend on a common
result on how elimination trees can be restructured.

Key words. elimination tree, nested dissection, maximal independent set, minimal cutset,
sparse matrix computations

AMS(MOS) subject classifications. 65F50

1. Introduction. The problem of finding a minimum height elimination tree is
motivated from solving a large sparse symmetric positive definite linear system of the
form Az = b using parallel Cholesky factorization where A is an nn matrix. Various
algorithms for doing this exist (Liu [9] and Hafsteinsson [4]). They all have in common
that their speed depends on the height of the elimination tree of A. However it is
known that this problem is NP-hard (Pothen [12]).

The other important parameter for Cholesky factorization is the amount of fill
in the Cholesky factor L. It is also known that minimizing this quantity is NP-hard
(Yannakakis [13]).

Various heuristics for achieving a low elimination tree have been proposed. They
are centered around two directions: The first is to use a method that gives low height
without concern about the amount of fill, such as Nested Dissection (Leiserson et al.
[7]). The second is to start with an ordering that gives low fill and then to find an
ordering that gives a low elimination tree without increasing the amount of fill (Liu
).

In this paper we look at two aspect of the minimum height problem. First we
identify a class of orderings that are shown always to contain an ordering which gives
a minimum height elimination tree.

From this result we then design an algorithm for reducing the height of an elimi-
nation tree. This algorithm is compared with two existing algorithms for this problem.
Finally, we show that all three algorithms are variations on how a general result for
reordering elimination trees can be applied.

2. Elimination Trees and Notation. In this section we present how the elim-
ination tree of A is constructed and how it relates to sparse Cholesky factorization.
We also present some graph notation which might be unfamiliar to the reader. For
readers who would like a more thorough introduction to elimination trees and their
notation see Liu [9].

The adjacency graph G of A is formed by taking n nodes and adding an edge (%, j)
for each a;; # 0, 1 < j. The filled graph G* of G is found by the following method:
Set all nodes unmarked and iterate the following step n times: Select an unmarked
node v and add edges to G such that all unmarked neighbors of v are adjacent (i.e.
the unmarked neighbors form a clique), and then mark v.

1

The graph G* is the adjacency graph of L + LT where L is the Cholesky-factor of
A. We call the ordering in that we select the nodes when forming G* an elimination
ordering.

The elimination tree T' of G is defined as follows: Node j is the parent of node %
(j >4) in T iff j is the lowest numbered among the higher numbered neighbors of i
in the filled graph G* (i is a child of j). If « is the elimination ordering that gives G*
we will denote its elimination tree by T4.

The elimination tree T describes the dependencies between the columns of the
matrix A during Cholesky factorization (Liu [9]). If node i is a descendant of node j
in T when factoring A, column ¢ of L has to be computed before column j Thus the
height of the elimination tree gives a limit on how fast we can factor A if we compute
as many rows in parallel as possible.

The following graph notation will be used in this paper:

We denote the edge set of a graph G by E(G), and the vertex set by V(G). If B
is a set of nodes G — B. is the induced graph of G' containing all nodes not in B.

A cutset C is a set of nodes in G such that G—C contains at least two components.

T'[x] denotes the subtree of T induced by z and all its descendants in T'; z is the
root of this subtree. A chain v,...,w is a path in T such that each node with the
exception of the lowest node v has exactly one child. If v has no children v is a leaf.
A chain is lowest if the lowest node is a leaf in T'.

If z is on the path y, ...,root(T) in T we say that y is a descendant of z, and z is
an ancestor of y. If y is neither an ancestor nor a descendant we say that z and y are
unrelated. A proper descendant/ancestor of z is an descendant/ancestor of z other
than z itself.

The root of an elimination tree T' is denoted by root(T"). The height of a node z
in T is denoted by h(z). The height of an elimination tree is the height of root(T")
and is denoted by h(T) The parent of a node z in T is denoted by p(v). We define
p(root(T)) = root(T).

Let = be a node in G. We then denote all nodes adjacent in G to x other than z
itself by adj(z). If S is a set of nodes we denote all nodes in V(G) — S adjacent in G
to nodes in S by adj(S).

A chordal graph is a graph which doesn’t contain any cordless cycles of length
more than 3. A simplicial node z is a node such that adj(x) is a clique.

3. Nested Dissection and Maximal Independent Set. In this section we
look at two heuristics, Nested Dissection and Maximal Independent Set, for finding
orderings on a graph which give low elimination trees. We will see how they relate to
the minimum height problem.

In order to get a ”low” elimination tree we need to have a tree with branching. We
therefore first show a necessary and sufficient condition for two nodes to be unrelated
in T'. To do this we need two results from Liu [9], which we state here without proof.
If G is a graph with elimination tree 7' then the following facts are true:

Fact 1. For any node x in T the nodes in T'[z] induce a connected component of
G. O

Fact 2. If (x,y) € E(G*) and x < y then node x is a descendant of node y in
T. O

This allows us to show the following result:

THEOREM 3.1. Let G be a graph with elimination tree T, and let x and y be two
distinct nodes in V(G) such that z,y # root(T'). Let z be the lowest common proper
ancestor of x and y in T, and let C be the set of all nodes on the path z,...,root(T")

2

inT. Then ¢ and y are unrelated in T iff C is a cutset in G such that © and y are
in different components of G — C.

Proof. Let s be the child of z such that z € T'[s]. We know from Fact 1 that the
nodes in T'[s] induce a connected component G’ of G.

= ! Since adj(G') C C (Fact 2) and y ¢ C it follows that y & adj(G'). We know
that y € G'; adj(G") must therefore be a cutset between z and y in G.

< Because G' is connected we know that y & T'[s]. It follows that s and y must
be unrelated in T and therefore also z and y. 0O

Note the following consequence of Theorem 1: if v is an ancestor of z in T" then
z and y are unrelated in T iff the nodes on the path z,...,v in T induce a cutset in
the subgraph of G induced by the nodes in T'[v].

Nested Dissection is a top down algorithm where one first identifies and removes
a cutset from G. The nodes in the cutset are ordered last. This process is then
repeated recursively for each remaining component. This guarantees that nodes in
different remaining components at each stage are unrelated in 7" and that at least one
node in each cutset has two or more children in 7'. Each cutset is chosen in such a
way that the largest remaining component includes no more than |c¢n| nodes for some
constant ¢, 0 < ¢ < 1, where n is the number of remaining nodes. We shall call such
an elimination ordering for a c¢n-Nested Dissection ordering.

It can be shown that if G and its subgraphs have separators of size s such that no
component is larger than cn where ¢ is some constant, then we can always find a Nested
Dissection ordering that gives an elimination tree of height O(slogn) (Bodlander et.
al [1]). In [7] Leiserson and Lewis give experimental results from applying a Nested
Dissection algorithm to a collection of matrices from the Harwell-Boeing collection [2].
However, as we shall see no Nested Dissection ordering will give a minimum height
elimination tree for every graph.

Consider the graph G in Figure 1. We have shown the two elimination trees
corresponding to the following two elimination orderings: « = {a,b,c,d, f,e, h,i,g}
and 8 ={a,b,h,i,c,d,g,d, f}.

G Ts TB
@ ® 9 0
@ Oem @0 e D OSRC
0 @ (© @) (M©) (e

Fic. 1.

As seen from Figure 1, # gives a minimum height elimination tree, while « is
ordered after a Nested Dissection ordering. If we add nodes to G that are only
adjacent to g we still have to eliminate e or f last in order to get a minimum height
elimination tree. From this we see that for any given value of ¢, we can add nodes
which are only adjacent to g such that the component of G — f containing g, has
more than cn nodes. Thus we see that no cn-Nested Dissection ordering will give a
minimum height elimination tree for an arbitrary graph.

I In Liu gives a proof of the = part of Theorem 1.

Maximal Independent Subset is a greedy algorithm where one chooses a maximal
independent set of nodes S; (i.e. if v,w € S1, (v,w) € E(G)) and orders first. For
each pair z,y € S; the nodes in G — S; will be a cutset. This guarantees that exactly
the nodes in S; will be leaves in T'. The process is repeated (recursively) after adding
fill edges to G so that for each z € S1 adj(z) is a clique. Gilbert et al. [3] present
an implementation of the Maximal Independent Set algorithm on the Connection
Machine.

As it turns out Maximal Independent Set does not in general give a minimum
height elimination tree no matter how we choose S; at each stage of the algorithm.
To see this look at the graph and the elimination tree in Figure 2.

G T
(a———¢)

(b)
(@) (i)
(e—0) DR OB
g)—(h)—— —® (@ (@ @ © () (k

Fic. 2.

The only elimination ordering that achieves minimum height 3 is given by choosing
S1 ={a,c,d, f,g,k} as leaves in T'. But this is not a maximal independent set since no
node adjacent to ¢ is chosen. Thus we see that no Maximal Independent Set ordering
will give a minimum height elimination tree for an arbitrary graph.

Maximal Independent Set is a generalization of an algorithm for finding low elim-
ination trees for chordal graphs by Jess and Kees [6]. At each stage in their algorithm
one selects a maximal independent set of simplicial nodes and eliminate. It has been
shown (Liu [8]) that for chordal graphs this algorithm give the lowest possible elim-
ination tree over all orderings that does not increase the number of fill edges. It is
however easy to see that the Jess and Kees algorithm does not produce a minimum
height elimination tree for an arbitrary chordal graph if we allow fill edges. Consider
a straight line of 2F — 1 nodes. It has minimum height k — 1, but the lowest tree one
can get without increasing fill has height 2¥=! — 1.

4. Minimal Cutset Orderings. A Minimal Cutset ordering is an elimination
ordering where one removes a minimal cutset C from G and order it last (with no
constraint on the size of the components of G — C'). This is repeated (recursively)
until all remaining component are cliques in G. It is easy to show that each minimal
cutset C' will be a non-lowest maximal chain in 7" and that C' will induce a clique in
G*.

We will now show that for an arbitrary graph G with elimination tree 7' there
exists an elimination ordering « such that the following two conditions are met: (1)
« is given by a Minimal Cutset ordering. (2) h(Ty) < h(T).

We give a proof by induction on the number of nodes in G. Let G be a graph
with elimination tree T'. If |V(G)| < 2 the hypothesis is trivially true. Assume now
that |V(G)| = n > 2 and that the induction hypothesis holds for |V (G)| < n. There
are two cases to consider:

1. T is a chain. If G is a clique we are done. If G is not a clique then there must
exist some minimal cutset C' in G. We eliminate C' last in any order. By the

4

induction hypothesis there exists an elimination order «; on each component
of G — C such that the result is true. Our elimination ordering will now be
any ordering that preserves the order within each a; and with C' last.

2. T is not a chain. Let K be the uppermost maximal chain in 7. Note first
that reordering the nodes in K will not increase the height of the elimination
tree. Since K is a cutset it must contain a minimal cutset C. Reorder K so
that the nodes in C are ordered last and the nodes in K — C second last. T'.e
height of the elimination tree has not increased and a minimal cutset is now
eliminated last. The result now follows by the induction hypothesis.

Since our claim holds true for every ordering on G we are able to state the following
result:

THEOREM 4.1. Let G be an arbitrary graph. Then there exists a Minimal Cutset
ordering on G that gives an elimination tree of minimum height. 0O

5. The Minimal Cutset Algorithm. We will now show how the result from
Theorem 2 can be utilized to design an algorithm for reducing the height of an elim-
ination tree. We will design an algorithm that takes any elimination ordering and
reorders it into a Minimal Cutset ordering giving an elimination tree of the same or
lower height. To do this we first need the following fact from Liu [9]:

FAcT 3. Let G be a graph with elimination tree T. A node x € V(G) is adjacent
in G* to exactly those of its ancestors in T that the nodes in T[z] are adjacent to in
G. O

First we look at the case when the elimination tree is not a chain. Let G be a
graph with elimination tree 7" and let K be the set of nodes in the uppermost maximal
chain in 7". The new elimination ordering « is the same as the one we had originally
except that we have interchanged the relative order among the nodes in K. This
ensures that the height of the new elimination tree does not increase.

Let z ¢ K be a child of a node in K such that h(z) is maximal among all such
nodes. Then we know from Fact 3 that z is adjacent in G* to all the nodes in K
which the nodes in T'[z] are adjacent to in G. We call this set of nodes B. It follows
that B is a cutset in G. We now find a component R of G — B which is adjacent in
G to the fewest nodes in B. The subset of B that R is adjacent to is denoted by C.
Each component of G — B which is adjacent in G to a node in B — C is in the same
component of G — C as both z and B — C. It follows that each component in G — C
is adjacent in G to each node in C'. C must therefore be a minimal cutset in G.

G -
B

O]
S
N
C R
&

Fic. 3.

The nodes in K are now permuted so that we first eliminate the nodes in K — B
followed by the nodes in B —C' and C' while maintaining the relative order among the
nodes in each group. This ensures that a minimal cutset is eliminated last and that

the height of the elimination tree does not increase. The effect on 7" is that the nodes
in T'[z] have now been moved |K| — | B| places closer to the root.

This process can be performed in two steps: First we eliminate the nodes in B
last. This way we can identify the nodes in C' by finding a node y € B such that
p(y) € B and so that y is adjacent in G* to the fewest nodes in B among all such
nodes. We then set C' equal to the nodes in B that y is adjacent to in the current G*.
Finally we rearrange the nodes in B so that the nodes in C' are eliminated last.

We can now remove C' and all edges incident to it from G and T, and repeat the
process for each remaining component. When this is done each maximal non-lowest
chain v, ..., w will induce a minimal cutset in the subgraph of G induced by the nodes
in T[w].

It remains to show how each maximal lowest chain in 7" which does not induce a
clique in G, can be reordered into a Minimal Cutset-ordering such that the height of
the elimination tree is not increased.

Assume that G is not complete and that h(T") = n — 1. Then reordering the
nodes cannot increase the height of 7. Since G is not a clique there exists at least
one node z which is not adjacent to all other nodes in G. The nodes in K = adj(z) is
a cutset in G. We eliminate the nodes in K last and the nodes in V(G) — K second
last. Some node in K must now have at least two children, and we can proceed as for
the maximal non-lowest chain.

This method can be applied recursively to each maximal lowest chain in 7" until
all lowest chains are cliques in G. We thus see that this algorithm which we will
call the Minimal Cutset-algorithm, will find a Minimal Cutset ordering for any graph
without increasing the height of the elimination tree.

Figure 4 shows an example of how the algorithm works. We start with the elim-
ination ordering b,d, f,c,a,e. The topmost maximal chain is ¢,a,e and we choose
z = d. This gives B = {a, c} which we order last. We then set y = e or f and get
C = c which is ordered last. We now have a lowest chain b, d, a which is reordered so
that b is eliminated last.

G ®) T (o (a) (c) (c)
(a) (c) (@@ (b)e)(f
(cr—(d (c) OIOIONNC) (a) (d)
@ © o (b)
e © o

Fic. 4.

The height of the elimination tree is now reduced from 4 to 2.

6. Tree Rotations and Chain Reorderings. We will now study two algo-
rithms for reducing the height of an elimination tree by respectively Liu [8] and
Hafsteinsson [4] and see how they compare with the Minimal Cutset algorithm.

Liu’s algorithm performs local rotations in the elimination tree that do not in-
crease the number of fill edges. The algorithm is based upon the following idea:

Let « be a node such that its ancestors in 7" induce a clique in G* and let K be
the ancestors of z which are adjacent to z in G* and B the ancestors which are not
adjacent to z in G*. We now restructure the nodes in K and B so that the nodes in

6

K are ordered last and the nodes in B second last while keeping the relative order
among nodes in the two groups. The rest of the ordering is kept as it is.

Since K is a cutset between z and B it follows that z and B are unrelated in
the new elimination tree and that T'[z] has moved |B| places closer to the root of the
elimination tree.

The algorithm is as follows:

y = a deepest leaf in T’
For each z on the path root(T), ...,y in T'
If z is not adjacent i G* to all of it’s ancestors in T’
then if Restructure(z) makes T' lower
then Restructure(z)
else Halt

Figure 5 shows an example of how the algorithm works. We set y = 1 and perform
Restructure(2). This reduces the height of the elimination tree from 3 to 2.

G T

© (5) (3)
-6 & W= B
® g © @
o

FiG. 5.

Hafsteinsson’s algorithm reorders each maximal chain v, ...,w = K in T which is
not a clique in G*. It works by selecting the topmost node x € K that is not adjacent
in G* to all other nodes from K and by eliminating x first while keeping the rest of
the ordering as it is. Let y € K be the highest node not adjacent to z in G*. It
follows that the ancestors of y are now a cutset between x and y in G and that = is
a leaf with p(z) = p(y). This process is continued until all chains in T are cliques
in G*. Figure 6 shows an example of Hafsteinsson’s algorithm. We have 3 maximal
chains in 7" but only 1,2,3 is not a clique in G*. Setting x = 2 and reordering this
chain gives an elimination tree of height 2.

G

—

(6) (6)

:>
ONE)

O OROROROR0

()
SOt
ORC)

Fic. 6.

We now show that none of the algorithms is strictly better than any of the others.
Note first that the only algorithm that has any effect on the original elimination tree
in Figure 4 is the Minimal Cutset algorithm. Similarly the only graph that has any

7

effect on the graph in Figure 5 is Liu’s. Finally, Liu’s algorithm has no effect on
the graph in Figure 6 and the Minimal Cutset algorithm cannot produce as low an
elimination tree as Hafsteinsson’s algorithm on the graph in Figure 7. In Figure 7, a
shows the initial elimination tree with double lines indicating a chain of consecutive
ordered nodes, b shows the elimination tree after applying Hafsteinsson’s algorithm
and c shows the elimination tree after applying the Minimal Cutset algorithm.

G T

@ ® ®
() ®
@ & o @)
2 ©)
2
(7) (8
a Cl

Fic. 7.

S OROSOSCECRS)
OISO
(0B

7. A New Class. In this section we show a general result on how elimination
trees can be reordered. It turns out that the three algorithms studied in the previous
section are all based on special cases of this general result.

THEOREM 7.1. Let G be a graph with elimination ordering o and elimination
tree Ty,. Let x,y € V(G) be such that y is an ancestor of x in Ty, and (z,y) & E(GL).
Then there exists a permutation of the nodes on the path x, ...,y in Ty, such that exactly
y is removed from the ancestors of x.

Proof. Let v be the highest node on the path z,...,y in T, such that (v,y) &
E(G%). We can assume that the nodes on the path v, ki, ks, ..., kp,y in Ty, are elimi-
nated in consecutive order and that the nodes in the subtrees hanging from this path
are eliminated before v. This will not affect the structure of T, nor the fill in G},. We
create a new elimination order 8 by eliminating y just before v while maintaining the
relative order among the rest of the nodes.

Since y has no edges in G%, to nodes in T, [v] it follows that K = ki1, ks, ..., k» and
the ancestors of y in T, induce a cutset between y and v in G, and that v and y must
be unrelated in T3. The structure of T3 is described by the following observations:

1. Since only the order among the nodes in K Uy is altered the structure of each
subtree in T, — K — y remains unchanged.

2. Since v, k1, k2, ..., k-—1 are eliminated in consecutive order in 8 and each node
is adjacent to the next in G7; it follows that p(v) = k1 and that p(k;) = kit1,
0<i<r,inTg. If p(y) # root(Ty) let z = p(y) in T,. Then there is some
node in Ty, [y] that is adjacent to z in G. This node will be a descendant
of k. in Tg. It follows that (k.,z) € E(G}) and that p(k;) = z in Tg. If
y = root(T,) then k, will be the root of T since k, is now eliminated last.

3. Let w be a node such that w ¢ K and p(w) € K in T,,. If (w,y) € E(G})
then p(w) =y in Tp else if (w,y) ¢ E(G}) then p(w) remains unchanged in
Ts.

4. If (k1,y) € E(G) there must be some child w of k; in T, such that (w,y) €
E(G?7) and therefore also in E(Gj). In T, the node w will be a child of y.
Thus (y, k1) € E(G}) and it follows that p(y) = k1 in Tj.

Ty Tg

®

o oo Do

Fic. 8.

From observations 1 to 4 it follows that the path z, ..., root(T,,) remains unchanged
in Tz except that y has now been removed. O

We can view the process used in the proof of Theorem 3 in the following way:
After we have selected z and y we move y downwards in 7" until it folds out to the
side. We will now show that the three algorithms from the previous section consist of
repeated applications of this result.

First consider the Minimal Cutset algorithm. Note that in both steps (selecting
a cutset and making it minimal) of the reordering of a non-leaf chain in the Minimal
Cutset algorithm we select a set of related nodes (K — B and B—C) which are removed
from the ancestors of some node (z and y). The reordering step can be viewed as if
the nodes in each set are moved down one at a time until they fold out starting with
the lowest node first just like in the proof of Theorem 3.

In Liu’s algorithm the reordering step consists of selecting a set of nodes B which
are not adjacent to some node x on a longest path in 7". In the same way as for the
Minimal Cutset algorithm these nodes are moved down starting with the lowest node
first, until they fold out.

Hafsteinsson’s algorithm is just an application of Theorem 3 with the restriction
that the path from z to y in 7" must be a maximal chain.

We thus see that the algorithms differ as to the strategy by which the nodes to
be folded out are selected.

When applying the result from Theorem 3 it is not true that the height of the
elimination tree always decreases. This is still not true even if we select z on a longest
path in T" and fold out an ancestor y of & which is not adjacent to z in G*. This is so
because on its way down y will pull with it all subtrees that are hanging on the path
Z, ..,y in T that are adjacent to y in G* (observation 3 in Th. 3). These will now
be further down in the elimination tree than before. If w is a node hanging from the
path p(v),...,y in T with (w,y) € E(G*) and if h(w) > h(v) then the height of the
elimination tree does not decrease. We can, however, continue recursively to reorder
T'[y] in the new elimination tree and try to make it lower.

None of the algorithms uses the result of Theorem 3 to its full extent for reducing
height. In order to see this look at the graph in Figure 9. None of the three algorithms
gives a lower elimination tree. Node 9 is not adjacent to node 2 in G*. We can therefore
move node 9 down until it folds out and in doing so produce a lower elimination tree.

Fia. 9.

Different ways of selecting the nodes to be folded out can lead to other algorithms.
Let z be a node on a longest path in 7'. Other choices might be:
1. Fold out the lowest/highest eligible node.
2. Fold out the node that has to be moved the shortest distance.
3. Fold out the node that is closest to the root after having been folded out.

8. Conclusion. We have shown that Nested Dissection and Maximal Indepen-
dent Subset give potentially low elimination trees but not necessarily of minimum
height. We have also introduced a more general class of elimination orderings called
Minimal Cutset orderings and shown the existence of a Minimal Cutset ordering that
gives a minimum height elimination tree for an arbitrary graph.

This result is useful since it tells us that it is only necessary to remove minimal
cutsets when doing Nested Dissection on a graph in order to get a low elimination
tree. It can also be helpful when designing algorithms for finding minimum height
elimination trees for special classes of graphs. One such an algorithm for trees is
shown by the author in [11].

We then compared the algorithms proposed by Liu and Hafsteinsson with the
Minimal Cutset algorithm and showed that none of these is strictly better than any
of the others. Finally, we showed that these three algorithms are members of a class of
algorithms that depend on a general result on how elimination trees can be reordered.

Bodlander et al. [1] has shown that an approximation algorithm for finding cutsets
can be used to find an elimination tree which is at most of height log?n times the
minimum. It would be interesting if one could find orderings which at the same time
keep the amount of fill low and also gives a low elimination tree. If one is to achieve
a low elimination tree there cannot be too much fill in G* since it would increase the
dependencies among the nodes and prevent branching. Heggernes [5] has shown that
given a partition of a graph into minimal cutsets finding the minimum fill ordering
reduces to a local problem for each, but unfortunately these problems still remain
NP-hard.

9. Acknowledgments. The author thanks Professor Bengt Aspvall for encour-
agement and guidance during the work with [10] where most of the results of this
paper were first presented.

10

(1]

(2]
(3]

(10]
(11]
(12]

(13]

REFERENCES

H. L. BODLANDER, J. R. GILBERT, H. HAFSTEINSSON, AND T. KLOKS, Approzimating trecwidth,
pathwidth and minimum elimination tree height, Tech. Report CSL-90-10, Xerox Palo Alto
Research Center, 1991.

I. DurF, R. GRIMES, AND J. LEWIS, Sparse matriz test problems, ACM Transactions on Math-
ematical Software, 15 (1989), pp. 1-14.

J. R. GILBERT AND R. SCHREIBER, Highly parallel matriz reordering and symbolic factorization.
In preparation, 1991.

H. HAFSTEINSSON, Parallel Sparse Cholesky Factorization, PhD thesis, Cornell University, 1988.

P. HEGGERNES, Reducing the fill-in size for an elimination tree. University of Bergen, Norway,
In preparation, 1991.

J. A. G. JEss AND H. G. M. KEEs, A data structure for parallel LU decomposition, IEEE
Transactions on Computers, C-31 (1982), pp. 231-239.

C. E. LEISERSON AND J. G. LEwis, Orderings for parallel sparse symmetric factorization.
Unpublished manuscript, 1988.

J. W. H. L, Reordering sparse matrices for parallel elimination, Parallel Computing, 11
(1989), pp. 73-91.

, The role of elimination trees in sparse factorization, SIAM Journal of Matrix Analysis
and Applications, 11 (1990), pp. 134-172.

F. MANNE, Minimum height elimination trees for parallel Cholesky factorization, master’s
thesis, University of Bergen, Norway, 1989. (In Norwegian).

, An algorithm for computing a minimum height elimination tree for a tree, Tech. Report
CS-91-59, University of Bergen, Norway, 1992.

A. POTHEN, The complexity of optimal elimination trees, Tech. Report CS-88-13, Pennsylvania
State University, 1988.

M. YANNAKAKIS, Computing the minimum fill-in is NP-complete, SIAM Journal of Algorithms
and Discrete Methods, 2 (1981), pp. 77-79.

11

